Mapping health status of chestnut forest stands using Sentinel-2 images
Véronique Cheret, Yousra Hamraoui, Goulard Michel, Jean-Philippe Denux, Hervé Poilvé, Michel Chartier

To cite this version:

HAL Id: hal-02138678
https://hal.science/hal-02138678
Submitted on 11 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mapping health status of chestnut forest stands using Sentinel-2 images

Véronique Chéret1, Youssa Hamrouni2, Michel Goulard1, Jean-Philippe Denux3, Hervé Poilvé1, Michel Chartier2
1 Dynafor, University of Toulouse, IRM, France; véronique.chevet@orange.fr
2 AIRBUS Defense and Space, Toulouse, France
3 CNPF-IFP, Orleans, France

Context - Objectives

Health status diagnosis of chestnut forest stands is a crucial concern for forest managers. These stands are made vulnerable by numerous diseases and sometimes unadapted forestry practices. Moreover, since last years, they were submitted to several droughts. In Dordogne province (France), the economic stakes are important. For example, about 2/3 of the chestnut forest area are below the optimal production level, and most of the forest stands of this area show a high proportion of dry branches. The actual extent of declining forest remains unknown. Sentinel-2 images show an interesting potential to map declining stands over a wide area and to monitor their evolutions. This study aim to propose a method to discriminate healthy chestnut forest stands from the declining ones with several levels of withering intensity, over the whole Dordogne province (9 000 km²).

Method

The proposed method is the development of statistical models integrating in a parsimonious manner several vegetation indices and biophysical parameters.

The statistical approach is based on an ordered polytomous regression to which are applied various techniques of models’ selection (Agresti, 2003).

The three processing steps are:

1. Selection of the best remote sensing variables
2. Models calculation and selection
3. Mapping selected models and validation

Remote sensing variables : 36 vegetation indices were calculated from THEIA-MAJA L2A products and 5 biophysical parameters were processed from ESA level 1C product (Poilvé, 2010). These last parameters have been obtained by inverting a canopy reflectance model with the Overland software (developed by Airbus DS Geo-Intelligence). This software couples the PROSPECT leaf model and the scattering by arbitrary inclined leaves (SAIL) canopy model (Jacquemoud, 2009).

- 10 spectral bands (resampled at 10m spatial resolution)
- 82, 83, 84, 85, 86, 87, 88, 89, 811 at 812
- 36 vegetation indices
- NDVI, EVI, NDI, NDVIatmid – MCARI, DVI, Ggreen, CRI, NBR, PSI ...
- 5 Biophysical parameters
- BLCV: Cover fraction of brown vegetation
- GLCV: Cover fraction of green vegetation
- FABRA: Fraction of Absorbed Photosynthetically Active Radiation
- GLAI: Green Leaf Area Index
- WAT: Leaf Water Content

Field data for validation and selection of the predictive models are based on health status data. Data sets have been surveyed by foresters. The chestnut trees health status has been described by using two protocols (ARCH and Expert knowledge) (Lombert, 2018) - 50 for calibration, 102 for validation.

Results

- The best remote sensing variables according to AIC and cross validation:
 - Vegetation Red Edge and NIR spectral bands : B8a, B8, B7, B6...
 - Vegetation indices : NDI, EVI, NDI, NDVIatmid, MCARI, DVI, Ggreen, CRI, NBR, PSI ...
 - Biophysical parameters : GLAI and GLCV.

- The selected models using for 2 to 5 variables, and using single date images (July and Sept) or both combined : 79 selected models according to AIC and CHF, then 12 selected models according to quality indices (Kappa, Tau, Overall accuracy, RMSE) using validation observations.

- The Maps of the best models:
 - Maps of probability of belonging to a class of decline,
 - Expected classification maps.

Data

In this study, Sentinel-2 images (10 bands at 10 and 20 m spatial resolution) acquired during the growing season of 2016 have been processed. Due to insufficient data quality related to atmospheric conditions, only 2 cloud-free images were analyzed (one in July and one in September).

Conclusion

- The kappa index of the 57 models varies from 0.2 to 0.6 ; the kappa index of the 12 best models varies from 0.49 to 0.65.
- The contribution of the image of September is not significant.
- The biophysical parameter GLAI contributes to the two of the best models.