
HAL Id: hal-02138494
https://hal.science/hal-02138494

Submitted on 23 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts

Thiago Rocha Silva, Marco Winckler

To cite this version:
Thiago Rocha Silva, Marco Winckler. A Scenario-Based Approach for Checking Consistency in User
Interface Design Artifacts. XVI Brazilian Symposium on Human Factors in Computing Systems, Oct
2017, Joinville, Brazil. pp.3, �10.1145/3160504.3160506�. �hal-02138494�

https://hal.science/hal-02138494
https://hal.archives-ouvertes.fr

A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts

Thiago Rocha Silva

ICS-IRIT, Université Paul Sabatier

Toulouse, France

rocha@irit.fr

Marco Winckler

ICS-IRIT, Université Paul Sabatier

Toulouse, France

winckler@irit.fr

ABSTRACT

Keeping the consistency of requirements in different artifacts

along the development process is a cumbersome activity,

especially if it is done manually. Previous studies have

investigated the use of User Stories to write testable

requirements in order to automate the assessment of a given

set of development artifacts. This paper expands the research

in this field describing a scenario-based approach for

checking consistency in User Interface (UI) design artifacts,

modeling business and user requirements. A case study is

presented as a proof of concept showing how our approach

could be used to ensure the consistency of both business and

task models, besides UI prototypes and scenarios.

Preliminary testing results have shown that our approach is

able to identify even fine-grained inconsistencies in the

mentioned artifacts, allowing establishing a reliable

compatibility among different UI design artifacts.

Author Keywords

Scenario-Based Design, User Interface Design Artifacts,

Automated Assessment, User Stories, Business Modeling,

Task Modeling, Prototyping.

ACM Classification Keywords

H.5.2. Information interfaces and presentation (e.g., HCI):

User Interfaces.

INTRODUCTION
Modeling information systems is a very complex task.

Several aspects of information, from the macro business

goals until the most detailed information about user tasks

must be taken into account. For facing this challenge,

software systems tend to be designed based in several

requirements artifacts, modeling different aspects of the

system (e.g. business models, use cases, task models, etc.).

Artifacts are the means by which the outcomes of these

modeling activities are registered. As many stakeholders

have different views of the system and different phases of

development require distinct information, artifacts used for

modeling tend to be very diverse throughout the

development and ensuring their consistency is quite

challenging [25]. In iterative processes, the cycle of

producing and evaluating artifacts permeates all phases of

system development, from requirements and business

analysis until the software testing.

On one hand, business requirements are usually modeled

using Business Process Modeling Notation (BPMN) [8].

BPMN is a well-established approach to model business-

oriented tasks in a high-level of abstraction through a

workflow view. User requirements, on the other hand, can be

obtained using a diverse set of methods. User-centered

approaches usually model requirements using artifacts such

as scenarios, task models and prototypes. In a scenario-based

approach, these artifacts can be additionally aligned to pro-

vide a complete software design specification for interactive

systems.

User Stories [4] are artifacts that allow specifying natural

language requirements using scenarios in a simple and

understandable way for different stakeholders. Additionally,

scenarios from User Stories can be directly tested from their

textual specifications. They provide actually a “live”

documentation once it contains, in a single artifact, the

specification itself besides test cases which are able to certify

whether some requirement has been attended or not.

However, current testing approaches using User Stories

focus essentially on assessing final user interfaces that are

typically produced late in the development process.

Since long time ago, it is a peaceful argument that providing

early assessment is very helpful for detecting errors of

modeling as soon as possible, before making strong

commitments with the software implementation [14].

Nonetheless, ensuring the consistency of other artifacts every

time a requirement is introduced and/or modified is a

discouraging activity for software development teams,

especially if it should be done manually. Several tools both

in the academy and industry environments have provided

means of vertically tracing requirements through different

artifacts, although they do not provide means of checking the

consistency of such requirements [23].

In this paper, we propose to explore the use of such

techniques to investigate testing perspectives for user

interface design artifacts that model different aspects of both

business and user requirements. Considering a scenario-

based approach, the aim is to verify and test the consistency

of three early artifacts: BPMN models, low-fidelity

prototypes and task models, looking for errors and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

IHC 2017, October 23–27, 2017, Joinville, Brazil

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-6377-8/17/10…$15.00

https://doi.org/10.1145/3160504.3160506

mailto:Permissions@acm.org

inconsistencies when modeling functional requirements. A

case study for the flight tickets e-commerce domain is

presented as a proof of concept to attest the feasibility of the

approach. In the following sections, we present the

foundations for our approach, followed by our strategy for

modeling and conducting tests in the mentioned artifacts.

Further, we describe a case study that demonstrates its

feasibility and discuss the advantages and shortcomings of

the approach. Lastly, we lay out our next steps for research

in this field.

FOUNDATIONS

User Stories and Scenario-based design

Scenario-based design (SBD) is a family of techniques in

which the use of a future system is concretely described at an

early point in the development process. Narrative

descriptions of envisioned usage episodes are then employed

in a variety of ways to guide the development of the system.

Like other user-centered approaches, scenario-based design

changes the focus of design work from defining system

operations (i.e., functional specification) to describing how

people will use a system to accomplish work tasks and other

activities [19].

SBD follows an iterative design framework in which

scenarios serves as a central representation of requirements

throughout the development cycle, first describing the goals

and concerns of current use, and then being successively

transformed and refined through an iterative design and

evaluation process (Figure 1). However, from analysis to

evaluation, the SBD cycle does not tackle how to manage

and assess the flow of artifacts that are produced all along

these multiple development phases.

Figure 1. An overview of the scenario-based design (SBD)

framework (from Rosson & Carroll [19]).

As central representation of requirements, scenarios can

admit multiple templates according to the phase of

development and to the level of abstraction that they are

addressing for some information. Free narratives, for

example, are useful in the very early phases, when typically

high-level business requirements are being defined (problem

scenarios). Nevertheless, they are a frequent source of

misunderstandings when used to refine requirements in

activity or interaction scenarios in the design phase. Semi-

formatted templates like in User Stories are better suitable in

this case.

The use of User Stories for modeling requirements has been

proposed by Cohn [4]. The author suggests formalize these

stories in an artifact describing a feature and its acceptance

criteria, with concrete examples about what should be tested

to consider this feature as “done”. Below it is presented a

template proposed by North [15] and Cohn [4]:

Title (one line describing the story)

Narrative:

As a [role]

I want [feature]

So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title

Given [context]

 And [some more context]...

When [event]

Then [outcome]

 And [another outcome]...

Scenario 2: ...

According to this template, a User Story is described with a

title, a narrative and a set of scenarios representing the

acceptance criteria. The title provides a general description

of the story, referring to a feature that this story represents.

The narrative describes the referred feature in terms of the

role that will benefit from the feature, the feature itself, and

the benefit it will bring to the business. The acceptance

criteria are defined through a set of scenarios, each one with

a title and three main clauses: “Given” to provide the context

in which the scenario will be actioned, “When” to describe

events that will trigger the scenario and “Then” to present

outcomes that might be checked to verify the proper behavior

of the system. Each one of these clauses can include an

“And” statement to provide multiple contexts, events and/or

outcomes. Each statement in this representation is called

step.

User Stories are usually specified by Product Owners [20] to

settle a big picture about features that will be developed,

emphasizing, for each one, the business value they will bring

to users. The set of acceptance criteria that compose the User

Story determines whether a feature can be considered as

“done”, i.e. under which conditions stakeholders will

consider this feature able to add value to the business. By

specifying such conditions through examples of use,

stakeholders set up the validation scenarios under which the

system should be tested.

Business Process Modeling

Business Process can be understood as the step-by-step rules

specific to the resolution of some business problem. Business

Process Modeling (BPM) refers to the design and execution

of business processes. Among the benefits of BPM are the

formalization of current processes and the support for

efficiently automating the process flow. Business Process

Modeling Notation (BPMN) is a graphical flowchart-like

language intended for use by business analysts and

developers to build business process diagrams [9].

Notational elements in business process diagrams are di-

vided into four basic categories: flow objects, artifacts,

connecting objects and swimlanes, each of which consists of

a set of elements. They include events, activities, gateways,

data objects, groups, annotations, sequence and message

flows, and associations. By following the flow of activities

in the model, we succeed building high-level scenarios.

Examples of notational elements are presented in the case

study.

Modeling User Requirements for Interactive Systems

Task Modeling

Task models provide a goal-oriented description of

interactive systems, but avoiding the need for the level of

detail required for a full description of the user interface.

Each task can be specified at various abstraction levels,

describing an activity that has to be carried out to fulfil the

user's goals. By modeling tasks, designers are able to

describe activities in a fine granularity, for example,

covering the temporal sequence of tasks to be carried out by

the user or system, as well as any preconditions for each task

[16].

HAMSTERS [13] is a tool-supported graphical task

modeling notation for representing human activities in a

hierarchical and ordered manner. At the higher abstraction

level, goals can be decomposed into sub-goals, which can in

turn be decomposed into activities. The output of this

decomposition is a graphical tree of nodes. Nodes can be

tasks or temporal operators. Tasks can be of several types

and contain information such as a name, information details,

and criticality level. Abstract Task is a task that involves sub-

tasks of different types. System Task is a task performed only

by the system. User Task is a generic task describing a user

activity. It can be specialized as a Motor Task (e.g. a physical

activity), a Cognitive Task (e.g. decision making, analysis),

or Perceptive Task (e.g. perception of alert). Finally,

Interactive Task represents an interaction between the User

and the System; it can be refined into Input Task when the

users provide input to the system, Output Task when the

system provides an output to the user, and Input/Output Task

that is a mix of both, but performed in an atomic way.

Additionally, temporal relationships between tasks are rep-

resented by means of operators. The operator “Enable” (>>)

describes that the tasks T1 and T2 occur sequentially, one

after the other. Other operators such as “Concurrent” (|||),

“Choice” ([]), “Order independent” (|=|), etc. describe that

tasks can be held simultaneously, the choice of one implies

that the other will be disabled, or that the user can choose

whether he will perform the one or another task first. It is the

use of these operators to link tasks in the model that allows

extracting scenarios to be performed in the system. This is

done by following the multiple achievable paths in the

model, with each combination of them generating an

executable scenario.

Prototyping

A prototype is a previous representation of an interactive

system. Prototypes are concrete artifacts and important

components of the design process. They encourage

communication, helping designers, engineers, managers,

software developers, customers and users to discuss design

options and interact with each other. They also permit early

evaluation since they can be tested in various ways, including

traditional usability studies and informal user feedback,

throughout the design process [1]. Prototypes are often used

in an iterative design process where the prototype is refined

and become more and more close to the final user interface

through the identification of user needs, constraints and

feedbacks on early prototypes. It makes particularly

important the investigation of multiple design options in the

early phases. By running simulations on prototypes, we can

determine potential scenarios that users can perform in the

system.

Along this refining process, the prototype can be designed in

different levels of fidelity. The prototype fidelity expresses

the similarity between the final user interface (running in a

particular technological space) and the prototyped UI. The

UI prototype fidelity is said to be high if the prototype

representation is the closest possible to the final UI, or almost

in the same representation type. The fidelity is said to be low

if the prototype representation only partially evokes the final

UI without representing it in full details. Between high-

fidelity and low-fidelity exists the medium-fidelity level, that

gives more importance to the contents than the style with

which these contents are presented [5].

Prototyping is primarily a design activity in software

engineering. It ensures that software prototypes evolve into

technically sound working systems and serves for studying

the effectiveness of particular designs.

PROPOSED APPROACH

For modeling business and user requirements, we propose a

scenario-based approach, taking multiple views of the sys-

tem into account. Figure 2 illustrates this approach, so far

designed for supporting three modeling processes: business

modeling, task modeling and prototyping. The processes of

business and task modeling as well as the process of

prototyping are iterative and contribute mutually for the

development of each one. The relationship between task

modeling and prototyping are quite natural once both

composes the typical process of modeling user requirements

for interactive systems. Both of them are also innately

scenario-based as they use scenarios to perform and simulate

user activities in the system. The relationship between

business and task models has already been studied by some

authors [17] [25]. Winckler and Palanque [25] have

demonstrated how – starting from a business process – task

models can be designed to specify the flow of detailed tasks

that a user should accomplish to perform a given activity for

each business process. With this perspective, the process of

business modeling can also fit in a scenario-based approach,

once the overall business view about the system can be easily

described using a scenario narrative.

Figure 2. Modeling business and user requirements in a

scenario-based approach.

The problem raised in such processes is that there is not a

common ground to specify scenarios for each model. They

can be freely described following few or no templates, from

informal descriptions such as textual narratives until more

formal ones such as pre-formatted lists of tasks extracted

from task models. It makes very hard the work of identifying

similar requirements that eventually describe the same

features but in different perspectives. To tackle this problem,

we explore the use of the ontological support proposed by

Silva et al. [21] aiming describing common behaviors with a

standard vocabulary for writing User Stories as scenario

artifacts. The main benefit of this strategy is that User Stories

described following a common vocabulary can be directly

automated for running test scenarios on other artifacts. As

the common vocabulary has been set using well-established

concepts such as UsiXML [11], W3C MBUI [18] and others,

it establishes indeed the searched common ground for a

scenario-based approach considering multiple artifacts.

The ontology covers concepts related to graphical

components (presentation and behavior) used to build web

and mobile applications. It also models concepts describing

the structure of User Stories, tasks, scenarios and prototypes.

As illustrated by Figure 3, the specification of behaviors

encompasses when the interaction can be performed (using

Given, When and/or Then clauses) and which graphical

elements (i.e. Radio Button, CheckBox, Calendar, Link, etc.)

are suitable to implement the expected system behavior. In

the example, the behavior receives two parameters: an

“elementName” and a “locatorParameters”. The first

parameter is associated to data for testing, while the second

parameter refers to the interaction element supported by this

behavior, in this case: “Radio Button”, “CheckBox”,

“Calendar” and “Link”. To comply with semantic rules, the

behavior “I chose \”$elementName\” referring to

\”$locatorParameters\”” shown in Figure 3 can be modelled

into a predefined behavior “chooseReferringTo”, called

Common Step.

Figure 3. Behavior being mapped to UI Elements (from Silva

et al. [21]).

The ontological model describes only behaviors that report

steps performing actions directly on the user interface

through interaction elements. This is a powerful resource

because it allows keeping the ontological model domain-

free, which means it is not subject to particular business

characteristics in the User Stories, promoting the reuse of

steps in multiple scenarios. Thus, steps can be easily reused

to build different behaviors for different scenarios.

Based on the presented strategy, we set out four main

challenges for implementing this approach as follows: (i)

adhere to a model-based approach for describing artifacts

produced along the process; (ii) teams must be willing to

adopt the template for User Stories as well as the vocabulary

proposed in the ontology; (iii) the ontology must be

expressive enough to cover the UI-supported set of

interactive behaviors; and (iv) tests must be carried out by

our set of tools.

Target Stakeholders

Many stakeholders are typically involved in the development

of interactive systems. Table 1 summarizes their typical

activities when modeling interactive system and the benefits

they can get from using our proposed approach.

Stakeholders Activity Benefit

Client
Define business and user

requirements.

Requirements and

automated acceptance
testing implemented in a

natural and high-level

language.

Product Owner
and Business

Analyst

Write User Stories and
define the business

model.

A reliable and consistent
compatibility between

User Stories and
business models.

Requirements and

Test Analyst

Write and format User
Stories and help to

design task models.

A common and standard
vocabulary for writing

and formatting User
Stories.

Designers
Design task models and

UI prototypes.

A reliable and consistent
compatibility between

task models and UI
prototypes.

Table 1. Target stakeholders of the approach.

CASE STUDY

In order to conduct a proof of concept for our approach, we

propose a case study in the flight tickets e-commerce

domain. In the following subsections, we present a part of

this case with the business process modeling using BPMN,

the task modeling using HAMSTERS, the set of resultant

scenarios formatted as User Stories, and finally the user

interface prototyping using a sketching tool. Both modeling

and testing activities have been carried out by the authors of

this study.

Modeling the Business Process View

Figure 4 presents the BPMN model for the case study. At the

top, in the first lane, we have the set of activities performed

by users. In the second lane, we have the set of activities

performed by the airline company. At first, the set of

activities performed by the airline company could be made

either manually or in an automated way (using a software

system). For this study, we are assuming that the choice is to

conduct these activities in an automated way, using a web

software system. The online booking process of flight tickets

is divided in 2 main sub-processes. The first one is the search

of flights based on a provided set of parameters and the

consequent selection of the desired flight(s) in a list of

matching flights. The second one is the process of booking

effectively, providing both passengers and payment data to

conclude the booking. The set of functional requirements

assumed by the system is described below through a

narrative scenario:

The user starts the process by conducting a search of flight based on his

desired parameters like origin and destination, dates, number of passengers,
etc. This set of parameters is then submitted to the airline system that will

process the request and creates a list of matching flights. The list of flights

is then returned to the user that verify this list and chooses a flight that better

suit his needs. After choosing the desired flight, the user provide all

passengers data to the airline system that will process the booking. Thereby,

the system confirms the availability of seats and request user to provide
payment data. After the user filling and submitting the data for payment, the

system processes the payment. If the payment is accepted, then the booking

is completed, the user obtains a booking confirmation and the process
finishes. If the payment is declined, then the booking is refused and the

process finishes as well.

Modeling the Task Model View

We have manually modeled the tasks for the general business

process for booking tickets presented in the previous

subsection. We have selected the first sub-process for the

study once it is the most interactive one and represents the

main source of cognitive efforts from users and designers.

The second sub-process, being simply a data providing in

forms, is not so relevant to demonstrate the concepts

presented in the paper, even though the whole process could

be supported by our approach. The task models for the

process of searching and choosing flights have been modeled

using the HAMSTERS notation.

Figure 5 presents respectively the extract of the business

process selected for modeling and the resultant task models.

In the transition (a), the initial business activity “Search

Flights” has been mapped to the abstract/iterative task

“Search Flights” once it is performed by the user. This task

is exploited in an ordered sequence of input/output tasks.

First, the user goes to the web page where he provides data

for search, then he provides a set of data for searching his

flights, submits the search, and finally verifies the resultant

list of flights. Those are sequential user tasks (operator

“Enable”). For the abstract task “Verify List of Flights”, the

system actually provides the list of available flights and then

the subtask “Choose Flights” becomes available to be

performed by the user. It matches with the business activity

“Verify List of Flights” in the BPMN model.

For providing the set of data for searching (“Infs:”), the user

can inform in any other (operator “Order independent”):

departure, destination, number of passengers, departure date,

and trip type. The abstract tasks “Inform Departure” and

“Inform Destination” originate a sequence of three tasks. The

first one in which the user informs a departure (or arrival)

city, the second one in which the system provides a list of

airports in that city, and finally the third one in which the

user chooses the departure (or arrival) airport. The abstract

task “Choose Trip Type” is actually a decision task once the

user can choose (operator “Choice”) between a one-way and

a round trip. If he chooses a round trip, he needs to inform

the arrival date as well.

In the transition (b) of Figure 5, we present the sequence of

the flow. The business activity “Choose a Flight” has been

mapped to the abstract/interactive task “Choose Flights” in

the task model (notice that this same task has already been

Figure 4. Business Process Model for the flight tickets e-commerce domain.

represented as the last abstract task in the first transition).

Exploiting the task “Choose Flights”, the system requests

user for choosing a flight, then the user evaluates the

availability of flights (cognitive analysis task), and finally he

makes a decision, choosing the desired flight (cognitive

decision task). After the cognitive decision about which

flight to choose, the user finally performs the input task of

selecting the desired flight. As a result, the system asks the

user to provide his login information to proceed the booking

with passengers and payment data.

Notice that business and task models are complementary.

The business process model provides an overview of the

activity flow of the system, emphasizing high-level

processes involving diverse business actors. In a different

way, the task model is more focused in describing detailed

user tasks while interacting with the system, emphasizing

lower level tasks. Thereby, task models provide more refined

resources and descriptors to model user interactions than

those provided by business process models.

Extracting User Stories and Scenarios

Based on the task model developed for the process of

searching and choosing flights, we have automatically

extracted some possible scenarios that a user could perform

in the system. HAMSTERS tool supports innately the

extraction of scenarios from task models, by running them

and extracting the possible achievable paths. Figure 6

illustrates an extraction result. The presented path simulates

a scenario for a one-way trip. The ordered sequence of tasks

for this scenario is listed at the top. This scenario is then

manually formatted to meet the User Story template, with

each ordered task being mapped to a testable interactive

behavior described in the ontology.

Hereafter, we present two formatted User Stories. The first

story focuses on the process of searching flights, with a

narrative describing the role involved with the history, the

feature that this history describes in the user’s point of view,

and finally the benefit that this feature brings to the user in

terms of business goals. In the first scenario for this history

(“One-Way Tickets Search”, presented above), the expected

result for the search is a new screen presenting a “List of

Available Flights”, in which the user might select the desired

flight in a list of flights matching his search. The second

scenario (“Search for a return flight before a departure

flight”) describes the behavior for a specific business rule,

simulating an error situation when searching for a return

flight before a departure flight. The expected outcome is the

impossibility to search flights. Notice that this last scenario

(b)

(a)

Figure 5. Mapping BPMN business activities to HAMSTERS user's tasks.

has been specified with its respective testing data while the

first one has been specified only with data domains.

Scenario: One-Way Tickets Search

Given I go to "Find Flights"

When I choose "One way" referring to "Trip Type"

And I inform "Departure City" and choose "Departure Airport"

in the field "Departure"

And I inform "Arrival City" and choose "Arrival Airport" in

the field "Destination"

And I set "Valid Departure Date" in the field "Departure

Date"

And I choose the option of value "2" in the field "Number

of passengers"

And I submit "Search"

Then will be displayed "List of Available Flights"

Figure 6. Scenarios being extracted from task models and then

being formatted by the ontology as User Stories.

User Story: Flight Tickets Search

Narrative:

As a user

I want to be able to search tickets, providing locations

and dates.

So that I can obtain information about rates and times of

flights.

Scenario: One-Way Tickets Search (…)

Scenario: Search for a return flight before a departure

flight

Given I go to "Find Flights"

When I choose "Round trip" referring to "Trip Type"

And I inform "New York" and choose "NYC-New York, NY" in

the field "Departure"

And I inform "Los Angeles" and choose "LAX-Los Angeles

International, CA" in the field "Destination"

And I try to set "12/15/2017" in the field "Departure Date"

And I try to set "12/10/2017" in the field "Arrival Date"

Then will not be possible to search flights

User Story: Select the desired flight

Narrative:

As a frequent traveler

I want to get the list of flights and their rates and times

So that I can select the desired flight after a search of

available flights.

Scenario: Select a diurnal flight

One-Way Tickets Search

Given "Flights Page" is displayed

When I click on "Flights" referring to "AA flight 6557, AA

flight 51"

Then "Optional log in" is displayed

The second history focuses on the process of choosing a flight
in a list of available flights. The scenario “Select a diurnal
flight”, using the Scenario “One-Way Tickets Search”,
simulates the selection in the list of available flights, a couple
of diurnal flights, the AA6557 and the AA51. For this case,

the behavior expected from the system is the presentation of
a new screen with the “Optional log in” message, indicating
the user is able to login in order to proceed to the booking,
filling the passengers and payment data, which is in line with
both business and task models.

Designing the Prototype View

For designing prototypes, we have chosen the sketches

produced by Balsamiq Mockups. Balsamiq is a rapid

wireframing tool that reproduces the experience of sketching

on a whiteboard, but using a computer. Figure 7 presents the

scenario “One-Way Tickets Search” supporting the

development of a sketch prototyped for the User Story

“Flight Tickets Search”.

Scenario: One-Way Tickets Search

Given I go to "Find Flights"

When I choose "One way" referring to "Trip Type"

And I inform "Departure City" and choose "Departure Airport"

in the field "Departure"

And I inform "Arrival City" and choose "Arrival Airport" in

the field "Destination"

And I set "Valid Departure Date" in the field

"Departure Date"

And I choose the option of value "2" in the field

"Number of passengers"

And I submit "Search"

Then will be displayed "List of Available Flights"

Figure 7. Sketch for the User Story “Flight Tickets Search”

built from the scenario “One-Way Tickets Search”.

By using the ontology, the prototype can be manually

designed already considering the set of interactive elements

supported by each behavior. For example, the behavior

“goTo” in the first step (“I go to ‘Find Flights’”) is supported

only by the interaction element Browser Window. Thus, the

designer has no other option to address this behavior. Indeed,

in the prototype, it has been used a Browser Window for this

behavior. On the other hand, the fifth step (“I set ‘Valid

Departure Date’ in the field ‘Departure Date’”) addresses

the interaction element “Departure Date” that refers in the

prototype to the Calendar used for picking up a date of

departure. The behavior “setInTheField” is also supported by

Dropdown Lists, Text Fields and Autocompletes. Thus, the

designer could have picked any of them instead, but not a

Button, for instance, once it does not support the behavior

“setInTheField”. Following the mapping, the second step

addresses the interaction element “Trip Type” that refers to

the Link bar used for choosing between a one-way and a

1

2

3

4

5

6
7

Designing the prototype

1

2

3 4
6

7

5

Formatting by the ontology

round trip. The third and fourth steps addresses the

interaction elements “Departure” and “Destination” that

share the same interactive behavior, so the designer can

simply reuse it for both elements in order to keep the

semantic consistency of the interaction. A Text Field with a

searching feature has been chosen. It means that this element

supports an operation autocomplete where, with a single

interaction, the user attains to inform some partial text and

(based on the instant matching results) choose the desired

option. The sixth step addresses the interaction element

“Number of passengers” that refers to the Combo Box used

for choosing the number of passengers in a finite list. Finally,

the seventh step addresses the interactive element “Search”

that refers to the Button used for submitting the search.

Mapping Elements for Testing

The testing of UI design artifacts is conducted by

automatically checking whether requirements have been

consistently modeled. Table 2 exemplifies the

correspondence of concepts in the models and in the

ontology. In the example, the consistency of the

requirements representation of the interaction element

“Departure Date”, used in the prototype, is being checked in

the other requirements artifacts until reaching the high-level

business activity “Search Flights”.

Artifact
Concepts

Step of

Scenario Model Ontology

BPMN Model
Activity: Search

Flights
Event: When

When I set

“Valid
Departure Date”

in the field

“Departure
Date”

Task Model
Input Task: Set

Departure Date

Behavior:

SetInTheField

Prototype
UI Element:

Departure Date

Interaction

Element:
Calendar

Table 2. Example of concept mapping for testing.

Figure 8 illustrates the testing path covering an extract of the

BPMN model (a), task model (b), scenario (c), and prototype

(d). Following the approach presented above, the first results

of testing have shown, for example, that the step “Given I go

to ‘Find Flights’” has been correctly attended by all business

process model, task model and prototype. It means that there

is an activity in the business process model (“Search

Flights”), a task in the task model (“Go to Find Flights”), and

an interaction element (“Browser Window”) in the prototype

to attend properly this step. Our approach has also identified

some important inconsistencies in the artifacts under testing.

The second step of the two first scenarios (“When I choose

‘One way/Round trip’ referring to ‘Trip Type’”) has failed in

the prototype. This Step has failed because regardless

presenting a proper Link bar for selecting a one-way or round

trip, the element cannot be identified as belonging to “Trip

Type”. It lacks a label in the prototype to identify it. Notice

that, in the task model, if the correspondent task “Choose

Trip Type” had been defined by an operator “Enable” after

the sequence of tasks to inform departure, destination and

dates, the test would fail. As this operator determines

sequential tasks, the model would be conflicting with the

sequence determined in the scenario.

Figure 8. Extract of the testing path in the artifacts.

The last step of the two first scenarios (“Then will be dis-

played ‘List of Available Flights’” and “Then will not be

possible to search flights”) has also failed when testing the

prototype. Once the dialog component (dynamic behavior) is

not conceived yet, we cannot check if the outcome of those

scenarios would be respectively the list of available flights

and the impossibility to search flights. The last step of the

second scenario has also failed for the task model. As user

errors are not part of a user goal, they are usually omitted

from tasks descriptions, making this kind of test fails. Means

of representing these potential errors on task models is being

recently studied [7]. Once it is implemented in the model,

tests could run using the same approach to identify this kind

of error. Finally, all of the other remaining steps were

successfully performed and passed the tests. Notice that once

some step of scenario fails, the scenario is considered as

failed as well.

RELATED WORKS

Language Extended Lexicon (LEL) [10] has used natural

language for specifying requirements since the 90’s. The

authors propose a lexical analysis of requirements

descriptions in order to integrate Scenarios into a

requirements baseline, making possible tracing their

evolution. They were followed by several attempts to

identify test cases from requirements specified in natural

language [6] [22]. Several authors [2] [3] [12] [26], on the

other hand, concentrate efforts in providing automated tools

to keep compatibility between different artifacts models.

Those approaches, regardless providing some mechanism to

trace or assess requirements for particular environments, do

not consider how to integrate and test the set of multiple other

artifacts that are commonly used throughout development

processes.

Luna et al. [12] propose WebSpec, a requirement artifact

used to capture navigation, interaction and UI features in web

applications, where diagrams can be validated due to the

automatic derivation of interaction tests. Wolff et al. [26]

pro-poses to link GUI specifications to abstract dialogue

models describing behavioral characteristics. This approach

provides an interesting mechanism to control changes in

interface elements, however the approach is not iterative and

does not provide the necessary testing component to check

and verify user interfaces against predefined behaviors from

requirements. Buchmann and Karagiannis [2] presented a

modeling method for the elicitation and validation of

requirements for mobile apps that enables semantic

traceability for the requirements representation, but using an

extremely heavy modeling approach that is not suitable to

check requirements in a high level of abstraction, validating

only requirements that were modeled within the approach.

Campos et al. [3] propose a model-based testing approach to

support linking task models to an existing, executable,

interactive application. The method allows defining a

systematic correspondence between the user interface

elements and user tasks. The problem with this approach is

that it only covers the interaction of task models with final

UIs, not covering early artifacts. Another problem is it

requires much intervention of developers to prepare the

source code to support the integration, making it difficult to

be adopted in applications that cannot receive interventions

in the code level. Lastly, Valente et al. [24] propose an

approach considering User Stories for bridging business

process and user tasks, but aiming support enterprise

modeling and software architecture. The authors propose an

approach called Goals Approach that focus on how to obtain

a goals business model of requirements based on the DEMO

method. The approach however is aimed to address the

process issues, not covering the assessment aspects.

CONCLUSION AND FUTURE WORKS

Even being preliminary, the results we have obtained so far

are quite promising. Addressing the four challenges we

stated when presenting the approach and based on such

results, we can highlight a set of advantages and some

shortcomings. Concerning the adherence to a model-based

approach, this approach benefits from the independence for

testing artifacts. Artifacts do not need to be prepared for

testing, neither be part of some development process to be

tested. Once the approach is suited to run with any software

development process, testing can be conducted in an

independent manner, only in the set of artifacts designed at a

given time, which benefits early artifacts. However, so far

we are only covering artifacts modeled in BPMN,

HAMSTERS and Balsamiq. We also did not evaluate yet the

impact of maintaining and evolving such artifacts throughout

the development process.

Concerning the adoption of the template for User Stories and

the vocabulary proposed in the ontology, an advantage is that

requirements and tests in User Stories are kept in a natural

and high-level language. Keeping them as such helps to

establish a common vocabulary for the whole team, and

allows non-technical stakeholders to effectively participate

at the specification and testing processes. Although this

study does not cover evaluation with potential users, ongoing

work aims to investigate the use of the approach in a broader

case study with Product Owners, evaluating the workload,

the maintainability and the scalability of the approach.

Concerning the expressiveness of the ontology, an advantage

is that the approach is domain-independent, once the low-

level interactive actions on UI elements (such as clicks,

selections, settings, etc.) are the same regardless the

application domain. Another advantage is the plurality of

interaction elements modeled by the ontology used. As many

of them can answer the same behavior, even if a Combo Box

has been chosen to attend some behavior in a previous

prototype, an Auto Complete field could be chosen to attend

this behavior on a further and more refined version, once

both elements share the same ontological property for the

behavior under testing. A shortcoming we have identified is

related to the restricted vocabulary of the ontology. Even

with the ontology mapping synonyms for some specific

behaviors, it does not provide any kind of semantic

interpretation, i.e. the behaviors must be specified on stories

exactly as they were defined. At a first glance, nonetheless,

the restricted vocabulary seems to bring less flexibility to

designers, testers and requirements engineers, but at the same

time, it establishes a common vocabulary, avoiding typical

problems of ambiguity and incompleteness in requirements

and testing specifications.

Finally, concerning our tools, one of the advantages they

provide is the fine-grained testing coverage. Each small

modification in the User Stories or in the artifacts is able to

be captured during the testing process. The use of data-

independent scenarios is another advantage. Data can be

specified through data domains to be injected on runtime

(like in “One-Way Tickets Search”), or directly in the

scenario description (like in “Search for a return flight before

a departure flight”). The first strategy is very useful in the

beginning of the project, when typically there are few

definitions about representative data for testing. A limitation

in our set of tools, however, is the absence of classification

for errors. There is currently no distinction between the

different reasons of test failure (e.g. UI element not found,

behavior not supported, etc.). As shown in the case study, our

approach signalize in which step of the scenario some

inconsistency has been found, but do not classify it according

to the solution that should be employed to solve the problem.

Classifying errors would help to better identify if a given

inconsistency detected is due to an actual error in the

requirements representation or if it is due just to a limitation

of the artifact. Our planned future works envision tackling

this issue, besides conducting new studies involving more

complex interactive behaviors, an increase of ontological

expressiveness, and interactions in different contexts beyond

the web.

REFERENCES

1. Michel Beaudouin-Lafon and Wendy Mackay. 2002.

Prototyping tools and techniques. In The human-

computer interaction handbook, L. Erlbaum Associates

Inc., Hillsdale, NJ, USA, 1006-1031.

2. Robert A. Buchmann and Dimitris Karagiannis. 2015.

Modelling Mobile App Requirements for Semantic

Traceability. Requirements Engineering 22, 1: 1-35.

3. José C. Campos, Camille Fayollas, Célia Martinie,

David Navarre, Philippe Palanque and Miguel Pinto.

2016. Systematic automation of scenario-based testing

of user interfaces. In Proceedings of the 8th ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems, 138-148.

4. Mike Cohn. 2004. User Stories Applied: For Agile

Software Development. Addison-Wesley Professional.

5. Adrien Coyette, Suzanne Kieffer and Jean

Vanderdonckt. 2007. Multi-fidelity Prototyping of User

Interfaces. In Proc. of the IFIP TC.13 International

Conference on Human-Computer Interaction, 150-164.

6. Anurag Dwarakanath and Shubhashis Sengupta. 2012.

Litmus: Generation of Test Cases from Functional

Requirements in Natural Language. In Int. Conference

on Application of Natural Language to Information

Systems, 58-69.

7. Racim Fahssi, Célia Martinie and Philippe Palanque.

2015. Enhanced Task Modelling for Systematic

Identification and Explicit Representation of Human

Errors. In Proc. of the IFIP TC.13 International

Conference on Human-Computer Interaction, 192-212.

8. Object Management Group. 2011. Business Process

Model And Notation™ (BPMN™). Retrieved August,

2017 from http://www.omg.org/spec/BPMN/2.0/

9. Michael Havey. 2005. Essential Business Process

Modeling. O'Reilly Media, Inc.

10. Julio C. S. P. Leite and Antonio P. A. Oliveira. 1995. A

Client Oriented Requirements Baseline. In Proc. of the

2nd IEEE International Symposium on Requirements

Engineering (RE'95), 108-115.

11. Quentin Limbourg, Jean Vanderdonckt, Benjamin

Michotte, Laurent Bouillon and Víctor López-Jaquero.

2004. USIXML: a Language Supporting Multi-Path

Development of User Interfaces. In Proc. of the EHCI-

DSVIS, 200-220.

12. Esteban R. Luna, Irene Garrigós, Julián Grigera and

Marco Winckler. 2010. Capture and Evolution of Web

Requirements Using WebSpec. In Proc. of the Int.

Conference on Web Engineering, 173-188.

13. Célia Martinie, Philippe Palanque and Marco

Winckler. 2011. Structuring and Composition

Mechanisms to Address Scalability Issues in Task

Models. In Proc. of the IFIP TC.13 International

Conference on Human-Computer Interaction, 589-609.

14. Rudolf van Megen and Dirk B. Meyerhoff. 1995. Costs

and benefits of early defect detection: experiences from

developing client server and host applications.

Software Quality Journal 4, 4: 247-256.

15. Dan North. 2017. What's in a Story?. Retrieved

August, 2017 from http://dannorth.net/whats-in-a-

story/

16. Fabio Paternò, Carmen Santoro, Lucio D. Spano and

Dave Raggett. 2017. W3C, MBUI - Task Models.

Retrieved August, 2017 from

http://www.w3.org/TR/task-models/

17. Florence Pontico, Christelle Farenc and Marco

Winckler. 2006. Model-Based Support for Specifying

eService eGovernment Applications. In Proc. of the

International Workshop on Task Models and Diagrams

for User Interface Design, 54-67.

18. Jaroslav Pullmann. 2017. W3C, MBUI - Glossary.

Retrieved August, 2017 from

http://www.w3.org/TR/mbui-glossary/

19. Mary B. Rosson and John M. Carroll. 2002. Usability

Engineering: Scenario-Based Development of Human-

Computer Interaction. Morgan Kaufmann.

20. Ken Schwaber. 2004. Agile Project Management with

Scrum. Microsoft Press.

21. Thiago R. Silva, Jean-Luc Hak and Marco Winckler.

2017. A Behavior-Based Ontology for Supporting

Automated Assessment of Interactive Systems. In

Proc. of the 11th IEEE International Conference on

Semantic Computing, 250-257.

22. Harry M. Sneed. 2007. Testing against Natural

Language Requirements. In Proc. of the Seventh IEEE

International Conference on Quality Software (QSIC

2007), 380-387.

23. Eero J. Uusitalo, Marko Komssi, Marjo Kauppinen and

Alan M. Davis. 2008. Linking Requirements and

Testing in Practice. In Proc. of the IEEE Int.

Requirements Engineering Conference, 265-270.

24. Pedro Valente, Thiago Silva, Marco Winckler, and

Nuno Nunes. 2016. Bridging Enterprise and Software

Engineering Through an User-Centered Design

Perspective. In Proc. of the International Conference

on Web Information Systems Engineering, 349-357.

25. Marco Winckler and Philippe Palanque. 2012. Models

as Representations for Supporting the Development of

e-Procedures. In Usability in Government Systems –

User Experience Design for Citizens and Public

Servants, Morgan Kaufmann Publishers, 301-315.

26. Andreas Wolff, Peter Forbrig, Anke Dittmar and

Daniel Reichart. 2005. Linking GUI Elements to

Tasks: Supporting an Evolutionary Design Process. In

Proc. of the 4th International Workshop on Task

Models and Diagrams, 27-34.

View publication statsView publication stats

https://www.researchgate.net/publication/323501276

