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Abstract

In the context of stochastic continuum-armed bandits, we present an algorithm
that adapts to the unknown smoothness of the objective function. We exhibit
and compute a polynomial cost of adaptation to the Hölder regularity for regret
minimization. To do this, we first reconsider the recent lower bound of Locatelli
and Carpentier [21], and define and characterize admissible rate functions. Our new
algorithm matches any of these minimal rate functions. We provide a finite-time
analysis and a thorough discussion about asymptotic optimality.

1 Introduction

Multi-armed bandits are a well-known sequential learning problem. When the number of available
decisions is large, some assumptions on the environment have to be made. In a vast line of work
(see the literature discussion in Section 1.1), these assumptions show up as nonparametric regularity
conditions on the mean-payoff function. If this function is Hölder continuous with constant L and
exponent α, and if the values of L and α are given to the player, then natural strategies can ensure
that the regret is upper bounded by

L1/(2α+1)T (α+1)/(2α+1) . (1)

Of course, assuming that the player knows α and L is often not realistic. Thus the need for
adaptive methods, that are agnostic with respect to the true regularity of the mean-payoff function.
Unfortunately, Locatelli and Carpentier [21] recently showed that full adaptation is impossible, and
that no algorithm can enjoy the same minimax guarantees as when the regularity is given to the player.
We persevere and address the question:

What can the player achieve when the true regularity is completely unknown?

A polynomial cost of adaptation In statistics, minimax adaptation for nonparametric function
estimation is a deep and active research domain. In many contexts, sharp adaptation is possible;
often, an additional logarithmic factor in the error has to be paid when the regularity is unknown:
this is known as the cost of adaptation. See e.g., Lepskii [20], Birgé and Massart [4], Massart
[22] for adaptive methods, and Cai [9] for a detailed survey of the topic. Under some more exotic
assumptions —see e.g., Example 3 of Cai and Low [10] — adapting is significantly harder: there
may be a polynomial cost of adaptation.

In this paper, we show that in the sequential setting of multi-armed bandits, the necessary exploration
forces a similar phenomenon, and we exhibit this polynomial cost of adaptation. To do so, we revisit
the lower bounds of Locatelli and Carpentier [21], and design a new algorithm that matches these
lower bounds.

As a representative example of our results, our algorithm can achieve, without the knowledge of α
and L, an unimprovable (up to logarithmic factors) regret bound of order

L1/(1+α)T (α+2)/(2α+2) . (2)
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1.1 Related work

Continuum-armed bandits Continuum-armed bandits, with nonparametric regularity assumptions,
were introduced by Agrawal [1]. Kleinberg [16] established the minimax rates in the Hölder setting
and introduced the CAB1 algorithm. Auer et al. [3] studied the problem with additional regularity
assumptions under which the minimax rates are improved. Via different roads, Bubeck et al. [7] and
Kleinberg et al. [17] explored further generalizations of these types of regularity, namely the zooming
dimension and the near-optimality dimension. Bull [8] exhibited an algorithm that essentially adapts
to some cases when the near-optimality dimension is zero.

In all these articles, the mean-payoff function needs to satisfy simultaneously two sets of regularity
conditions. The first type is a usual Hölder condition, which ensures that the function does not vary
too much around (one of) its maxima. The second type is a “margin condition” that lower bounds the
number of very suboptimal arms; in the literature these are defined in many technically different ways.
Adapting to the margin conditions is often possible when the Hölder regularity is known. However,
all these algorithms require some prior knowledge about the Hölder regularity.

In this paper, we focus on the problem of adapting to Hölder regularity. Accordingly, we call adaptive
the algorithms that assume no knowledge of the Hölder exponent nor of the Lipschitz constant.

Adaptation for cumulative regret Bubeck et al. [5] introduced the problem of adaptation, and
adapted to the Lipschitz constant under extra requirements. An important step was made in Locatelli
and Carpentier [21], where it is shown that adaptation at the classical minimax rates is impossible. In
the same paper, the authors exhibited some conditions under which full adaptation is achievable, e.g.,
with knowledge of the value of the maximum, or when the near-optimality dimension is zero.

Other settings For simple regret, the objections against adaptation do not hold, as the objective does
not penalize exploration. Adaptation up to polylog factors is done with various (meta-)algorithms.
Locatelli and Carpentier [21] sketch out an aggregation approach inspired by Lepski’s method, while
Valko et al. [24], Grill et al. [14], Shang et al. [23] describe cross-validation methods thanks to which
they adapt to the near-optimality dimension with unknown smoothness. As it turns out, this last
approach yields clean results with our smoothness assumptions; we write the details in Appendix E.

Recently, Krishnamurthy et al. [18] studied continuum-armed contextual bandits and use a sophisti-
cated aggregation scheme to derive an algorithm that adapts to the Lipschitz constant when L > 1.

1.2 Contributions and outline

In this paper, we fully compute the cost of adaptation for bandits with Hölder regularity. In Section 2
we discuss the adaptive (and nonadaptive) lower bounds. We take an asymptotic stance in order
to precisely define the objective of adaptation. Doing so, we uncover a family of noncomparable
lower bounds for adaptive algorithms (Theorem 1), and define the corresponding notion of optimality:
admissibility.

Section 3 contains our main contribution: an admissible adaptive algorithm. We first recall the CAB1
algorithm, which is nonadaptive minimax, and use it as a building block for our new algorithm
(Subsection 3.1). This algorithm works in a regime-based fashion. Between successive regimes of
doubling lengths, we reset the algorithm and use a new discretization with fewer arms. In order to
carry information between the different stages, we use CAB1 in a clever way: besides partitioning
the arm space, we add summaries of previous regimes by allowing the algorithm to play according to
the empirical distributions of past plays. This is formally described in Subsection 3.2.

A salient difference with all previous approaches is that we zoom out by using fewer and fewer arms.
To our knowledge, this is unique, as all other algorithms for bandits zoom in in a way that crucially
depends on the regularity parameters. Another important feature of our analysis is that we adapt both
to the Hölder exponent α and to the Lipschitz constant L. On a technical level, this is thanks to the
fact that we do not explicitly choose a grid of regularity parameters, which means that we implicitly
handle all values (L,α) simultaneously.

We first give a regret bound in the known horizon case (Subsection 3.2), then we provide an anytime
version and we show that they match the lower bounds of adaptation (Subsection 3.3). Finally
Section 4 provides the proof of our main regret bound.
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2 Setup, preliminary discussion

2.1 Notation and known results

Let us reintroduce briefly the standard bandit terminology. We consider the arm space X = [0, 1].
The environment sets a reward function f : X → [0, 1]. At each time step t, the player chooses an arm
Xt ∈ X , and the environment then displays a reward Yt such that E[Yt | Xt] = f(Xt), independently
from the past. We assume that the variables Yt − f(Xt) are (1/4)-subgaussian conditionnally on Xt;
this is satisfied if the payoffs are bounded in [0, 1] by Hoeffding’s lemma.

The objective of the player is to find a strategy that minimizes her expected cumulative (pseudo-)regret.
If M(f) denotes the maximum value of f , the regret at time T is defined as

RT = TM(f)− E

[
T∑
t=1

Yt

]
= TM(f)− E

[
T∑
t=1

f(Xt)

]
. (3)

In this paper, we assume that the function f satisfies a Hölder assumption around one of its maxima:
Definition 1. For α > 0 and L > 0, we denote byH(L,α) the set of functions that satisfy

∃x? ∈ [0, 1] s.t. f(x?) = M(f) and ∀x ∈ [0, 1] |f(x?)− f(x)| 6 L |x? − x|α . (4)

We are interested in minimax rates of regret when the mean-payoff function f belongs to these
Hölder-type classes, i.e., the quantity inf

algorithms
sup

f∈H(L,α)

RT .

MOSS Throughout this paper, we exploit discretization arguments and use a minimax optimal
algorithm for finite-armed bandits: MOSS, from Audibert and Bubeck [2]. When run for T rounds
on a K-armed bandit problem with (1/4)-subgaussian noise, and when T > K, its regret is upper-
bounded by 18

√
KT (the improved constant is from Garivier et al. [12]).

Non-adaptive minimax rates When the regularity is given to the player, for any α,L and T :

0.001L1/(2α+1)T (α+1)/(2α+1) 6 inf
algorithms

sup
f∈H(L,α)

RT 6 28L1/(2α+1)T (α+1)/(2α+1) . (5)

This is well-known since Kleinberg [16]. For completeness, we recall how to derive the upper bound
in Section 3.1, and the lower bound in Section 2.2.

2.2 Lower bounds: adaptation at usual rates is not possible

Locatelli and Carpentier [21] prove a version of the following theorem; see our reshuffled and slightly
improved proof in Appendix F.
Theorem (Variation on Th.3 from [21]). Let B > 0 be a positive number. Let α, γ > 0 and L, ` > 0
be regularity parameters that satify α 6 γ and L > `.

Assume moreover that 2−3 12αB−1 6 L 6 `1+α Tα/2 2(1+α)(8−2γ). If an algorithm is such that
supf∈H(`,γ)RT 6 B , then the regret of this algorithm is lower bounded onH(L,α):

sup
f∈H(L,α)

RT > 2−10 TL1/(α+1)B−α/(α+1) . (6)

Remark (Bibliographical note). Locatelli and Carpentier [21] consider a more general setting
where additional margin conditions are exploited. In our setting, we slightly improve their result by
dealing with the dependence on the Lipschitz constant, and by removing a requirement on B.

In a different context, Krishnamurthy et al. [18] show a variation of this bound where the Lipschitz
constant is considered, but only in the case where α = γ = 1, for ` = 1 and L > 1.

As explained in Locatelli and Carpentier [21] this forbids adaptation at the usual minimax rates over
two regularity classes; we recall how in the paragraph that follows Theorem 1. However this is not
the end of the story, as one naturally wonders what is the best the player can do.

To further investigate this question, we discuss it asymptotically by considering the rates at which the
minimax regret goes to infinity, therefore focusing on the dependence on T . Our main results are
completely nonasymptotic, yet we feel the asymptotic analysis of optimality is clearer.
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Definition 2. Let θ : [0, 1]→ [0, 1] denote a nonincreasing function. We say an algorithm achieves
adaptive rates θ if

∀ ε > 0 , ∀α, L > 0 , lim sup
T→∞

supf∈H(L,α)RT

T θ(α)+ε
< +∞ .

We include the ε in the definition in order to neglect the potential logarithmic factors.

As rate functions are not always comparable for pointwise order, the good notion of optimality is the
standard statistical notion of admissibility (akin to “Pareto optimality” for game-theorists).
Definition 3. A rate function is said to be admissible if it is achieved by some algorithm, and if no
other algorithm achieves stricly smaller rates for pointwise order. An algorithm is admissible if it
achieves an admissible rate function.

We recall that a function θ′ is stricly smaller than θ for pointwise order if θ′(α) 6 θ(α) for all α and
θ′(α0) < θ(α0) for at least one value of α0.

It turns out we can fully characterize the admissible rate functions by inspecting the lower bounds (6).
Theorem 1. The admissible rate functions are exactly the family

θm : α 7→ max

(
m, 1−m α

α+ 1

)
, m ∈ [1/2, 1] . (7)

This theorem contains two assertions. The lower bound side states that no smaller rate function may
be achieved by any algorithm. This side is derived from an asymptotic rewording of lower bound (6),
see Proposition 1 stated below (proofs are in Appendix A). The second statement is that the θm’s are
indeed achieved by an algorithm, which is the subject of Section 3.2.

Figure 1 illustrates how these admissible rates compare to each other, and to the usual minimax rates.

Figure 1: The lower bounds on adaptive rates: plots of the admissible rate functions α 7→ θm(α). If an
algorithm has regret of order O

(
T θ(α)

)
, then θ is everywhere above one of these curves.

In particular, we see that reaching the nonadaptive minimax rates for multiple values of α is impossible.
Moreover, atm = (γ+1)/(2γ+1), we have θm(γ) = (γ+1)/(2γ+1), which is the usual minimax
rate (1) when γ is known. This yields an alternative parameterization of the family θm: one may
choose to parameterize the functions either by their value at infinity m ∈ [1/2, 1], or by the only
point γ ∈ [0,+∞] at which they coincide with the usual minimax rates function (1).
Proposition 1. Assume an algorithm achieves adaptive rates θ. Then θ satisfies the functional
inequation

∀ γ > 0 , ∀α 6 γ , θ(α) > 1− θ(γ)
α

α+ 1
. (8)
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2.3 Yet can we adapt in some way?

We have described in (7) the minimal rate functions that are compatible with the lower bounds of
adaptation: no algorithm can enjoy uniformly better rates. Of course, at this point, the next natural
question is whether any of these adaptive rate functions may indeed be reached by an algorithm.

All previous algorithms for continuum-armed bandits require the regularity as an input in some way
(see the literature discussion in Section 1.1). Such algorithms are flawed: if the true regularity is
underestimated then we only recover the guarantees that correspond to the smaller regularity, which
is often far worse than the lower bounds of Theorem 1. More dramatically, if the true regularity is
overestimated, then, a priori, no guarantees hold at all.

We prove that all these rate functions may be achieved by a new algorithm. More precisely, if the
player wishes to reach one of the lower bounds θm, she may select a value of the input accordingly
and match the chosen θm. This is our main contribution and is described in the next section.

3 An admissible adaptive algorithm and its analysis

We discuss in Section 3.1 how the well-known CAB1 algorithm can be generalized for our purpose.
In Section 3.2 we describe our algorithm and the main upper bound on its regret. Section 3.3 is
devoted to the anytime version of the algorithm and to a discussion on optimality.

3.1 An abstract version of CAB1 as a building block towards adaptation

We describe a generalization of the CAB1 algorithm from Kleinberg [16], where we include arbitrary
measures in the discretization. Although this extension is straightforward, we detail it as we will use
this algorithm repeatedly further in this paper. In the original CAB1, the space of arms is discretized
into a partition of K subsets, and an algorithm for finite-armed bandits plays on the K midpoints of
the sets. Auer et al. [3] replace the midpoints by a random point uniformly chosen in the subset.

We introduce a generic version of this algorithm we call CAB1.1. We considerK arbitrary probability
distributions over X , which we denote by (πi)16i6K . Denote also by π(f) the expectation of f(X)
when X ∼ π. At each time step, the decision maker chooses one distribution, πIt , and plays an arm
picked according to that distribution. By the tower rule, she receives a reward such that

E[Yt | It] = E[f(Xt) | It] = πIt(f) .

As the player uses a finite-arm algorithm A to select It, the regret she suffers can be decomposed as
the sum of two terms (denoting by R̃T the expected regret of the finite-armed algorithm):

RT = T
(
M(f)− max

i=1,...,K
πi(f)

)
+ R̃T

((
πi(f)

)
16i6K

;A
)
. (9)

This identity is central to the construction of our algorithm. Using terminology from Auer et al. [3],
the first term measures an approximation error of the maximum of f , and the other the actual cost of
learning in the approximate problem. Parameters are chosen to balance these two sources of error.

Algorithm 1 CAB1.1 (Continuum-Armed Bandit, adapted from Kleinberg [16])

1: Input: T the time horizon, K probability measures over X denoted by π1, . . . , πK , discrete
K-armed bandit algorithm A

2: for t = 1, 2, . . . , T do
3: Define It the arm in {1, . . . ,K} recommended by A
4: Play Xt ∈ X drawn according to πIt , and receive Yt such that E[Yt|Xt] = f(Xt)
5: Give Yt as input to A corresponding to It
6: end for

The canonical example is that for which the space of arms is cut into a partition. Denote by Disc(K)
the family of the uniform measures over the intervals [(i− 1)/K, i/K] for 1 6 i 6 K. We state this
results (and prove it in Appendix A.1) to recall the non-adaptive minimax bound (1).
Proposition 2. Let α > 0 andL > 1/

√
T be regularity parameters, and define the number of discrete

armsK? = min
( ⌈
L2/(2α+1)T 1/(2α+1)

⌉
, T
)
. Algorithm CAB1.1 run with the uniform discretization

Disc(K?) and A =MOSS enjoys the bound sup
f∈H(L,α)

RT 6 28L1/(2α+1) T (α+1)/(2α+1) .
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3.2 Memorize past plays, Discretize the arm space, and Zoom Out: the MeDZO algorithm

To achieve adaptation, we combine two tricks: going from fine to coarser discretizations while
keeping a summary of past plays in memory.

Our algorithm works in successive regimes. At each time regime i, we reset the algorithm and start
over a new regime of length double the previous one (∆Ti = 2p+i), and with fewer discrete arms
(Ki = 2p+2−i). While doing this, we keep in memory the previous plays: in addition to the uniform
distributions over the subsets of partitions, we include the empirical measures ν̂j of the actions played
in the past regimes, for j < i.

Algorithm 2 MeDZO (Memorize, Discretize, Zoom Out)

1: Input: parameter B, time horizon T
2: Set: p = dlog2Be, Ki = 2p+2−i and ∆Ti = 2p+i

3: for i = 1, . . . , p do
4: For ∆Ti rounds, run algorithm CAB1.1 with the uniform discretization in Ki pieces and the

empirical measures of the previous plays ν̂j for j < i; use MOSS as the discrete algorithm.a
5: Set: ν̂i the empirical measure of the plays during regime i.
6: end for

aNo ν̂ is used for i = 0
Appendix C provides a figure illustrating the behavior of the algorithm.

Our construction is based on the following remark. Consider the approximation error suffered during
regime i. Denoting the by Πi the set of measures given to the player during regime i, that is, the
uniform measures over the regular Ki-partition and the empirical measures of arms played during the
regimes j < i, the approximation error is bounded as follows:

∆Ti

(
M(f)− E

[
max
π∈Πi

π(f)
])

6 ∆Ti
(
M(f)−E[ν̂j(f)]

)
=

∆Ti
∆Tj

∑
t∈Regime j

(
M(f)−E[f(Xt)]

)
(10)

and this bound is proportional to the regret suffered during regime j. This means that even though we
zoom out by using fewer arms, we can make sure that the average approximation error in regime i is
less than the regret previously suffered. Moreover, the first discretizations are fine enough to ensure a
small regret in the first regimes, thanks to the Hölder property. This argument is formalized in the
proof (Lemma 1), and shows that MeDZO maintains a balance between approximation and cost of
learning that yields optimal regret.

A surprising fact here is that we go from finer to coarser discretizations during the different phases.
Thus, paradoxically, the algorithm zooms out as time passes. Note also that although this regime-
based approach is reminiscent of the doubling trick, there is an essential difference in that information
is carried between the regimes via the distribution of the previous plays.

We first state our central result, a generic bound that holds for any input parameter B. We discuss the
optimality of these adaptive bounds in the next subsection.

Theorem 2. Algorithm 2 run with the knowledge of T and input B >
√
T enjoys the following

guarantee: for all α > 0 and L > 0,

sup
f∈H(L,α)

RT 6 412 (log2B)3/2 max
(
B, TL1/(α+1)B−α/(α+1)

)
. (11)

We provide some illustrative numerical experiments in Appendix D, comparing the results of MeDZO
with other non-adaptive algorithms.

3.3 Discussion: anytime version and admissibility

Anytime version via the doubling trick The dependence of Algorithm 2 on the parameter B
makes it horizon-dependent. We use the doubling trick to build an anytime version of the algorithm.
At each new doubling-trick regime, we input a value of B that depends on the length of the k-th
regime. If it is of length T (k), one typically thinks of Bk = (T (k))m for some exponent m. In that
case, we get the following bound —see the proof and description of the algorithm in Appendix B.
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Corollary 1 (Doubling trick version). Choose m ∈ [1/2, 1]. The doubling-trick version of MeDZO,
run with m as sole input (and without the knowledge of T) ensures that for all regularity parameters
α > 0 and L > 0 and for T > 1

sup
f∈H(L,α)

RT 6 4000(log2 T
m)3/2 max

(
Tm, TL1/(α+1)(Tm)−α/(α+1)

)
= O

(
(log T )3/2 T θm(α)

)
.

Admissibility of Algorithm 2 The next result is a direct consequence of Corollary 1. This echoes
the discussion following Theorem 1, and shows that for any input parameter m, the anytime version
of MeDZO cannot be improved uniformly for all α.

Corollary 2. For any m ∈ [1/2, 1], the doubling trick version of MeDZO (see App. B) with input m
achieves rate function θm, and is therefore admissible.

3.4 About the remaining parameter: the B =
√
T case

Tuning the value of B amounts to selecting one of the minimal curves in Figure 1. Therefore this
parameter is a feature of the algorithm, as it allows the player to choose between the possible optimal
behaviors. The tuning of this parameter is an unavoidable choice for the player to make.

The next example illustrates well the performance of MeDZO, as it is easily comparable to the usual
minimax bounds. Looking at Figure 1, this choice corresponds to m = 1/2, i.e., the only choice of
parameter that reaches the usual minimax rates as α→∞. In other words, if the players wishes to
ensure that her regret on very regular functions is of order

√
T , then she has to pay a polynomial cost

of adaptation for not knowing α and that price is exactly the ratio between (1) and (2).

Corollary 3. Set a horizon T and run Algorithm 2 with B =
√
T . Then for α > 0 and L > 1/

√
T ,

sup
f∈H(L,α)

RT 6 146 (log2 T )3/2 L1/(α+1) T (α+2)/(2α+2) . (12)

This is straightforward from Theorem 2, since the inequality B =
√
T 6 TL1/(α+1)

√
T
−α/(α+1)

holds whenever L > 1/
√
T . An anytime version of this result can be obtained from Corollary 1.

4 Proof of Theorem 2
Full proof of Theorem 2. Let Ft = σ(I1, X1, Y1, . . . , It, Xt, Yt) be the σ-algebra corresponding to
the information available at the end of round t. Define also the transition times Ti =

∑i
j=1 ∆Tj with

the convention T0 = 0. Let us first verify that T is smaller than the total length of the regimes. By
definition of p, we have B 6 2p < 2B. Thus Tp = 2p+1(2p − 1) > 2B(B − 1) > B2 > T , and the
algorithm is indeed well-defined up to time T .

Consider the regret suffered during the i-th regimeRTi−1,Ti := ∆TiM(f)−∑Ti
t=Ti−1+1 E

[
f(Xt)

]
.

We bound this quantity thanks to the decomposition (9), by first conditioning on the past up to time
Ti−1. Since there are Ki + i discrete actions, the regret bound on MOSS ensures that

E

 Ti∑
t=Ti−1+1

(
M(f)− f(Xt)

) ∣∣∣∣ FTi−1

 6 ∆Ti
(
M(f)−M?

i

)
+ 18

√
(Ki + i)∆Ti (13)

where M?
i = max{π(i)

j (f) | π(i)
j ∈ Disc(Ki)} ∪

{
ν̂`(f) | ` = 0, . . . , i− 1

}
. Notice that this bound

holds even though M?
i is a random variable, as the algorithm is completely reset, and the measures

(ν̂j)j<i are fixed at time Ti−1 + 1 (i.e., they are FTi−1
-measurable). Integrating once more, we obtain

RTi−1,Ti 6 ∆Ti
(
M(f)− E[M?

i ]
)

+ 18
√

(Ki + i)∆Ti . (14)

Bounding the cost of learning. By definition of Ki and ∆Ti, we have Ki∆Ti = 22p+2 6 16B2 .
Therefore, since p and Ki are integers greater than 1, using a+ b− 1 6 ab for positive integers,√

(Ki + i)∆Ti 6
√

(Ki + p− 1)∆Ti 6
√
pKi∆Ti 6 4

√
pB . (15)
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Bounding the approximation error. The key ingredient for this part is the following fact, that
synthetizes the benefits of our construction as hinted in (10) and the surrounding discussion.

Lemma 1. The total approximation error of MeDZO in regime i is controlled by the Hölder bound
on the grid of mesh size 1/Ki, and by the regret suffered during the previous regimes,

∆Ti
(
M(f)− E[M?

i ]
)
6 ∆Ti min

(
L

1

Kα
i

,min
j<i

(
RTj−1,Tj

∆Tj

))
(16)

Proof. This derives easily from the construction of the algorithm, i.e., from the definition of M?
i .

Considering an interval in the regular Ki-partition that contains a maximum of f , by the Hölder
property, M(f)−M?

i 6 L/Kα
i . For the second minimum, as described in Eq. (10), for j < i,

M(f)−M?
i 6M(f)− ν̂j(f) =

1

∆Tj

Tj∑
t=Tj−1+1

(
M(f)− f(Xt)

)
.

Taking an expectation, RTj−1,Tj appears, and we conclude by taking the minimum over j.

Remember that since Ki∆Ti = 22p+2, we have L∆Ti/K
α
i = L22p+2/K1+α

i . Therefore, the first
bound on the approximation error in (16) increases with i, as Ki decreases with i. Denote by i0 the
last time regime i for which

L
∆Ti0
Kα
i0

6 B . (17)

If this is never satisfied, i.e., not even for i = 1, then L2p+1/2α(p+1) > B which yields, using
B 6 2p 6 2B, that 4LB > 2α+1BαB and then L > Bα/2. In that case, L1/(α+1)B−α/(α+1) > 1
and the total regret bound (11) is true as it is weaker than the trivial bound RT 6 T .

Hence we may assume that i0 > 1 is well defined. By comparing i to i0, we now show the inequality
p∑
i=1

∆Ti
(
M(f)− E[M?

i ]
)
6

i0∑
i=1

B +

p∑
i=i0+1

2(1 + 72
√
p)∆Ti L

1/(α+1)B−α/(α+1) . (18)

For all i 6 i0 the approximation error is smaller than the first argument of the minimum in (16), and
this term is smaller than B. Therefore ∆Ti

(
M(f)− E[M?

i ]
)
6 B . In particular, this together with

(14) and (15) implies that the total regret suffered during regime i0 is RTi0−1,Ti0
6 (1 + 72

√
p)B.

For the later time regimes i0 < i 6 p, we use the fact that preceding empirical measures were kept as
discrete actions, and in particular the one of the i0-th regime: (16) instantiated with j = i0 yields

∆Ti
(
M(f)− E[M?

i ]
)
6 ∆Ti

RTi0−1,Ti0

∆Ti0
6
(
1 + 72

√
p
)
∆Ti

B

∆Ti0
. (19)

Solving equations L∆Ti0/K
α
i0
≈ B ≈ 4

√
∆Ti0Ki0 , we get B/∆Ti0 6 2L1/(α+1)B−α/(α+1) ,

(details are in Appendix A.4). Therefore for i0 < i 6 p, using (19),

∆Ti
(
M(f)− E[M?

i ]
)
6 2(1 + 72

√
p) ∆Ti L

1/(α+1)B−α/(α+1) ,

and we obtain (18) by summing over i.

Conclusion We conclude with some crude boundings. First, as i0 6 p and the sum of the ∆Ti’s is
smaller than T , the total approximation error is less than pB+2(1+72

√
p)TL1/(α+1)B−α/(α+1). Let

us include the cost of learning, which is smaller than 72p
√
pB and conclude, using a+b 6 max(a, b)

RT 6 2(1 + 72
√
p)TL1/(α+1)B−α/(α+1) + pB + 72p3/2B

= 2(1 + 72
√
p)TL1/(α+1)B−α/(α+1) + p(1 + 72

√
p)B

6
(

2(1 + 72
√
p) + p

(
1 + 72

√
p
))

max
(
B, TL1/(α+1)B−α/(α+1)

) (20)

from which the desired bound follows, using 1 6 p, and p 6 2 log2B and 4(1 + 72
√

2) 6 412.
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5 Further considerations
Local regularity assumption Theorem 2 holds under a relaxed smoothness assumption, namely
that the function satisfies the Hölder condition only in a small cell containing the maximum. By
looking carefully at the proof, we observe that the condition is only required up to the i0-th epoch
(defined in (17)), at which the size of the cells in the discretization is of order 1/Ki0 ≈ (LB)−1/(1+α).
Therefore we only need condition (4) to be satisfied for points x in an interval of size (LB)−1/(1+α)

around the maximum.

Higher dimension Our results can be generalized to functions [0, 1]d → [0, 1] that are ‖·‖∞-Hölder.
For MeDZO to be well-defined, take Ki = 2d(p+2−i) and ∆Ti = 2d(p+i), with p ≈ (logB)/d. The
bounds are similar to their one-dimensional counterparts, up to replacing α by α/d in the exponents,
but the constants are deteriorated by a factor that is exponential in d. The bound in Theorem 2
changes to max

(
B,Ld/(α+d)TB−α/(α+d)).
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Supplementary Material for
"Polynomial Cost of Adaptation for X -Armed Bandits"

A Omitted proofs

A.1 Proposition 2: Regret bound for non-adaptive CAB1.1

This proof is a straightforward application of the Hölder bound and of the bound of MOSS, together
with the approximation/cost of learning decomposition of the regret. Some extra care is needed to
handle the boundary cases.

Proof of Proposition 2. Choose f ∈ H(L,α). Let us denote by i? an integer such that there exists
an optimal arm x? in the interval

[
(i? − 1)/K?, i?/K?

]
. By the Hölder assumption

1

K?

∫ i?/K?

(i?−1)/K?

(
f(x?)− f(x)

)
dx 6 L

(
1

K?

)α
,

and this upper bounds the approximation error of the discretization. Moreover, since T > K?, the
cost of learning is smaller than 18

√
K?T . Thus by (9)

RT 6 TL

(
1

K?

)α
+ 18
√
K?T .

K? was chosen to minimize this quantity. We distinguish cases depending on the value of K?.

If 1 < K? < T , then L2/(2α+1)T 1/(2α+1) 6 K? 6 2L2/(2α+1)T 1/(2α+1) (the bound dxe 6 2x,
which is valid when x > 1, is more practical to handle the multiplicative constants), we deduce the
upper bound: (

1 + 18
√

2
)
L1/(2α+1)T (α+1)/(2α+1) .

Since we assumed that L > 1/
√
T , we have always K? > 1. Therefore the last case to consider

is if K? = T . Then L2/(2α+1)T 1/(2α+1) > T/2 and thus L > 2−(2α+1)/2 Tα . In this case
L1/(2α+1)T (α+1)/(2α+1) > (

√
2/2)T and the claimed bound is met since in that case, we have by a

trivial bound RT 6 T 6
√

2L1/(2α+1)T (α+1)/(2α+1).

A.2 Proposition 1: Lower bound on the adaptive rates

Proof of Proposition 1. Choose α, γ such that α 6 γ, and ε > 0. Set L > 0. There exist constants
c1 and c2 (depending on L,α, γ and ε) such that for T large enough,

sup
f∈H(L,α)

RT 6 c1T
θ(α)+ε and sup

f∈H(L,γ)

RT 6 c2T
θ(γ)+ε .

Moreover, for T large enough, the assumptions for lower bound (6) hold. Hence applying the lower
bound with B = c2T

θ(γ)+ε, for some constant c3:

c1T
θ(α)+ε > 0.0001T

(
c2T

θ(γ)+ε
)−α/(α+1)

> c3 T
1−θ(γ)α/(α+1)−εα/(α+1)

Since the above inequality holds for any T sufficiently large, this implies that for all ε > 0

θ(α) + ε > 1− θ(γ)
α

α+ 1
− ε α

α+ 1
,

which yields the desired result as ε→ 0.
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A.3 Theorem 1: Admissible rate functions

We prove here that all the admissible rate functions belong to the family (θm), by relying on
Proposition 1. The proof is done through a careful inspection of the functional inequation defining
the lower bound.

Proof of Theorem 1. First of all, by Corollary 2, the appropriately tuned MeDZO may achieve all the
θ′ms. Thus we are left to prove the lower bound side, i.e., that all the admissible rate functions belong
to the family θm.

The best way to see this is to first notice that for θ nonincreasing and positive, the inequation in
Proposition 1 is equivalent to

∀α > 0 , θ(α) > 1− θ(∞)
α

α+ 1
. (21)

Notice that taking γ = +∞ is always valid in what follows, as θ is assumed to be nonincreasing
and lower bounded by 1/2. Now if θ satisfies (8), then it satisfies (21) by taking γ = +∞. For the
converse, consider α 6 γ, then θ(γ) > θ(∞), thus 1− θ(∞)α/(α+ 1) > 1− θ(γ)α/(α+ 1).

Now consider an admissible θ. Since θ is achieved by some algorithm, by Proposition 1 and the
remark above, it satisfies Eq. (21). As θ is nonincreasing, and by Eq. (21), we have θ(α) > θ(∞)
and θ(α) > 1− θ(∞)α/(α + 1). In other words, θ > θmθ , where mθ = θ(∞) ∈ [1/2, 1]. By the
admissibility of θ, this implies that θ = θmθ .

A.4 Calculations in the proof of Theorem 2

Details on (18), in the proof of Theorem 2. By definition of i0, and since we assumed that i0 < p

B 6 L
∆Ti0+1

Kα
i0+1

,

i.e., using Ki0 ∆Ti0 = 22p+2,

B 6 21+αL
∆Ti0
Kα
i0

= 21+αL (∆Ti0)1+α 2−(2p+2)α .

From this we deduce, using 2p > B for the second inequality,(
∆Ti0

)(1+α)
> 2−1−αBL−12(2p+2)α > 2−1+αL−1B2α+1 .

Hence, using 2(α−1)/(α+1) > 1/2, we obtain ∆Ti0 > (1/2)L−1/(α+1)B(2α+1)/(α+1), thus
B/∆Ti0 6 2L1/(α+1)B−α/(α+1) .

B Anytime-MeDZO and proof

The doubling trick is the most standard way of converting non-anytime algorithms into anytime
algorithms, when the regret bound is polynomial. It consists in taking fresh starts of the algorithm
over a grid of dyadic times. The implementation of the trick is straightforward in our case.

Algorithm 3 Doubling trick MeDZO

1: Input: parameter m ∈ [1/2, 1];
2: for i = 0, . . . do
3: Run MeDZO (Alg. 2) with input B = 2im for 2i rounds
4: end for

Corollary (Doubling trick version). Choose m ∈ [1/2, 1]. The doubling-trick version of MeDZO,
run with m as sole input (and without the knowledge of T) ensures that for all regularity parameters
α > 0 and L > 0 and for T > 1

sup
f∈H(L,α)

RT 6 4000(log2 T
m)3/2 max

(
Tm, TL1/(α+1)(Tm)−α/(α+1)

)
=O

(
(log T )3/2 T θm(α)

)
.
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As the regret bound is not exactly of the form cT θ, we work with the polynomial version of the bound
on the regret of MeDZO, equation (20), for the doubling trick to be effective. Obviously the value of
the constant in the bound is not our main focus, but we still write it explicitly as it shows that there is
no hidden dependence on the various parameters.

Proof. By (20), with pi =
⌈
log2 2im

⌉
6 1 + log2 2im, in the i-th doubling trick regime, the

cumulative regret is bounded by

2(1 + 72
√

1 + log2 2im)2iL1/(α+1)(2im)−α/(α+1) + (1 + log2 2im)
(
1 + 72

√
1 + log2 2im

)
2im

Now since

dlog2 Te∑
i=0

2i = 2dlog2 Te+1 − 1 > 2T − 1 > T ,

there are always less than dlog2 T e full regimes. Therefore, using log2 2im 6 log2 T
m, and summing

over the regimes, the first part of this sum is bounded by

2(1 + 72
√

2 log2 T
m)L1/(α+1)

dlog2 Te∑
i=0

2i(1−mα/(α+1))

6 2(1 + 72
√

2 log2 T
m)L1/(α+1) 2(dlog2 Te+1)(1−mα/(α+1))

21−mα/(α+1) − 1

6 2(1 + 72
√

2)
√

log2 T
mL1/(α+1) 22(1−mα/(α+1))

√
2− 1

T (Tm)−α/(α+1)

6 2(1 + 72
√

2)
√

log2 T
mL1/(α+1) 4√

2− 1
T (Tm)−α/(α+1)

where we used 2dlog2 Te 6 2T ; we also used the fact that since m > 1/2, we always have the
inequality 1−mα/(α+ 1) > 1/2 to bound the denominator. Similarly, the second part is bounded
by

2(1 + 72
√

2)(log2 T
m)3/2

dlog2 Te∑
i=0

2im 6 2(1 + 72
√

2)(log2 T
m)3/2 4√

2− 1
Tm .

All in all, we obtain the same minimax guarantees as if we had known the time horizon in advance,
but with an extra multiplicative factor of 4/(

√
2− 1) ≈ 9, 66.

C Illustration

In this section we provide a figure to illustrate the behavior of MeDZO in a schematic example.

MeDZO starts by playing on a fine discretization with a size of order
√
T , but for a short length

of time, of order
√
T . At the end of the first epoch, it memorizes the empirical distribution of the

arms played; then it runs a new instance of CAB1.1 with both the coarser discretization, and the
memorized action. This process is repeated until the time horizon is reached.

The payoffs of the memorized actions increase until the size of the discretization reaches a critical
value; after that they fluctuate. Therefore MeDZO manages to maintain a regret of order the
approximation error at this critical discretization, multiplied by T .
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Distribution of plays
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Figure 2: Behavior of MeDZO on a schematic drawing. The expected payoffs of the memorized actions are
displayed in red; those from the usual discretization are in blue.

D Numerical experiments

This section contains some numerical experiments comparing the regrets of algorithms that require
the knowledge of the smoothness, against MeDZO.

We examine bandit problems defined by their mean-payoff functions and gaussian N (0; 1/4) noise.
The functions considered are f : x 7→ (1/2) sin(13x) sin(27x) + 0.5 taken from Bubeck et al. [7],
g : x 7→ max

(
3.6x(1 − x), 1 − 1/0.05 |x− 0.05|

)
adapted from Coquelin and Munos [11] and

the Garland function x 7→ x(1 − x)(4 −
√
|sin(60x)|, which we took from Valko et al. [24]. The

functions are plotted in Figure 3.

0 1
0

1

(a) f

0 1
0

1

(b) g

0 1
0

1

(c) The Garland function

Figure 3: Problems considered

The algorithms we compare are SR from Locatelli and Carpentier [21], and CAB1 from Kleinberg
[16] with MOSS as the discrete algorithm. SR takes directly the smoothness α as an input, and
assumes L = 1. For CAB1, we compute the optimal discretization size for L = 1 and varying α.
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Figure 4: Regrets of MeDZO, and of SR and CAB1 run with different values of the smoothness parameter.

In Figure 4 we plot the cumulative regret of the algorithms after a time horizon T = 300000, for
varying values of the assumed smoothness. For each problem, MeDZO was run only once, as it does
not need to know the smoothness. The regret was averaged over N = 75 runs, and the dotted curves
represent +/- one standard deviation.

We recall that minimax guarantees are worst-case guarantees, therefore comparing algorithms on a
single problem can only serve as an empirical illustration.

As expected, the regrets of both SR and CAB1 depend on some careful tuning of the input parameter,
determined by the smoothness. The optimal tuning is unclear, and seems to vary on the algorithm.
MeDZO, on the other hand, obtains reasonable regret with no tuning. Surprisingly, CAB1 with
overestimated smoothness seems to behave quite well, although the large variance sometimes makes
it difficult to distinguish the results. Recall that MeDZO is the only algorithm with theoretical
guarantees for high values of α.

E About simple regret

In this section, we consider the case of simple regret, which complements the discussion about
adaptation to smoothness in sequential optimization procedures. We write out how to achieve
adaptation at usual rates for simple regret under Hölder smoothness assumptions. We do not claim
novelty here, as adaptive strategies have already been used for simple regret under more sophisticated
regularity conditions (see, e.g., Grill et al. [14], Shang et al. [23] and a sketched out procedure in
Locatelli and Carpentier [21]); however, we feel the details deserve to be written out in this simpler
setting.

Let us recall the definition of simple regret. In some cases, we may only require that the algorithm
outputs a recommendation X̃T at the end of the T rounds, with the aim of minimizing the simple
regret, defined as

rT = M(f)− E
[
f
(
X̃T

) ]
.

This setting is known under various names, e.g., pure exploration, global optimization or black-box
optimization. As noted in Bubeck et al. [6], minimizing the simple regret is easier than minimizing
the cumulative regret in the sense that if the decision-maker chooses a recommendation uniformly
among the arms played X1, . . . , XT , then

rT = M(f)− 1

T

T∑
t=1

E
[
f
(
Xt

)]
=
RT
T

. (22)

The minimax rates of simple regret over Hölder classes H(L,α) are lower bounded by
Ω(L1/(2α+1)T−α/(2α+1)), which are exactly the rates for cumulative regret divided by T (see
Locatelli and Carpentier [21] for a proof of the lower bound). Consequently, at known regularity, any
minimax optimal algorithm for cumulative regret automatically yields a minimax recommendation
for simple regret via (22).

When the smoothness is unknown, the situation turns out to be quite different. Adapting to the Hölder
parameters can be done at only a (poly-)logarithmic cost for simple regret, contrasting with the
polynomial cost of adaptation of cumulative regret. This can be achieved thanks to a very general and
simple cross-validation scheme defined in Shang et al. [23], named General Parallel Optimization.
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Algorithm 4 GPO (General Parallel Optimization) for Hölder minimax adaptation

1: Input: time horizon T > 8
2: Set: p = dlog2 T e and define Ki = 2i for i = 1, . . . , p
3: for i = 1, . . . , p do // Exploration
4: For bT/(2p)c rounds, run algorithm CAB1.1 with the discretization in Ki pieces; use MOSS

as the discrete algorithm
5: Define output recommendation X̃(i), uniformly chosen among the bT/(2p)c arms played
6: end for
7: for i = 1, . . . , p do // Cross-validation
8: Play bT/(2p)c times each recommendation X̃(i) and compute the average reward µ̂(i)

9: end for
10: return A recommendation X̃T = X̃ (̂ı) with ı̂ ∈ arg max µ̂(i)

The next result shows that the player obtains the same simple regret bounds as when the smoothness
is known (up to logarithmic factors).

Theorem 3. GPO with CAB1.1 as a sub-algorithm (Alg. 4) achieves, given T > 8 and without the
knowledge of α and L, for all α > 0 and L > 2α+1/2

√
dlog2 T e /T the bound

sup
f∈H(L,α)

rT 6
(
54 +

√
π

2
log2 T

)
L1/(2α+1)

(dlog2 T e
T

)α/(2α+1)

= Õ
(
L1/(2α+1)T−α/(2α+1)

)
.

The Õ notation hides the log T factors, and the assumption that T > 8 is needed to ensure that
T/(2p) = T/(2 dlog2 T e) > 1: otherwise the algorithm itself is ill-defined.

Proof. Let f ∈ H(L,α) denote a mean-payoff function. Once again we decompose the error of the
algorithm into two sources. The simple regret is the sum of the regret of the best recommendation
among the p received, rmin, and of a cross-validation error, rCV,

M(f)− E[f(X̃T )] = min
i=1,...,p

(
M(f)− E

[
f
(
X̃(i)

)])
︸ ︷︷ ︸

rmin

+ max
i=1,...,p

(
E
[
f
(
X̃(i)

)]
− E

[
f
(
X̃T

)])
︸ ︷︷ ︸

rCV

.

(23)
We now show that rCV 6 p3/2

√
π/(4T ) , by detailing an argument that is sketched in the proof of

Thm. 3 in Shang et al. [23]. Denote by µ̂(i) the empirical reward associated to recommendation i,
and ı̂ = arg max µ̂(i), so that X̃T = X̃ (̂ı). Then for any fixed i, by the tower rule,

E
[
µ̂(i)
]

= E
[
E
[
µ̂(i)

∣∣∣ X̃(i)
]]

= E
[
f
(
X̃(i)

)]
. (24)

Therefore, by the above remarks, and since µ̂(i) 6 µ̂(̂ı),

E
[
f
(
X̃(i)

)]
− E

[
f
(
X̃T

)]
= E

[
µ̂(i) − f

(
X̃ (̂ı)

)]
6 E

[
µ̂(̂ı) − f

(
X̃ (̂ı)

)]
.

We have to be careful here, as ı̂ is a random index that depends on the random variables µ̂(i)’s: we
cannot apply directly the tower rule as in (24). To deal with this, let us use an integrated union bound.
Denote by ( · )+ the positive part function, then

E
[
µ̂(̂ı) − f

(
X̃ (̂ı)

)]
6 E

[(
µ̂(̂ı) − f

(
X̃ (̂ı)

))+
]
6

p∑
j=1

E
[(
µ̂(j) − f

(
X̃(j)

))+
]
,

and we are back to handling empirical means of i.i.d. random variables. For each j, the reward given
X̃(j) is (1/4)-subgaussian. Therefore, as µ̂(i) is the empirical mean of n = bT/(2p)c plays of the
same arm X̃(j), this mean µ̂(i) is (1/(4n))-subgaussian conditionally on X̃(j) and thus for all ε > 0

P
[
µ̂(j) − f

(
X̃(j)

)
> ε
]
6 e−2nε2 .
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Hence by integrating over ε ∈ [0,+∞), using Fubini’s theorem, a change of variable x =
√

4nε
(and using the fact that bT/(2p)c > T/(4p) as T/(2p) > 1):

E
[(
µ̂(j) − f

(
X̃(j)

))+
]

=

∫ +∞

0

P
[
µ̂(j) − f

(
X̃(j)

)
> ε
]
dε

6
∫ +∞

0

e−2nε2 dε =
1√
4n

∫ +∞

0

e−x
2/2 dx

=

√
π

8n
=

√
π

8 bT/2pc 6
√
πp

4T

Putting back the pieces together, we have shown that for any i,

E
[
f
(
X̃(i)

)]
− E

[
f
(
X̃T

)]
6

p∑
j=1

√
πp

4T
= p3/2

√
π

4T
.

We deduce the same bound for rCV by taking the maximum over i.

Let us now bound rmin. By Eq. (9), using the fact that bT/(2p)c > T/(4p) as T/(2p) > 1, for all i

M(f)− E
[
f
(
X̃(i)

)]
6

L

Kα
i

+ 18

√
4pKi

T
.

We summarize a few calculations in the next lemma. These calculations come from the minimization
over the Ki’s of the previous bound, with a case disjunction arising from the boundary cases.

Lemma 2. At least one of the three following inequalities holds :

L < 2α+1/2

√
p

T
or L > Tα

√
p

or

min
i=1,...,p

(
L

Kα
i

+ 36

√
pKi

T

)
6 53L1/(2α+1)

( p
T

)α/(2α+1)

.

Let us consider these three cases separately. The first one is forbidden by the assumption that
L > 2α+1/2

√
p/T . In the second case, the function is so irregular that the claimed bound becomes

worse than rT 6 56 p1/2+α/(2α+1), which is weaker than the trivial bound rT 6 1.

Finally, in the third case, we may assume that L > 2α+1/2
√
p/T >

√
p/T . Then we have

L1/(2α+1) >
( p
T

)1/(2(2α+1))

=
( p
T

)1/2 ( p
T

)−α/(2α+1)

,

and thus
√
p/T 6 L1/(2α+1)(p/T )α/(2α+1). By injecting the bound of Lemma 2 and the bound on

rCV into (23):

rT 6 53L1/(2α+1)
( p
T

)α/(2α+1)

+ p

√
π

4

√
p

T
6 (53 + p

√
π/4)L1/(2α+1)

( p
T

)α/(2α+1)

and the stated bound holds, since 53+p
√
π/4 6 53+(log2 T +1)

√
π/4 6 54+

√
π/4 log2 T .

Proof of Lemma 2. We upper bound the minimum by comparing the two quantities

L

Kα
i

v.s.

√
pKi

T
.

As the first term is decreasing with i, and the second term is increasing with i, two extreme cases
have te be dealt with. If the first term is always smaller than the second, i.e., even for i = 1, then:

L

2α
<

√
p 2

T
.
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This is the first case in the statement of the lemma. Otherwise, the first term might always be greater
than the second one, i.e., even for i = p and

L

2αp
>

√
p2p

T

which is equivalent to

L2 > p
2p(2α+1)

T
,

hence, since 2p > T ,
L2 > pT 2α

which is exactly the second inequality of our statement.

Otherwise, define i? to be an index such that

L

Kα
i?−1

>

√
pKi?−1

T
and

L

Kα
i?

6

√
pKi?

T
(25)

By the preceding discussion, i? is well defined and 1 < i? 6 p. Then by definition of i? (the first
equation in (25))

2α+1/2 L

Kα
i?

>

√
pKi?

T
.

Hence, by squaring and regrouping the terms

K2α+1
i? 6 22α+1L2T

p

thus

Ki? 6 2L2/(α+1)

(
T

p

)1/(2α+1)

and √
pKi?

T
6
√

2L1/(2α+1)
( p
T

)α/(2α+1)

and finally, recalling the second equation in (25)

L

Kα
i?

+ 36

√
pKi?

T
6 37

√
pKi?

T
6 37

√
2L1/(2α+1)

(
p

T

)α/(2α+1)

.

F Proof of our version of the lower bound of adaptation

Here we provide the full proof of our version of the lower bound of adaptation stated in Section 2.2.

Our statement differs from that of Locatelli and Carpentier [21] on some aspects. First, and most
importantly, we include the dependence on the Lipschitz constants, and we do not consider margin
regularity. We also remove a superfluous requirement on B, that B 6 c T (α+1)/(2α+1), which
was just an artifact of the original proof. Furthermore we believe that the additional condition that
L 6 O(Tα/2) in our version was implicitely used in this original proof. Finally, the value of the
constant differs, partly because of the analysis, and partly because we consider (1/4)-subgaussian
noise instead of 1-subgaussian noise.

We managed to obtain these improvements thanks to a different proof technique. In the original proof,
the authors compare the empirical likelihoods of different outcomes and use the Bretagnolle-Huber
inequality. We choose to build the lower bound in a slightly different way (see Garivier et al. [13]):
we handle the changes of measure implicitly thanks to Pinsker’s inequality (Lemma 3). Following
Lattimore and Szepesvári [19], we also chose to be very precise in the definition of the bandit model,
in order to make rigorous a few arguments that are often used implicitly in the literature on continuous
bandits.
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The main argument of the proof, that is, the sets of functions considered, are already present in
Locatelli and Carpentier [21].

Before we start with the proof, let us state a technical tool. Denote by KL the Kullback-Leibler
divergence. The next lemma is a generalized version of Pinsker’s inequality, tailored to our needs.
Lemma 3. Let P and Q be two probability measures. For any random variable Z ∈ [0, 1],

|EP[Z]− EQ[Z]| 6
√

KL(P,Q)

2

Proof. For z ∈ [0, 1], by the classical version of Pinsker’s inequality applied to the event {Z > z}:

|P[Z > z]−Q[Z > z]| 6
√

KL(P,Q)

2
.

Therefore, by Fubini’s theorem and the triangle inequality, and by integrating the preceding inequality:

|EP[Z]− EQ[Z]|=
∣∣∣∣∫ 1

0

(
P[Z > z]−Q[Z > z]

)
dz
∣∣∣∣ 6∫ 1

0

|P[Z > z]−Q[Z > z]|dz 6
√

KL(P,Q)

2

Proof of the lower bound. For the sake of completeness, we recall in detail the construction of
Locatelli and Carpentier [21], with some minor simplifications that fit our setting. Fix regularity
parameters `, L, α and γ satisfying ` 6 L and γ > α, so that H(`, γ) ⊂ H(L,α) (remember the
functions are defined on X = [0, 1]).

Fix M ∈ [1/2, 1]. Let K ∈ N \ {0} and ∆ ∈ R+ be some parameters of the construction whose
values will be determined by the analysis. We define furthermore a partition of [0, 1] into K + 1 sets,
H0 = [1/2, 1] and Hi = [(i − 1)/(2K), i/(2K)] for 1 6 i 6 K, along with their middle points
xi ∈ Hi. Finally, define the set of hypotheses φi for i = 0, . . . ,K as follows

φi(x) =


max

(
M −∆, M −∆/2− ` |x− x0|γ

)
if x ∈ H0 ,

max
(
M −∆, M − L |x− xi|α

)
if x ∈ Hi and s 6= 0 ,

M −∆ otherwise.

(26)

Figure 5: Mean-payoff functions for the lower bound

Figure 5 illustrates how the φi’s are defined : for 1 6 i 6 K, the function φi displays a peak
of size ∆ and of low regularity (L,α), localized in Hi, and another peak of size ∆/2, of higher
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regularity (`, γ) in H0. The function φ0 only has the peak of size ∆/2 and regularity (`, γ). We need
to add requirements on the values of the parameters, to make sure the indeed functions belong to the
appropriate regularity classes. These requirements are written in the following lemma, which we
prove later.

Lemma 4. If (∆/L)1/α 6 1/(4K) then φ0 ∈ H(`, γ), and if (∆/(2`))1/γ 6 1/4 then φi ∈
H(L,α) for i > 1.

Fix a given algorithm. The idea of the proof of the lower bound is to use the fact that if the player has
low regret, that is, less than B, when the mean-payoff function is φ0 ∈ H(L,α), then she has to play
in H0 often. This in turn constrains the amount of exploration she can afford, and limits her ability to
find the maximum when the mean-payoff functions is φi for i > 0.

Canonical bandit model In this paragraph, we build the necessary setting for a rigorous develop-
ment. The continous action space gives rise to measurability issues, and one should be particularly
careful when handling changes of measure as we do here. Following Lattimore and Szepesvári [19,
Chap. 4.7, 14 (Ex.11) and 15 (Ex.8) ], we build the canonical bandit model in order to apply the chain
rule for Kullback-Leibler divergences rigorously. To our knowledge, this is seldom done carefully,
the two notable exceptions being the above reference and Garivier et al. [13]. We also use the notion
of probability kernels in this paragraph; see Kallenberg [15, Chap. 1 and 5] for a definition and
properties.

Define a sequence of measurable spaces Ωt =
∏t
s=1 X × R, together with their Borel σ-algebra

(with the usual topology on X = [0, 1] and on R). We call ht = (x1, y1, . . . , xt, yt) ∈ Ωt a history
up to time t. By an abuse of notation, we consider that Ωt ⊂ Ωt′ when t 6 t′.

An algorithm is a sequence (Kt)16t6T of (regular) probability kernels, with Kt from Ωt−1 to X ,
modelling the choice of the arm at time t. By an abuse of notation, the first kernel K1 is an arbitrary
measure on X , the law of the first arm picked. Define for each i another probability kernel modelling
the reward obtained: Li,t from Ωt ×X to R. We write it explicitly as :

Li,t
(
(x1, y1, . . . , xt), B

)
=

√
2

π

∫
B

e−2
(
x−φi(xt)

)2
dx

These kernels define probability laws Pi,t = Li,t(KtPi,t−1) over Ωt. Doing so, we ensured
that under Pi,t the coordinate random variables Xt : Ωt → X and Yt : Ωt → R), defined as
Xt(x1, . . . , xt, yt) = xt and Yt(x1, . . . , xt, yt) = yt are such that given Xt, the reward Yt is dis-
tributed according to N

(
φi(Xt), 1/4

)
. Denote by Ei the expectation taken according to Pi,t. We

also index recall the pseudo-regret: RT,i = TM(φi)− Ei
[∑T

t=1 φi(Xt)
]
.

A rewriting of the chain rule for Kullback-Leibler divergence with our notation would be (see
Lattimore and Szepesvári [19, Exercise 11 Chap. 14] for a proof)

Proposition (Chain rule). Let Ω and Ω′ be measurable subsets of Rd equipped with their natural σ-
algebra. Let P and Q be probability distributions defined over Ω, and K and L be regular probability
kernels from Ω to Ω′ then

KL
(
KP, LQ

)
= KL(P,Q) +

∫
Ω

KL
(
K(ω, · ), L(ω, · )

)
dP(ω)

The key assumptions are that Ω and Ω′ are subspaces of Rd, and that K and L satisfy measurability
conditions, as they are regular kernels; these assumptions justify the heavy setting we introduced.
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Under this setting, we may call to the chain rule twice to see that for any t:

KL
(
Pt0,Pti

)
= KL

(
L0,t(KtPt−1

0 ), Li,t(KtPt−1
i )

)
= KL

(
KtPt−1

0 ,KtPt−1
i

)
+

∫
Ωt−1×X

KL
(
L0,t(ht−1, xt, · ), Li,t(ht−1, xt, · )

)
dKtPt−1

0 (ht−1, xt)

= KL
(
Pt−1

0 ,Pt−1
i

)
+

∫
Ωt−1×X

KL
(
L0,t(ht−1, xt, · ), Li,t(ht−1, xt, · )

)
dKtPt−1

0 (ht−1, xt)

= KL
(
Pt−1

0 ,Pt−1
i

)
+

∫
X

KL
(
N (φ0(xt), 1/4),N (φi(xt), 1/4)

)
dPt−1

0 (xt)

= KL
(
Pt−1

0 ,Pt−1
i

)
+ E0

[
KL
(
N (φ0(Xt), 1/4),N (φi(Xt), 1/4)

)]
where the penultimate equality comes from the fact that the density of the kernel Li,t−1 depends only
on the last coordinate xt, and is exactly that of a gaussian variable.

We obtain the KL decomposition by iterating T times,

KL
(
PT0 ,PTi

)
= E0

[
T∑
t=1

KL
(
N (φ0(Xt), 1/4),N (φi(Xt), 1/4)

)]

Continuation of the proof Let us also define NHi(T ) =
∑T
t=1 1{Xt∈Hi} the number of times the

algorithm selects an arm in Hi. The hypotheses φi were defined for the three following inequalities
to hold. For all i > 1:

RT,i >
∆

2

(
T − Ei

[
NHi(T )

])
=
T∆

2

(
1− Ei

[
NHi(T )

]
T

)
, (27)

RT,0 >
∆

2

K∑
i=1

E0

[
NHi(T )

]
, (28)

and

KL(PT0 ,PTi ) = E0

[
T∑
t=1

KL
(
N (φ0(Xt), 1/4),N (φi(Xt), 1/4)

)]

= E0

[
T∑
t=1

2
(
φ0(Xt)− φi(Xt)

)2]
6 2E0

[
NHi(T )

]
∆2 .

(29)

The first two inequalities come from the fact that, under Pi, the player incurs an instantaneous regret
of less than ∆/2 whenever she picks an arm outside the optimal cell Hi. For the third inequality, first
apply the chain rule to compute the Kullback-Leibler divergence, then the inequality is a consequence
of the fact that φi and φ0 differ only in Hi, and their difference is less than ∆.

We may now proceed with the calculations. By Lemma 3 applied to the random variable NHi(T )/T :

Ei
[
NHi(T )

]
T

6
E0

[
NHi(T )

]
T

+

√
KL(PT0 ,PTi )

2
. (30)

We will now show that

1

K

K∑
i=1

RT,i >
T∆

2

1− 1

K
−

√
∆RT,0
K

 . (31)
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Indeed by (in order) averaging (27) over i = 1, . . . ,K, using (30), the concavity of
√· and (29)

1

K

K∑
i=1

RT,i >
T∆

2

(
1− 1

K

K∑
i=1

Ei
[
NHi(T )

]
T

)

>
T∆

2

(
1− 1

K

K∑
i=1

E0

[
NHi(T )

]
T

− 1

K

K∑
i=1

√
KL(PT0 ,PTi )

2

)

>
T∆

2

1− 1

K
−

√√√√ 1

2K

K∑
i=1

KL(PT0 ,PTi )


>
T∆

2

1− 1

K
−

√√√√∆2

K

K∑
i=1

E0

[
NHi(T )

] .

This yields the claimed inequality (31) thanks to (28).

Let us assume for now that K > 2 and φ0 ∈ H(`, γ). Then by the assumption on the algorithm,
RT,0 6 B, and therefore

1

K

K∑
i=1

RT,i >
T∆

2

(
1

2
−
√

∆B

K

)
. (32)

To optimize this bound, we take ∆ as large as possible, while still ensuring that
√

∆B/K is small
enough, e.g., less than 1/4. Furthermore, we impose that the φi’s belong toH(L,α), i.e., by Lemma 4,
that (∆/L)1/α 6 1/(4K). This leads to the choice

∆ = cL1/(α+1)B−α/(α+1) and K =

⌊
1

4

(
∆

L

)−1/α
⌋

=

⌊
c−1/α

4
(LB)1/(α+1)

⌋
,

with c = 1/128.

Conclusion, assuming that K > 2 and φ0 ∈ H(`, γ) With this choice of parameters, we have by
definition of ∆,

∆B = c (LB)1/(α+1) ,

and by definition of K, since K > (c−1/α/8)(LB)1/(α+1),

∆B

K
6 8c1+1/α

hence, using c1/(2α) 6 1√
∆B

K
6 2
√

2c1/2+1/(2α) 6 2
√

2 · 2−7/2 =
1

4
.

With this in hand, we may now go back to inequality (32) to see that

1

K

K∑
i=1

RT,i >
T∆

2

(
1

2
− 1

4

)
>
T∆

8
=
c

8
TL1/(α+1)B−α/(α+1) .

By the defintion of K, it is always true that (∆/L)1/α 6 1/(4K), and therefore, by Lemma 4, all the
φi’s automatically belong toH(L,α). Therefore, for all i, we have supf∈H(L,α)RT > RT,i. Hence,
recalling that c = 1/128,

sup
f∈H(L,α)

RT >
1

K

K∑
i=1

RT,i > 2−10 TL1/(α+1)B−α/(α+1) .
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Regularity conditions on the mean-payoff functions φi We now check that K > 2, and that
φ0 ∈ H(`, γ). Let us first focus on φ0. By Lemma 4, it is enough to impose that (∆/(2`))1/γ 6 1/4,
i.e., that

cL1/(α+1)B−α/(α+1)/(2`) 6 (1/4)γ

that is,
L1/(α+1)B−α/(α+1) 6 2`(1/4)γ/c = ` 21−2γc−1 ,

i.e., when
LB−α 6 `1+α 2(1−2γ)(1+α)c−(1+α)

hence, replacing c by its value c = 2−7, the next condition is sufficient to ensure the regularity of the
hypothesis:

L 6 `1+αBα c−(1+α) 2(1+α)(1−2γ) = `1+αBα 2(1+α)(8−2γ) ,

which is one of the two conditions in the statement of the theorem. For the bound to be valid, we
must also make sure that K > 2: ⌊(

c−1/α

4
(LB)1/(α+1)

)⌋
> 2 .

This condition is weaker than
c−1/α

4
(LB)1/(α+1) > 3

which is equivalent to

L > c(α+1)/α 12α+1B−1 = 2−7 · 12 · 2−6/α12αB−1 .

To ensure this, we require the stronger (but more readable) condition that L > 2−312αB−1.

Proof of Lemma 4. A good look at Figure 6 should convince the reader of the statement. We wish to
make sure that the functions φi’s satisfy (4), a Hölder condition around their maximum (and only
around this maximum). Given the definition of the functions φi, we simply have to check that there
is no discontinuity at the boundary of the cell Hi. We write out the details for i > 0 to remove any
doubt; the same analysis can be carried to check that φ0 ∈ H(`, γ).

(a) (∆/L)1/α 6 1/(4K) hence φi ∈ H(L,α) (b) (∆/L)1/α > 1/(4K) hence φi /∈ H(L,α)

Figure 6: φi is inH(L,α) if it is everywhere above the green dotted curve x 7→M − L |x− xi|α, that is, if
the cell Hi has enough room to contain the whole peak of size ∆

For i > 0, the function φi reaches its maximum at xi = (i−1/2)/2K, and the value of the maximum
is M . Then for x ∈ Hi, by definition of φi:

φi(x) = max
(
M −∆,M − L |xi − x|α

)
>M − L |x− xi|α

thus
φi(xi)− φi(x) = M − φi(x) 6 L |xi − x|α ,
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Now consider x /∈ Hi. Assume, as in the statement of the lemma, that 1/(4K) > (∆/L)1/α. If x is
outside of Hi, then since Hi is of half-width 1/4K,

|xi − x| >
1

4K
>

(
∆

L

)1/α

(33)

and, by definition of φi, for all x (even for x ∈ H0), φi(x) >M −∆ . Therefore, by (33),

φi(xi)− φi(x) 6 ∆ 6 L |xi − x|α .
For all values of x, the Hölder condition is satisfied and φi ∈ H(L,α).

For φ0, the same calculations show that there is no jump at the boundary of [1/2, 1], of half-width
1/4, when the peak is of height ∆/2 and regularity (`, γ) if

(
(∆/2)/`)

)1/γ
6 1/4.
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