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Abstract - Nowadays many software development frameworks 
implement Behavior-Driven Development (BDD) as a mean of 
automating the test of interactive systems under constn1ction. 
Automated testing helps to simulate use1·'s action on the User 
Interface and therefore check if the system behaves properly and 
in accordance to Scenarios that desc1ibe functional requirements. 
However, most of tools supporting BDD requù·es that tests should 
be w1itten using low-level events and components that only exist 
when the system is already implemented. As a consequence of 
sucb low-level of abstraction, BDD tests can hardly be reused 
with dive1·se a11ifacts and with versions of the system. To address 
this problem, this pape1· proposes to raise the abstraction leve1 by 
the means of a behavior-based ontology that is aimed at support­
ing test automation. The paper presents an ontology and an on­
tology-based approach for automating the test of functional re­
quù-ements of interactive systems. With the help of a case study 
for the flight tickets e-commerce domain, we demonstrate how 
tests written using our ontology can be used to assess functional 
requirements using different a11ifacts, from low-fidelity to full­
fledged UI Prototypes. 

Index Terms - Automated Requù-ements Assessment, 
Behavior-Driven Development, Ontological Modeling, Testing of 
Interactive Systems. 

I. INTRODUCTION

Assessing interactive systems is an activity that requires a 
considerable amount of effo,ts from development teams be­
cause it implies to assess systems features with respect to the 
many possible user entries and system outputs that might occlll· 
when a user is interacting with the system. Moreover, the sys­
tem behavior should pass acceptance testing, which is aimed to 
detenuine if the user's point of view about a feature is in ac­
cordance with the requirements previously specified. Thus, the 
automation of tests for assessing the system behaviors becomes 
a complex task that requires the use of frameworks to simulate 
the user's actions when interacting with the system. 

In recent years there is an increasing interests both from ac­
ademic and industrial communities in Behavior Driven Devel­
opment (BDD) [1][2][3] for suppo,ting acceptance testing. One 
of the strengths of BDD is to suppo,t the specification of re­
quirements in a comprehensive natural language fonuat speci­
fication, the so-called User Stories [4]. This fonuat allows 
specify executable requirements, which means we are able to 
test requirements specification directly, conducting to a "live" 
documentation and making casier to the clients to set their final 
acceptance tests. It guides the system development and brings 

the opportunity to test Scenarios directly on the User Interface 
(UI) with the aid of exterual frameworks for different plat­
forms. 

Dtu-ing the last seven years, we have been involved in the 
development of e-Goverument applications where we have 
observed certain patterns of low-level behaviors that are reclll·­
rent when writing BDD Scenarios for testing functional re­
quirements with the UI. Besides that, we could also observe 
that User Sto,-ies specified in natural language often contain 
semantic inconsistencies. For example, it is not rare to find 
Scena,-ios that specify an action such as a selection to be made 
in semantically inconsistent widgets such as a Text Field. 
These observations motivated us to investigate the use of a 
formai ontology for describing pre-defined behaviors that could 
be used to specify Scena,-ios. 

In this paper, we introduce the ontological mode! for sup­
porting the desc11ption of Scena11os and how such Scenarios 
can help the automated assessment of interactive systems. The 
ontology was developed based on the BDD principles, describ­
ing user's behaviors when interacting with UI elements in a 
Scena110-based approach. Results of the ontology validation are 
presented by demonstration of its co1Tectness through a con­
sistency checking. In addition, we describe an explorato,y case 
study that has been conducted for the flight tickets e-commerce 
domain. In this study, we have used otu· ontology-based tools 
to support the assessment of evolutiona,y Prototypes and Final 
User Interfaces. In the following sections, we discuss the foun­
dations for this work, how we have built the ontologie.al mode! 
to suppo,t the automated assessment of interactive systems, 
followed by its validation. We condude with a discussion and 
future works. 

Il. FOUNDATIONS 

A. Computational Ontologi.es and Related Works 

Computational ontologies are a mean to fo,mally mode! the 
stmcture of a system, i.e., the relevant entities and relations that 
emerge from its observation, and which are useful for a plll·­
pose [5]. Computational ontologies come to play in this work 
as a means to fo,malize the vocabulary and the concepts used 
in User Sto,-ies, Scena,-ios and user's behaviors dlllmg the de­
velopment process of interactive systems. Without a common 
agreement on the concepts and terms used it would be difficult 
to support the assessment of user requirements. Some ap­
proaches have ti-ied to define languages or at least a common 



vocabulary for specifying Uis for interactive systems. Useful 
abstractions for describing interactive systems include the 
components that compose the presentation of a User Interface 
and the dialog parts that describe the system behavior. 

The Camaleon Framework [ 6] treats the presentation and 

the dialog in three levels of abstractions: Abstract, Concrete 
and Final User Interfaces. The idea is that as abstract user inter­
face component (such as a Container) could be refined to a 
more concrete representation (such as a Window) that will 
ultimately feature a final implementation in a target platform 
(e.g. MacOS or Windows). User Inte1face (UI) specifications 
include more or less details according to the level of abstrac­
tion. The UsiXML (USer Interface eXtensible Markup Lan­

guage) [7] implements the principles of the Cameleon frame­
work in a XML-compliant markup language featuring many 
dialects for treating Character User Interfaces (CUis), Graph­
ical User Interfaces (GUis), Audito1y User Interfaces, and Mul­
timodal User Interfaces. UsiXML is a declarative language that 
captures the essence of User Interface components. At a highest 
level of abstraction, UsiXML describes concepts of widgets, 
controls, containers, modalities and intera.ction techniques. The 
dialog component of UsiXML is a state machine and it de­
scribes concepts of states, conditions, transitions and actions. 
Using a dedicated notation called SWC (StateWebCha1ts) [9], 

some authors [8] have demonstrated that it is possible to de­
scribe the system behavior at different levels of abstraction 
using UsiXML [8]. 

A glossary of recm1·ent terms for presentation components 
has published by the W3C in the MBUI (Model-based User 
Interface domain) [10]. It was intended to capture a common, 
coherent terminology for specifications and to provide a con­
cise reference of domain te1ms for the interested audience. For 
the dialog component, SWC [9] and SXCML (State Chart 
XML: State Machine Notation for Control Abstraction) [11] 
offer a language based on the State Machine concepts. 

B. User Stories

User Stories in Software Engineering was first proposed by
Cohn [4]. The author suggests to fonnalize User Stories in 
tenns of a1tifacts for describing feattu·es and their acceptance 
criteria, with concrete examples about what should be tested to 
consider these features as "doue". For that, the stories are for­
matted to fulfill two main goals: (i) assure testability and non­
ambiguous descriptions and (ii) provide reuse of business sce­
narios. Figure 1 presents a template proposed by North [12] 
and Cohn [ 4]. 

Ti tle { one 1 ine describing the story} 
Narrative: 
As a [role] 

I want (feature] 
So that [benefit] 
Acceptance Criteria: (presented as Scenarios) 

Scenario 1: Ti tle 
Gi ven ( context] 

And ( some more context) ... 
When (event] 
Then ( outcome] 

And (another outcome] ... 
Scenario 2: ..• 

Figure 1 Template for specifying User Stories, Nordt [12) and Cohn [ 4) 

According to this template, a User Sto1y is described with a 
Title, a Narrative and a set of Scenarios representing the Ac­
ceptance Criteria. The Title provides a general description of 
the story, making reference to a feattu·e that this story repre­
sents. The Narrative describes the referred featm·e in tenns of 
the role that will benefit from the feattu·e, the featt1re itself, and 
the benefit it will bring to the business. The Acceptance Crite­
ria are defined through a set of Scenarios, each one with a Title 
and three main clauses: "Given" to provide the context in 
which the Scenario will be actioned, "When." to describe events 
that will trigger the Scenario and "Then" to present outcomes 
that might be checked to verify the proper behavior of the sys­
tem. Each one of these clauses eau include an "And" statement 
to provide multiple contexts, events and/or outcomes. Each 
statement in this representation is called Step. 

In Behavior-Driven Development (BDD) [1], the user's 

point of view about the system is capttu·ed by the User Stories, 
described according to the template shown in Figm·e 1. BDD 
approach assumes that clients and teams eau communicate 
using this semi-structt1red natt1ral language description, in a 
non-ambiguous way (because it is supported by test cases). 

Following this assumption, we have defined a conceptual 
model to represent user requirements. Our focus is on fonction­
al requirements. A functional requirement defines statements of 
services that the system should provide, how the system should 
react to particular inputs, and how the system should behave in 
particular situations. To assure that the system behaves proper­
ly, requirements should be expressed in a testable way. Figure 
2 presents the conceptt1al model that explains how testable 
requirements are formalized by our approach. 

As show in Figure 1, a requirement is expressed as a set of 
User Stories (US) encompassing a Nat1'ative and a set of Ac­
ceptance Criteria. Acceptance Criteria are presented as Scenar­
ios at1d are composed by at least three main Steps ("Given.", 
"When" at1d "Then") that represent Behaviors which the system 
eau ai1swer. Behaviors handle actions on Interaction Elements 
in the User Interface (UI) and eau also mention examples of 
data that are sui table for testing them. The se concepts and mies 
ai·e defmed as classes ai1d axioms in the proposed ontology 
presented hereafter. 
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Ill ONTOLOGY MODELING 

The ontology we introduce in this paper bon-ows many 
concepts from languages and vocabularies in the literature. 
From Camaleon [6] and UsiXML [7] we get concepts of ab­
stract and concrete Uis. Presentation and definition of graphical 
components cornes from W3C MBUI [10]. The OWL specifi­
cation of the ontology (W3C Web Ontology Language) en­
compasses concepts (behavior and presentation aspects) of 
graphical components commonly used to build web and mobile 
applications and it aise contains textual representations that are 
used to describe how users internet with those graphical com­
ponents. Previous works with SWC [8] aise inspit·ed the con­
cepts used for desci·ibing the dialog. 

The ontology has been modeled in Protégé 5.0. Figure 3 
presents the root classes of the ontology. The classes Dialog, 
Presentation and Platform mode! the concept of a Prototype. A 
Prototype is built for at least one Platfonn and is specified by 
no more than one Dialog and one Presentation. A Dialog is 
pe,fonued by a State Machine (detailed in section 3C) and a 
Presentation is performed by the Interaction Elements (detailed 
in section 3A). Likewise, the classes Narrative, Scenario, Step 
and Task mode! the concept of a User Story. A User Story is 
described by exactly one Narrative and some Scenarios. A 
Scenario is an occtuTence of only one Task and is a set of 
Steps. A Step shall represent some Event, Condition and/or 
Action that are Transition elements from the State Machine, 
pe1fon11.ing the Dia log component of a Prototype. 

!!J 
T· cmD!ll!l 

eoialoo 
.., ..• Interadion_Element 

eNarrative 
.., ..• Plotform 

• Presentation 
..... Prototype 

escenario 
.., ..• State_Machine_Element 

estep 
..... Task 

• User_Storv 

Figure 3 Root classes of the ontology 

The current version of the ontology bears an amount of 422 
axioms (being 277 logical axioms), 56 classes, 33 object prop­
e,ties, 17 data properties and 3 individuals. A visual representa­
tion of ail the concepts can be found at https://goo.gl/IZgSJO 
and its complete specification in OWL can be found at 
https://goo.ol/lpUMgp. 

A. Modeling of Interaction Elements

Interaction Elements in the ontology represent an abstrac­
tion of GUI components in web and mobile platfonus. Figure 4 
illustrates a hierarchy of Interaction Elements. The fotu· main 
superclasses are Container, Infonuation Component, Input 
Contre! and Navigational Component. The first one contains 
elements that group other elements in a User Inte1face, such as 
Windows and Field Sets. The second one contains elements in 
charge of displaying information to the use1-s such as Labels 
and Message Boxes. The third one represents elements in 
which users provide inputs to the system such as Buttons and 

Text Fields. Finally, the last one contains elements usefül to 
navigate through the system such as Links and Menus. Sorne 
elements like Dialog Windows, for example, are inherited by 
more than one superclass, once they keep semantic characteris­
tics of Containe,-s and Information Components as well. 
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Figure 4 Cloud of User Interface Elements 

B. Data Properties

Data Properties have been created to semantically describe
data demains used by each Interaction Element. The root tree 
shown in Figure 5a gives an overview of the properties created, 
while Figtu·e 5b expands the Data Property "message", show­
ing that this kind of data is used by the Intera.ction Elements 
"Message Box", "Notification", "Tool Tip" and "Modal Win­
dow". "Message" has aise been defined to range the primitive 
data String. 

· lt·fü1$%i&i·ISi
.,_. •actions 
... ... aoreeme,11 
..... adata_and_tîme_înput 

eimoaes 
..... alE!Vêl 

._ aloc.ations 
.... •messooe 
..... •number_input 

.,_. aoptions 
..... •11aoes 
...... symbol 

atext_input 
...... mie 

•track_bar 
..... •value 
..... awords 

Show: P° th1sP' dlSJOtnt:l 

Found 6 uses of message 
T ame.ss.,ge 

amessaoe oomaln Messaoe_eox 
a message oo,nahi Notification 
a OdtaProperty- message 
•messaoe. Oomain Tool_Tip 
•message Range: xsd:strîng 
amessage Domain t-lodal_Window 

Figure 5 (a) Left: Data Properties (b) Right: Data Property "message" 



C. Modeling of the State Machine

The dialog part of a User Inte1face is described in the on­
tology using concepts borrowed from abstract State Machines 
as illustrated by Figure 6. A Scenario meant to be mn in a giv­
en UI is represented as a Transition. States are used to represent 
the original and resulting Uis after a transition occur. Scenarios 
in the Transition state always have at least one or more Condi­
tions (represented in Scenarios by the "Given" clause), one or 
more Events (represented in Scenarios by the "Wh.en" clause), 
and one or more Actions (represented in Scenarios by the 
"Th.en" clause). The clauses "Given", "Wh.en" and "Then" have 
been modeled as Individuals of each respective class. 

Î···• Nan-atJve - -
li,- -ePlotform 
l···• Prescntatlon 
! • Prototype 
i···•sœnario 
! -E b4ffltMtMrtttlit#ttt#fü· ·•Action 

. econdîtioo 
eevent 

·•Stole 
erransltlon 

fndiv1d1nb by type 

� � 

\' eAàion (1) 
'···+Thon 

.. econdîtion (t) 
: .... GJven 

.., ... Event (1) 
· +when 

1 AonOUbon propcrty hlcr11rchy 
OIIVI p1operty' hle,-afChy 

Oiihtypcs 

Figure 6 State Machine Elements and their Individuals 

D. Object Properties

•••• 

Relationships between individuals in classes are represent­
ed as Object Properties. We have classified those properties in 
Relations and Behaviors. Relations group conceptual relation­
ships between objects from intemal classes, i.e. objects that do 
not directly address user's interaction. Behaviors group concep­
tual relationships between user' s interactions and Interaction 
Elements on the UI. These two groups are explained hereafter. 

1) Relations:
Figure 7 presents the set of main relationships between ob­

jects of intemal classes defined in the ontology. As an example, 
Figure 8 presents the relations between elements in the State 
Machine. As a sub property of Relations, objects from the Dia­
log class are composed by some States and Transitions. This 
relationship is described by the property isComposedBy (left­
side of Figure 8). Accordingly, objects from the Transition 
class are triggered by a sequence of some Conditions, Events 
and Actions. This relationship is described by the property 
isTriggeredBy (right-side of Figure 8). 

Ob tct orooertv h1�rarc . rd�tons CIB 13:.:J 

Y··• owl:topObji:«Property 
i - • aUowsMultiple 
\ .. ·aallowsUnique 
� • behaviors 
•aml!IJ!!lm

· •isAnOcam:mceOf 
·•lsASetOf 
•isBuittfor 

· •lscomposodsv 
aisOe.scribe-dBy 

· • lsRepresentedBY 
•isSpecifiedBy 

· •lsTrlaoerodev 
· ashouldRepresent 
ausesA.sAMobileElement 

· •usesAsAWebElement 

Figure 7 Object Property "Relations" 
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SubP1optrty Of 
• relation.s 

lnvtrH Of 

Oom•1ns(,l'ltt11tebot1) 0 
eoialog 

SubP1optrtyOf 
a relations 

li"• Transition 

lht1tts(1Mt11uuon> eïsTriggeredBv some Event V 
Ran.gH{•l'ltfl'\tC110fl) 

eïsComposedBy some State eïsTriogeredBy some Condition 
eïsComposed8y some1=r-ra_n_s,�1,-on�,rJ' eisTriogeredBv some Action 

Figure 8 Object Properties isComposedBy (left) and isTriggeredBy (right) 

2) Behaviors:
Following our ontological approach, the concept Behaviors

is used to describe how users are supposed to interact with the 
systems whilst manipulating graphical elements of the User 
Inte1face. At first, behaviors can be described in a kind of 
stmctured natural language so that they can also be read by 
humans. As illustrated by Figure 9, the specification of behav­
iors encompasses when the interaction can be perfo1med (using 
Given, When and/or Th.en clauses) and which graphical ele­
ments (i.e. Radio Button, CheckBox, Calendar, Link, etc.) are 
suitable to implement the expected system behavior. In the 
example below, the behavior receives two parameters: a "$ele­
mentName" and a "$locatorParameters". The füst parameter is 
associated to data, the second parameter refers to the Interac­
tion Element supported by this behavior: "Radio Button", 
"CheckBox", "Calendar" and "Link''. To comply with semantic 
mies, the behavior "] chose \ "$elementName\" referring to 
\ "$locatorParameters\ "" shown in Figure 9 can be modelled 
into a predefined behavior "chooseReferringTo" as shown m 
Figure 10. 

1 cnoose rse1sm9n1Nam9r re:srnng 10 \''!locatorParame1srsr 

ca1sraar UOk 

Figure 9 Components on the ontology used to specify a behavior 



• •chooseReferrlngTo 
• chooseReferringTo Range chooseReferringTo some Checkbox 
•chooseReferringTo Domain Event 
•chooseReferringTo SubPropertyDf behaviors 
• chooseReferringTo Domain �ion 
•chooseReferringTo Range chooseReferringTo some calendar 
•chooseReferringTo Range chooseReferringTo some Link 
• chooseRefaningTo 
•chooseReferringTo Range chooseReferringTo some Rad10_Button 

Figure JO Behavior "chooseRefferingTo" 

Our ontology includes a large set of predefined behaviors. 
Sorne of them are show at Table 1. Notice that each Behavior is 
associated to diverse transition components ( Context, Event
and/or Action) that compose a Transition. The colulllll Interac­
tion Elements in Table 1 enlists the set of Interaction Elements 
that can fit to trigger a pa1ticular behavior. 

TABLE l. SOME OF PREDEFINED BEHA VIORS ON THE ONTOLOGY 

Beha�ior Transition Interaction Elements 
C E À 

Calendar 

choose 
Checkbox 
Radio_Button 
Linlc 

chooseBvlndexlnlheField Droodovvn List 
Calendar 

chooseReferringTo 
Checkbox 
Radio_Button 
Linlc 

chooseTheOotionO!Va /ueln TheField Droodovvn List 
Menu 

clickOn 
Menu_Item 
Button 
Linlc 

Menu 

clickOnReferringTo 
Menu_Item 
Button 
Linlc 

doNotTypeAnyValueToTheField -

Text_Field 
resetTheValueom,eField 
r,oTo Browser Window 
isDisolaved Window 

Dropdov,n _ List 

setlnTheField = tryToSetlnTheField 
Text Field 
Autciëomplete 
Calendar 

1 nmeAndChooselnlheField Autocomnlete 
wil/BeDiso/ayed Text 

The vocabulary chosen to express each behavior has 
emerged from Scenarios specified in our past projects. It out­
lines only one of the several possible vocabularies to represent 
the same user's behaviors, and could be extended in the futtu·e 
by more representative phrases or expressions. Some synonyms 
conceming the user's goal have been also identified in order to 
increase the expressivity of the ontology. For example, the 
behavior doNotTypeAnyVa1ueToTheField is considered equivalent 
to the behavior resetTheValueOfTheField as they perform or 
assert exactly the same action on the affected UI element, look­
ing for the same output. Likewise, the behavior setinTheField 

is equivalent to the behavior tryToSetinTheField as they intend 
the same action, being the second one more suitable to express 
attempts of violation in the business mies for testing pttrposes. 

IV. VALIDATION 

The ontology has been validated in two steps: at first, con­
sistency has been continuously checked through the use of 
reasoners. Then, using a tool suppo1t, we applied the approach 
to a case stt1dy in the flight tickets e-commerce domain. We 
have developed tools for dealing with tests over Prototypes and 
for testing the implementation. A first tool named PANDA 
(Prototyping using Amiotation and Decision Analysis) [13) was 
built to design and test UI Prototypes. A second tool was de­
veloped to testing Web Final Uls derived from the Prototypes. 
Both tools have been used to conduct the case study. 

A. Consistency Checking

For checking the consistency of the ontology we use the
reasoners FaCT++, ELK, HermiT and Pellet. FaCT++ started 
identifying no support for the datatypes xsd: base64Binary and 
xsd:hexBinary used to range images and symbols in the Data 
Properties. Those properties have been used to define domains 
for objects in the classes Image Carousel and Icon, respective­
ly. ELK has failed by no support to Data Prope1ty Domains as 
well as Data and Object Prope1ty Ranges. HenniT and Pellet 
have succeeded processing the ontology respectively in 4926 
and 64 milliseconds, as presented in Figure 11. 
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Figure 11 Resuhs of ontology processing: HermiT (top) and Pellet (bottom) 

B. Validation by a Case Study

T o illustrate how the ontology can be used to support the
specification of requirements and the testing automation for 
intera.ctive systems, we have chosen a flight tickets e­
commerce application. Figure 12 describes one of the User 
Stories from this case stt1dy with a Scenario for searching 
flights. Therein, the user should provide at least: the type of 
sought ticket (one-way or round trip), the departure and the 
all'ival airpo1ts, the number of passengers, and frnally the dates. 
In the Scenario "One-Way Tickets Search", a typical search of 
tickets is presented conceming a one-way trip from Paris to 
Dallas for 2 passengers on 12/15/2016. According to the busi­
ness rnle, the expected result for this search is a new screen 
presenting the title "Choose Flights", in which the user might 



select the desired flight from a list of flights matching his 
search. 

Oser Story: Flight Tickets Search 
Narrative: 

As a frequent traveler 
I want to be able to search tickets, providing locations and 

dates 
So that I can obtain information about rates and times of 

the flights. 
Scenario: One-Way Tickets Search 
Given I go to "Find flights'* 

Wh.en I choose ··one way .. 

And I type '"Paris'· and choose '"CDG - Paris Ch De Gaulle1 

France'" in the field "From" 

And I type '"Dallas" and choose "DFW - Dallas Fort Worth 

International1 IX" in the field "To'" 

And I choose the option of value "'2" in the field "'Nu.rober of 

passengers" 
And I choose "12/15/2016" referring to "Depart" 
And I click on "'Se.arch" 
Th.en will be displayed '*Choose Flights" 

Figure 12 User Story for Flight ncket Search in 1he testing template format 

1) Ontology Support for Testing Prototypes using PANDA:
PANDA [13] is a tool suppo,t for the creation and testing of

UI Prototypes built upon an ontology. PANDA sta,ts by read­
ing an OWL file describing our ontology. Using the inner or­
ganization of ontologie.al classes, PANDA dynamically instan­
tiates a palette of widgets (see Figure 13) that can be used to 

build a Prototype. From an interaction point of view, the con­
struction of Prototypes is done by perfonning drag and drop 
operations. From a storage point of view, a Prototype is an 

XML file that describes a composition of widgets whose de­
scription is semantically annotated by elements of OUI' ontolo­
gy. 
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Figure 13 Pallets wilh 1he widget Button and its properties extracted from the 
ontology 

For the construction of the palette, PANDA uses a descrip­
tion of a widget we called "Ontologica/Class" which feature its 
name, list of subclasses and set of properties. This ontological 
class has been defined as a generic class that is customized 

through its properties. Indeed, those classes represent each 
component of a Prototype in PANDA and its behaviors regard­
ing their usage in the prntotyping tool: they are placed in an 

edition area in which the user can edit the instance of a proper­
ty. Thus, for the Presentation component, PANDA uses a flexi­

ble structure that allows to dynamically instantiate the set of 
widgets that will be used to build Prototypes. 

PANDA creates a category for each superclass including: 
Container, Information Component, Input Control, Interaction 
Element, Navigational Component, Platfonn, State Machine 
Element, Window and Window Dialog. Each category contains 
a set of widgets defined by the classes inheriting the superclass. 
As for the prope,ties, ontological classes are displayed in the 
prope,ty window in the category "Ontological properties". 
Each property identified in the ontology is therefore inse1ted in 
the list of prope,ties of the class with a name and a value. 

For the Dialog component, OUI' ontology encompasses be­
havioral prope1ties to describe the interaction suppo1ted by a 
class. For example, a Butten must feature a behavioral property 
"clickOn" which indicates that buttons suppo,t an event click. 
Click events allow the designer to specify interactions on 
widgets. If a button has a behavioral prope,ty "clickOn", 
PANDA adds an event handler to handle click events when 

users interact w'ith the Prototype. 
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Figure 14 A State Machine Transition between sketches of a PANDA Proto­
type for 1he User Story "Flight Tickets Search" From top to bottom: the 

initial State "Find Flights", a Transition represented by the Scenario 
"One-Way Tickets Search", and finally the resultant State "Choose 

Flights" 

Figure 14 shows how Scenarios are tested in PANDA. For 
each Step of Scenarios, PANDA assess actions with respect to 
widget prnperties defined in the ontology. For example, in the 
Step "And I click on 'Search"', PANDA looks for any widget 



named "Search" in the initial State, and check if the description 
of the widget in the ontology suppo1t the behavior "clickOn". 
The results of the tests are displayed by a colored symbol next 
to each Step, a red "X" representing failure, a green "V" repre­
senting success, and a black"?" representing an untested Step. 

2) Ontology Support for Testing Web Final Uis:
To test the Scenarios over Web Final Uls, we have em­

ployed a set of frameworks to provide automated simulation of 
user's interaction. More specifically, we have used Selenium 
WebDriver to mn navigational behavior as well as JBehave and 
Demoiselle Behave to parse Scenario scripts. The ontology is 
charged as a CommonSteps Java Class, pre-defining behaviors 
that can be used when writing Scenarios, and where each action 
and/or asse1t for each behavior is defined. This class imple­
ments the dialog component and contains al! the knowledge 
about how pe1forming the mentioned behaviors on the UI ele­
ments, thus when using them to write Scenarios, tests are deliv­
ered without any additional effo1t of implementation. Hence, 
methods in this class have been wTitten for every Step ad­
dressed on the ontology. As illustrated in Figtu·e 15, behaviors 
"Whenffhen I choose ' ... ' referring to ' ... "' are addressed to 
the Selenium method clickO, with the appropriated sequence of 
actions to perform this task on the Final UI. As this behavior 
can be pe1fo11ned only in Radio Buttons, Check Boxes, Links or 
Calendars, the concrete instance of any of these elements are 
searched on the Presentation layer. 
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Figure 1 S Behavior "chooseRefferingTo" being structured as a Java method 

The Presentation component includes the MyPages Java 
Class that makes the mapping between abstract UI elements of 
the ontology and the concrete/final UI components instantiated 
on the interface being tested. For that pwpose, we make use of 
annotations in Java code following the Page Objects pattem 
[14] as illustrated in Figtn·e 16. UI components are identified
through their XPath references or some other unique ID even­
t:ually used for some frameworks to implement the inte1face.
This link is essential to allow the framework to automatically
mn the Steps on the right components on the Final UI.

public class llyPages { 
@ScreenMap(name = "Find Fligbts", location = " •• ") 
public class MainPage { 

ElementM.ap{name = "Searcb"., locatorîype = Element 
iLocatorîype.XPath, locator = " ... ") // concrete 01 component 

rivate 1111.tbm Searcb· // abstract UI element 

Figure 16 Concrete and Abstract UI elements being associated in a Java class 

For behaviors not addressed by the ontology, the MySteps
Java Class allows developers and testers to set their own busi-

ness behaviors and implement as well how they should be at­
tended by the Selenium methods on the UI components. For 
both classes the main incomes are behaviors extracted from the 
User Stories that can be represented in simple packages of text 
files. 

In short, once the ontology is charged, it is enough to iden­
tify on the Final UI under testing the concrete UI elements that 
were instantiated to represent abstract UI elements. Afterwards, 
when Scenarios are triggered, the application mus and Seleni­
um perfonus Step by Step the specified behaviors, repo1ting 
testing results either by the JUnit green/red bar or by JBehave 
reports with the context and attached print-screens of each 
identified failw·e. 

C. Discussion

The ontology presented in this paper only describes behav­
iors that report Steps of Scenarios perfo1ming actions directly 
on the User Interface through Interaction Elements. Thus, the 
ontological mode! is domain-free, which means that it is not 
dependent of business characteristics that are described in the 
User Stories. Specific business behaviors shall be specified 
only for the systems they make reference, not affecting the 
whole ontology. Therefore, it is possible to reuse Steps in mul­
tiple testing Scenarios. For example, the ontological behaviors 
goTo, choose, typeAndChooselnTheField, chooseTheOption­
OfValueinTheField, chooseReferringTo, clickOn and willBe­
Displayed presented in Figtire 12 can be easily al! reused for 
any other Scenario of any other system requiring those kind of 
user's actions. 

However, it brings the need to specify Scenarios in the user 
interaction level, writing Steps for each click, selection, typing, 
etc. A possible solution to avoid it would be to work with high­
er level behaviors that are described by user's tasks. Nonethe­
less, user's tasks often contain info1mation from specific appli­
cation domains. For example, high level Steps like "When I
search for flights to 'Destination "' encapsulate al! low level 
behaviors making reference for individual clicks, selections, 
etc.. however it also con tains information that refers to the 
airline domain (i.e. behavior "search for flights"). So that Step 
would only makes sense on that particular application domain. 
For fürther researches, it could be interesting to investigate 
domain ontologies to be used in parallel with 01ir ontology, 
defining a higher level business vocabulary database in which 
business behaviors could be mapped to a set of interaction 
behaviors, covering recun-ent Scenarios for a specific domain, 
and avoiding them to be wTitten every time a new interaction 
may be tested. 

Another aspect to be discussed is that even having mapped 
synonyms for some specific behaviors, otu· approach does not 
provide any kind of semantic inte1pretation, i.e. the Steps might 
be specified exactly as they were defined on the ontology. The 
use of the JBehave plugin for Eclipse has helped us to know 
visually (through different colors) on real time if some Step 
that is being written exists or not on the ontology. This resotu·ce 
reduces the workload to remember as exactly some behavior 
has been described on the ontology. 

At first glance nonetheless the restricted vocabulary seems 
to bring less flexibility to designers, testers and requirements 



engineers, but on the other hand, it establishes a common vo-
cabulary, avoiding typical problems of ambiguity and incom-
pleteness in requirements and testing specifications. Naturally, 
investigating the use of Natural Language Processing (NLP) 
techniques could improve the specification process, adding 
more flexibility to write Scenarios that could be in some extent 
semantically interpreted to meet the behaviors described on the 
ontology. This issue is certainly a worthwhile topic for further 
researches. 

It is also worthy of mention that the concepts and defini-
tions in the ontology presented herein are only one of the pos-
sible solutions for addressing and describing behaviors and 
their relations with UIs. Despite being based on well-known 
languages such as MBUI, UsiXML and SCXML besides being 
provided ready to use for a new development project, we con-
sider that the ontology might evolve to include other behaviors, 
concepts and relationships that could be eventually more repre-
sentative for some contexts of development. It could be made 
through the use of direct imports in the ontology or simply 
adding new more expressive behaviors to the Object Property 
“behaviors” and linking them to the appropriate set of Interac-
tive Elements. 

Finally, when representing the various Interaction Elements 
that can attend a given behavior, the ontology also allows ex-
tending multiple design solutions for the UI, representing ex-
actly the same requirement in different perspectives. Thus even 
if a Dropdown List has been chosen to attend for example a 
behavior setInTheField in a Prototype, an Auto Complete field 
could be chosen to attend this behavior on the Final UI, once 
both UI elements share the same ontological property for this 
behavior under testing. This kind of flexibility makes tests 
pass, leaving the designer free for choosing the best solutions 
in a given time of the project, without modifying the behavior 
specified for the system. 

V. CONCLUSION

In this paper we have presented a behavior-based ontology 
aiming at test automation that can help to validate functional 
requirements when building interactive systems. The proposed 
ontology acts as a base of common vocabulary articulated to 
map user’s behaviors to Interaction Elements in the UI which 
allows us to automate tests. The ontology also provides im-
portant improvements in the way teams should write require-
ments for testing purposes. Once described in the ontology, 
behaviors can be freely reused to write new Scenarios in natu-
ral language, providing test automation with little effort from 
the development team. Moreover, it allows specifying tests in a 
generic way that can be reused along the development process. 
For that reason, we are also investigating the use of the ontolo-
gy to test model-based artifacts such as low-fidelity Prototypes 
and Task Models. Tests in these artifacts could be conducted 
through a static verification of their source codes and would 
help to integrate testing in a wider spectrum of artifacts com-
monly used to build interactive systems. 

We have also presented tools that demonstrate how this on-
tology can support testing of interactive systems. So far, only 

interactive Prototypes built in PANDA can be tested by the 
ontology once it requires that tools are able to read and support 
the set of described behaviors. On the other hand, tests in Web 
Final UIs can run independently of the frameworks used to 
build these UIs. It is possible because tests provided by our tool 
assess the concrete UI elements found on the interface in the 
final HTML page. 

A. Future Works

We envision a set of future works in this theme including
experiments to evaluate the acceptance of the approach in a 
case study with users, especially when manipulating more 
complex behaviors in real cases of software development. It 
would be useful to collect data about the effectiveness and the 
workload when specifying tests using the ontology. Other case 
studies including mobile platforms are planned as well. 

Future discussions might also consider having ontologies as 
knowledge bases, keeping specific behaviors for specific 
groups of business models in domain ontologies. It would al-
low us to also reuse entire business Scenarios in systems shar-
ing similar business models. 
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