
HAL Id: hal-02138443
https://hal.science/hal-02138443

Submitted on 3 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web Augmentation as a Promising Technology for End
User Development

Iñigo Aldalur, Marco Winckler, Oscar Díaz, Philippe Palanque

To cite this version:
Iñigo Aldalur, Marco Winckler, Oscar Díaz, Philippe Palanque. Web Augmentation as a Promising
Technology for End User Development. Fabio Paternò; Volker Wulf. New Perspectives in End-User
Development, Springer, pp.433-459, 2017, 978-3-319-60290-5. �10.1007/978-3-319-60291-2_17�. �hal-
02138443�

https://hal.science/hal-02138443
https://hal.archives-ouvertes.fr

1

 Web Augmentation as a Promising Technology for End

User Development

Iñigo Aldalur*, Marco Winckler§, Oscar Díaz* & Philippe Palanque§
*University of the Basque Country (UPV/EHU), San Sebastián (Spain)

{inigo.aldalur, oscar.diaz}@ehu.eus

§ICS-IRIT, University of Toulouse, Toulouse (France)

{winckler, palanque}@irit.fr

Abstract: This chapter presents Web Augmentation (WA) technologies as tools and techniques for

end-user development. WA technologies differ from other web development technologies as they

target at improving existing Web pages and not at creating new Web sites. These improvements can

deeply alter the way users use and interact with Web sites. This chapter revisits the concept of WA

and provides an overview of the main features that characterize WA technologies. This

characterization is used to position and compare the various contributions that have been made in

WA. To make things more concrete we provide an illustration of WA technology through a case

study using a dedicated tool called WebMakeup. Despite all their advantages, WA technologies

present some limitations that might result in challenges on the user side. These aspects are also

presented and discussed, highlighting directions for future work in that domain.

Keywords: End-User Development, Web Augmentation, Web Adaptation,

1. Introduction
Nowadays, many applications which, formerly, would have been designed for the desktop such as

calendars, travel reservation systems, purchasing systems, library card catalogs, maps viewers or

even games have made the transition to the Web, largely successfully. Many Web sites are created

every day to help users to find information and/or to provide services they need. However, there are

cases where rather than a new Web site, what users need is to combine information or services that

are already available but scattered on the WWW. Some examples follow: (1) users who want to

have additional links on a Web page to improve the navigation (for example to create a personalized

menu that gathers in one location multiple personal interests), (2) users who need to integrate

contents from diverse Web sites (for example to include a Google’s map into a Web page that

originally only shows addresses as flat text) in order to improve their performance in identifying

distance from their personal location or (3) simply to remove content from Web pages (such as

contact details they consider irrelevant) to improve reading and selection performance as identified

by Hick’s law [43]. Because these needs might be perceived as idiosyncratic, volatile (being short-

lived or occasional) or dissenting with the interests of the Web site, they might well not be

considered (or even not known) by Web developers [33]. This is because Web sites are, by

definition, designed for the masses and that at design time only few users are available.

Previous work on End-User Development (EUD) [48][54] has demonstrated that, if appropriate

tools are provided, end users might be able to create what they need (or at least define more

precisely part of what they need). DENIM is a pioneer example that illustrates how tools can be

used for involving users into the design of the Web sites to be developed [58]. A more demanding

scenario is when the target is not in-home Web sites but Web pages that have already been created

by third parties. The options are here, either to redevelop what has already been done by the third

party or to try to convince the third party to tune its development to fit a particular user need. This

deeply collides with the principle of Web development that target the masses and not the individual.

2

The term Web Augmentation (WA) is used to describe tools that can be used to improve (hence the

word “augment”) existing Web pages (found for instance whilst browsing the Web) to create better

fit user’s needs and activities. Some of the most popular WA tools work by extending the

functionalities of the Web browser used by the user via plug-ins that can run client-side scripts to

manipulate the structure of Web pages loaded in the browser. In that case the augmentation will be

applied to all the visited Web page featuring specific characteristics. The potential of WA

techniques can be illustrated by some advanced applications such as lightweight integration of

information extracted from the Web, context-sensitive navigation across diverse Web site, context-

dependent multimodal adaptation [36] or refactoring Web sites for accessibility [35]. Another

example is a spellchecking plug-in that would automatically check the text entered by the user on

any Web page. The degree of expertise required for using WA tools varies dramatically [42]. For

example, some tools only require basic knowledge of how to install plug-ins in the Web browsers

while others may require integrating sophisticated scripting code created by the user.

In this chapter, we examine the potential of WA technology for supporting end-user development

for the Web. In section 2, we discuss the relationship between WA and end-user development.

Section 3, proposes a classification of WA technologies, positions existing tools with respect to this

classification and provides a study of research contributions for each main category of the

classification. To make things concrete, section 4 illustrates how the WebMakeup WA tool relates

to the classification using a case study based on augmentation of the dblp computer science

researchers’ publications repository. In section 5, we explain some of the users and usage

difficulties specific to the adaptation of Web applications. Section 6 concludes the paper and

highlights possible directions for future work.

2. Web Augmentation and End-User Development
Web Augmentation (WA) is not End-User Development (EUD) for the Web but some of the

features provided by WA tools can be used for that purpose. To highlight similarities and

differences, we revisit their definitions.

Many authors have tried to define precisely the term end-user programming [13][74]. In this

chapter, we adhere to the definition provided by Ko et al. [50] who state that “end-user

programming is programming to achieve the result of program primarily for personal, rather than

public use”. That definition has many implications. First, it is important to note the absence of any

reference to an application domain and/or technology highlighting the large scope for the use of

EUD tools. Next, the term “programming” refers to a general activity, which might encompass the

development of software from scratch and/or making modification to an existing software. Finally,

the term “end-user” does not refer to the user’s skills in so for as a professional developer is

engaged in end-user programming when writing code to fulfill a personal need, such as visualize the

data structure to help diagnose a bug. Moreover, even if the definition implies a particular intention

behind the development of the program, it does not exclude the possibility of sharing the program

with other users.

There are fewer attempts to define precisely the term Web Augmentation. This term was originally

coined by Bouvin in 1999 [11] to describe a tool that “through integration with a Web browser, a

HTTP proxy or a Web server adds content or controls not contained within the Web pages

themselves to the effect of allowing structure to be added to the Web page directly or indirectly, or

to navigate such structure. The purpose of such a tool is help users organize, associate, or structure

information found on the Web. This activity may be done by a single user or in collaboration with

others”. More recently, Díaz [24] said that “WA is to the Web what Augmented Reality is to the

physical world: layering relevant content/layout/navigation over the existing Web to customize the

user experience”. These definitions highlight WA as a non-intrusive approach: augmentations are

“layers” on top of an existing content. These augmentation layers might be needed to cater for

situational and idiosyncratic needs, difficult for designers to foresee. Technically, augmentations do

3

not need the participation of the Web sites used for the augmentation since the augmentation occurs

on the Web browser. Web augmentation technology only acts on the user interaction and does not

change the original Web page stored on the Web server. It is interesting to note that whilst Bouvin

does not assign any particular intention for the use of WA tools, Díaz explicitly mentions that

augmentation layers might aim at improving the user experience with the Web page.

For our purposes, WA describes tools that allow people to modify Web pages to improve user

performance and satisfaction. This definition connects WA to EUD as EUD “is programming to

achieve the result of program primarily for personal, rather than public use”. Indeed, WA realizes

this vision in the web sphere as far as it helps to support users’ needs that have not been originally

been identified or taken into account during the design of the Web site.

3. Overview of EUD tools for the Web
The evolution of Web technology is changing the way users interact with Web sites. At first, users

could only consume contents provided by Web sites. Later, users could actively contribute with

content by using tools such as CMS and wikis. More recently, WA tools empower people in

different ways making these tools real EUD tools: (1) to create their own web sites, (2) to combine

information from diverse Web sites into a single hub (using mashups), and even (3) to modify Web

pages created by others (using WA tools e.g. MADCOW [10] and DiLAS [3]). This highlights the

broad range of approaches that Web-centered EUD tools explore. Figure 1 introduces a set of

dimensions to classify these tools while the positioning of existing tools with respect to this

classification is shown in Table 1.

Figure 1. Five EUD features of WA tools and their attributes

Tools Year Type

Architecture Subject of
adaptation

Web site
Integration

Collaboration
features

Programing Paradigm Ref.

C S P Co Be Pr

Marmite 2007 M C Co Combination Personal use Visual program. [73]

MARGMASH 2007 WA C Co Combination Personal use By demonstration [25]

CoScripter 2008 M C Co Be Singleton Collaborative dev. By demonstration [53]

Reform 2009 WA C Co Combination Personal use By demonstration [69]

SemanticWebPipes 2009 M S Co Combination Sharing Visual program. [61]

Mashroom 2009 M C Co Combination Personal use Spreadsheets [71]

Deep 2010 M C Co Pr Combination Personal use By demonstration [41]

MashSheet 2010 M C Co Combination Collaborative dev. Spreadsheets [44][45]

Atomate 2010 M C Co Combination Collaborative dev. Model-based [49]

RUMU 2010 WA S Co Pr Singleton Personal use Visual program. [62]

CSN framework 2011 WA C Co Be Combination Sharing By demonstration [31]

4

OntoCompo 2011 M C Co Be Singleton Personal use Model-based [12]

Mixer 2011 WA C Co Combination Sharing By demonstration [34]

IVO 2011 M C S Co Be Singleton Sharing By demonstration [65]

MashupEditor 2011 M P Co Combination Sharing By demonstration [37][38]

DashMash 2011 M C/S Co Be Combination Personal use Visual program. [14][16]

MAIDL 2011 M C/S Co Combination Personal use By demonstration [17]

VisPro 2011 M C/S Co Be Combination Personal use Visual program. [9]

SOA4All Studio 2011 M C/S Co Be Combination Sharing Visual program. [70]

Cowpath 2012 WA C Be Combination Sharing DSL [26]

WebCrystal 2012 WA C Co Pr Combination Personal use By demonstration [19]

Baya 2012 M C Co Combination Sharing Visual program. [20][22]

ResEval Mash 2012 M C/S Co Combination Sharing Visual program. [47]

CrowdDesign 2012 M C/S Co Be Combination Sharing Visual program. [57]

Chudnoskyy et al. 2012 M C Co Combination Sharing Visual program. [21]

MOWA 2013 WA C Co Combination Sharing Model-based [18]

Sticklet 2013 WA C Co Combination Sharing DSL [7][24]

Social Overlays 2013 WA C Co Pr Singleton Sharing Visual program. [27]

openHTML 2013 WA S Co Pr Singleton Collaborative dev. By demonstration [60]

Ardito et al. (a) 2013 M S Co Pr Combination Sharing Visual program. [4]

MobiMash 2013 M S Co Be Combination Personal use Visual program. [15]

DireWolf 2013 M S Co Be Combination Collaborative dev. Visual program. [51]

Rana et al. 2013 M S Co Combination Personal use Visual program. [64]

CapView 2013 M S Co Be Combination Personal use Visual program. [63]

WebMakeup 2014 WA C Co Be Pr Combination Sharing Visual program. [23]

CrowdMock 2014 WA C Co Be Combination Collaborative dev. Visual program. [29]

Ardito et al. (b) 2014 M S Co Combination Sharing Visual program. [5][6]

MultiMasher 2014 M S Co Combination Sharing Visual program. [46]

NaturalMash 2014 M C S Co Combination Sharing By demonstration [2]

SmartComposition 2014 M C S Co Combination Sharing Model-based [52]

Tayeh et al. 2014 WA C Co Singleton Personal use Visual program. [67][68]

FaceMashup 2015 M S Co Singleton Personal use Visual program. [55]

IWC 2015 M S Co Be Combination Sharing By demonstration [59]

MAMSAAS 2015 M S Co Combination Sharing Visual program. [72]

EasyApp 2016 M C S Co Be Combination Personal use Visual program. [75]

MOWA/WOA 2016 WA C Co Be Pr Combination Collaborative dev. By demonstration [8][28]

Miján et al. 2016 WA C Co Be Singleton Sharing Visual program. [56]

Legend: M: Mashup, WA: WA | C: client side, S: server side, C/S: both client and server sides, P: proxy | Co: content, Be: behavior, Pr: presentation |
DSL: domain specific language|

Table 1. EUD tools for the Web positioned with respect to the classification in Figure 1.

Although the focus is on WA tools, we also introduce mashup tools because this provides some

elements of comparison between the existing approaches for EUP of the Web.

Mashup technology is an interesting alternative for final users to combine existing resources and

services in a new Web application [1]. Mashups are often very specialized and only operate with

specific types of contents (quite often structured data sources). For example, FaceMashup [55] is a

EUD tool for mashup that allows users to manipulate social network APIs to combine data and

sharing them with other users through the social networks. It is interesting to notice that some WA

tools such as CSN Framework [31] borrow from mashups the ability to integrate contents but they

are even more flexible allowing to compose any kind of DOM element from a Web page.

Tool wise, Figure 2 highlights how mashups (66%) have received more attention throughout w.r.t.

WA tools (34%). This seems to suggest that integrating different data sources is being considered

more important than customizing existing Web sites. Though this might be true in a general sense,

when it comes to empowering end-users, data integration might be more costly and hence, more

difficult to end users to achieve. By contrast, WA is not so demanding, and hence more affordable

to end-users. This makes WA tools more likely to be adopted by end users.

5

Figure 2. Contributions presenting tools: Mashup versus WA technology

The rest of this section explains the classification presented in Figure 1 and provides examples of

the corresponding Web technology.

3.1 Architecture

Tools might rest on the client side, the server side or both. Client-side tools are executed as Web

browsers’ extensions (or plug-ins) and processing happens on the user’s local computer. Common

programming languages used to implement client-side applications include HTML, CSS, and

Javascript. Conversely, server side technology runs on a remote machine, and only the outcome of

the execution returns to the user's local computer. Common programming languages include Ruby,

Python, PHP, C#... Server side technologies can store persistent data. However, data can only be

accessed than through HTTP requests for a particular URL.

Miján et al. [56] and WebCrystal [19] illustrate the client-side approach. WebCrystal is a Firefox

plug-in that allows the inspection of code corresponding to visual objects. WebCrystal provides

users feedback using a textual description and a customized code snippet that can be copied-and-

pasted to rebuild the user-selected properties. Additionally, Miján et al. resort to a set of

personalization rules to be applied in the client-side with minimum alterations defined without

requiring either advanced programming skills or advanced configuration.

Whilst Web browsers can store data in the local cache, server-side technology is used by many tools

such as DireWolf [51], FaceMashup [55], Ardito et al. [4] and MultiMasher [46] as a means to

support data persistence. DireWolf provides several extensible components for adapting Web sites

and it implements a service for data persistence such as user device profiles and shared application

states.

As for client-server tools, most requests a kept in the client with sporadic calls to the server. For

example, DashMash [16] has a client-side module for mashup creation and a server module

responsible for integrating and storing data from different types of services. In the mobile world,

IVO [65] follows a similar architecture. For mashups, MashupEditor [37][38] allows for adaptations

to be created on the client (using a dedicated editor). Next, a proxy server store those adaptations

that can be later reused during the creation of the mashup.

6

Figure 3. Distribution over the years of tools and what part of the Web architectures they were exploiting

From the accumulated results in Figure 3, it is clear that the client-side approach is the most popular

architecture (49%). The Client-server option (21%) boosted in 2011, presumably due to the

popularity of the Web 2.0 and the focus on sharing and the need to have common repositories. The

server-side option (28%) rose from 2013 onwards, arguably on the search for a business model for

mashup platforms.

3.2 Subject of adaptation

Web sites might be adapted in different ways: including brand-new content, changing the behavior

associated to DOM elements or altering the appearance (style and layout). Most tools provide

functions to add/remove/replace contents. Adding content from other sources is often used as a

means for making information readily available whilst removing content is useful to improve focus,

preventing users from distraction. Mixer resorts to WA to improve the organization of Web pages

simply by letting users to move contents around and include/exclude contents needed. Mashups are

also used to add content from different websites. SmartComposition [52] is another content-based

approach that is primarily used to build mashups but it also features unique functions that allow to

reorganize contents to fit into different screen sizes. Chudnoskyy et al. [21] take a step forward by

assisting users with recommendations and automatic composition.

Whilst modifying CSS code (color, font, etc.) is relatively simple, few tools account for this kind of

adaptation. RUMU [62] is a web-based WYSIWYG editor that resorts to a semantic language to

change the page style and simplifying web design. OpenHTML [60] is also a web editor to

introduce laymen into HTML and CSS.

Finally, changing the behavior of Web sites is far from trivial. It often requires adding some

Javascript code to DOM elements like show or hide web nodes, click on certain button, change the

content of an element, etc. Changing the behavior of web sites might be necessary, for example, for

automating repetitive tasks. Inter-Widget Communication (IWC) [59] is a semi-automatic, end-user

friendly approach to extend widgets employing the programming-by-demonstration paradigm. IWC

7

is built by composing interactive widgets. IWC leaves users with the tedious task of manual wiring

widgets to create mashups. SOA4All [70] is a visual development environment that addresses

adaptation of Web applications through the connection of different service components into an

assembly line.

3.3 Web site integration

This dimension tells if users work with one (singleton) or more (combination of) Web sites in a

single project. Whilst many EUD tools are designed to augment a particular type of singleton Web

site (e.g. OpenHTML), some tools allow to mix content from diverse Web sites.

Mashups tools like Baya [20], Deep [41], MamSaas [72] and Marmite [73] are typical examples of

tools that allow to extract data from different Web sites and recombine them in a form that better

fulfill user’s needs. Nonetheless, other strategies combine Web sites that don’t necessarily involve

structured data sets. For example, Ardito et al. [6] is a platform for end users to compose personal

information spaces by assembling pieces of information from different sources. Such personal

information spaces can be enacted in different devices and shared with other users. MamSaas is a

layered architecture to deploy and identify mashup components as well as link and execute mashups

for quick application development. MOWA [8] is another EUD tool for WA that enables end users

to create a custom guided tour of a city based on contents collected from diverse Web sites. Its aim

is to augment existing Web applications with mobile features. Using MOWA end users can pinpoint

in a map content from a different Web site and then generate a custom script. This mobile Web

application prompts the users add points of their interests while they move around the city.

Finally, CrowdDesign [57] can also be classified as a EUD tool in so far as it supports mashup

based on the integration of scripts coming from diverse sources. CrowdDesign works as a storage

for scripts and user interface components shared by a community of developers. CrowdDesign also

features a visual authoring environment that allows users to combine contents and scripts available

at the platform to create a more personal version of Web sites.

3.4 Collaborative features

Whilst a WA strategy can be adopted only for personal purposes, sharing is an important aspect of

end-user development [54][66]. We distinguish between sharing and collaborative development.

Sharing. Some tools focus on personal use, i.e. results cannot be reused and/or shared with other

users. Tayeh et al. [68] is a case in point. These authors provide a tool for the linking and the

integration of arbitrary documents and multimedia content dynamically. Rana et al. [64] and

EasyApp [75] are also tools for personal use. Both tools provide a systematic way of designing,

developing and deploying personalized apps. Reform is a Firefox extension that contributes with

architecture for web enhancement that allows end users to integrate existing enhancements with

new websites. Despite the fact that it allows end users to communicate with developers for

requesting new features, they do not allow sharing developments. CapView [63] is a mashup

platform that provides instant feedback for user development actions. CapView helps non-

programmers form components with recommendations provided by the system and it manipulates a

mashup through visually composing component features.

Moving away for the personal realm, Social Overlays [27] and the CSN framework [31] illustrate

the use of repositories for script sharing. Social Overlays focuses on repairing either the behavior or

the appearance of Web sites. Updates made by individuals are visible to the community which use a

voting mechanism to decide if the updates are relevant and if so, be incorporated as part of the Web

site offerings. CSN features a plug-in that allows users to adapt Web pages by triggering different

types of scripts. It has different features depending on the user profile: developer or end user.

Developers can write new augmentation scripts to extend the set of original sets of scripts available

in the framework. Such scripts can then be obtained by other users who on their turn can execute

8

them to adapt the Web sites. Finally, it is interesting to notice that a few tools allow to publish the

code in social networks (e.g. Sticklet [7][24]) whilst others allow to export files for personal use on

an individual basis (e.g. WebMakeup).

Collaborative development. CrowdMock [29] does not provide a voting mechanism but it permits

to amend/complete augmentation script by people other than the author. CoScripter [53] resorts to

programming by demonstration to enable users to record all the information related to user

interaction to edit a Website. The outcome is a script macro that can be automatically stored in a

Web server from where they can be delivered to other users and they can use a collaborative

scripting environment for recording, automating, and sharing web-based processes.

Figure 4. Mapping WA tools and Mashups across “Collaboration features” and “Subject of adaptation”

Figure 4 helps to apprehend differences and similitudes between WA and mashups as for

“collaboration features” and “subject of adaptation” support. As for the former, both scenarios (i.e.

WA and mashups) pay attention to the idiosyncratic scenario (“Personal use”), while the potential

of reuse (i.e. sharing) is felt to be more intensive for mashups than for WA developments. Also,

mashups and WA coincide in their interest in handling content (31 vs. 15) while WA underscores in

addressing presentation concerns (2 vs. 6). This is according to expectations since WA adapts

existing web sites whose presentation might need to be tuned to better meet users’ needs. By

contrast, behavior modification has received more attention in the mashup realm.

3.5 Programming paradigm

EUD tools resort to diverse programming paradigm: visual languages, spreadsheets, programming

by demonstration, domain specific languages (DSL) and model-based automation [1].

Visual programming is mainly found in mashup tools that allow drag-and-drop to connect

components to create a mashup. Examples include VisPro [9], ResEval Mash [47], MobiMash [15],

SemanticWeb Pipes [61] and WebMakeup [7][23]. VisPro creates mashups by dragging and

dropping widgets from a library. ResEval Mash is a domain-specific mashup tool that explores

dedicated mashuping, in this case in the domain of research evaluation. MobiMash resorts to visual

notations to create mobile mashups. The particularity of SemanticWeb Pipes is to blend mashups

and the Semantic Web. Here, ontologies are used for better matching widgets parameters that build

up the mashup. WebMakeup is an editor that delivers Chrome plugs-in for augmentation purposes.

A DSL is defined that sets the expressiveness of the augmentation. WebMakeup helps construct

DSL expressions on top of the page being augmented. Once constructed, WebMakeup generates

and installs the corresponding Chrome extension.

9

Programming by demonstration is most popular for data extraction and visualization, where service

composition and orchestration play an ancillary role. NaturalMash [52], WOA [28], Margmash [25]

and MAIDL [17] illustrate this approach

NaturalMash is a WYSIWYG mashup tool. NaturalMash stands out for its formative support where

the tool is able to collect user feedback. WOA enables users to create/extract Web contents in the

form of objects that they can manipulate to create Personal Web experiences. Margmash creates

augmentations out of personalized information, which are gathered from diverse Web sites.

Margmash behaves as a lightweight wrapper that guides end users on both data gathering and data

recombination. MAIDL permits the rapid creation of mobile mashup out of components.

Model-based Automation is concerned with the automatic creation of mashups out of knowledge

about the user and the context of use. This technique’s weakness is the risk of generating irrelevant

mashups w.r.t. the given requirements. Ontocompo [12] and Atomate [49] illustrate this approach.

Ontocompo makes use of an ontology to generate new applications based on existing ones. Atomate

is a personal information assistant engine that automatically carries out tasks for the user. Atomate

combine RSS/ATOM feeds from social networking into a simple RDF model representing people,

places and things.

DSLs strive to abstract from general-purpose programming language. The challenge here is to find

a compromise between expressiveness and learnability. DSLs in the augmentation realm can be

illustrated by Cowpath [26] and Sticklet [24]. Cowpath focuses on “Web trails”, i.e. recurring

navigation paths across distinct Web sites. Rather than switching between tabs and typing once and

again the same URLs, Cowpath augments the affected websites with additional hyperlinks that

“pave the way” of these Web trails. On the other hand, Sticklet explores the use of a dedicated

assistant that help users to come with Sticklet expressions to augment Web sites.

Spreadsheets-like programming are often considered ease-of-use, intuitive and with enough

expressive power to represent and manage complex data. When it comes to mashups, Mashroom

[71] and MashSheet [44][45] explore this approach. Mashroom builds Web applications by

combining content coming from different Web sites. To this end, it resorts to an expressive data

structure and a set of defined mashup operators. The data structure allows users to express complex

data objects while mashup operators are visualized in the formula bar. MashSheet extends

conventional spreadsheet paradigms to facilitate Web services “mashup” in a spreadsheet

environment. MashSheet is a collection of operators that supports orchestrating Web services,

manipulating and visualizing data created by the services.

Figure 5 depicts the distribution of research contributions with respect to the “programming

paradigm” feature over the years. Visual programming is by far the most popular approach (53%),

where the other approaches fall behind: programming by demonstration (30%), Model-based (9%),

DSL (4%) and spreadsheets (4%). Worth mentioning, the boost of programming-by-demonstration

in 2011 although it faded over the years.

10

Figure 5. “Programming paradigm” in research contributions over the years

4. Web Augmentation: a case study with WebMakeup
This section illustrates WA at work using WebMakeup [23]. This tool supports the modification of

the content, the presentation, and the behavior of Web pages. Moreover, it also supports the

integration of dynamic content from other web sites. So far, WebMakeup only work for the Chrome

browser. A video is available at https://vimeo.com/204338864.

4.1 Architecture

WebMakeup is a plug-in freely available at the Chrome Web Store1. Once installed, it can be

activated at any time by selecting the icon in the top-right side of the address bar as shown by

Figure 6.a. By selecting the option “New” from the pop-up menu, two vertically aligned tabs called

“Piggy Bank” and “Patterns” appear (see Figure 6.b).

a) Launching WebMakeup to create a new augmentation layer on top of DBLP.

1 Available at: https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

11

b) Tab menus vertically aligned at right-side (collapsed)

Figure 6. WebMakeup main menus.

WebMakeup is a client-side application developed using JavaScript. Scripts created by the user are

stored in the Web browser, so persistence can be ensured as far as the user does not clear the local

cache.

4.2 Subject of adaptation

WebMakeup allows users to modify the contents, the presentation and the behavior of existing Web

pages through the manipulation of the DOM elements that conform the Web page. Only after

selecting a DOM element, it is possible to manipulate it: remove, re-arrange or change its behavior.

4.2.1 Selecting DOM elements in a Web page

As shown in Figure 7 WebMakeup highlights the underlying DOM through two visual elements: the

pointer, which becomes a small camera, and the background color, which is turned into green. By

clicking on the green zone, the corresponding DOM element is selected and transformed into a

widget. Widgets are framed by “decorators”, i.e. frames that include three button (see Figure 7.b):

the red-circle button removes the DOM element at hand; the green-circle button changes the

visibility of the DOM element from hide to show, and vice versa; finally, the yellow-circle button

unselects the DOM element, removing the decorator frame..

a) Selection of DOM elements using mouse over operation on a Web page.

12

b) DOM element selected (after click) showing options for inspecting it.

Figure 7. Selection of the DOM element using WebMakeup.

In this way, users can remove elements from Web pages to accomplish diverse personalization

needs. For example, removing short papers from the DBLP page might help highlight other types of

publications. However, the red-circle button (see Figure 7.b) only removes the corresponding DOM

element from the current session. For changes to become permanent (i.e. enforceable in future visits

to the DBLP Web site), users should “deploy” the WebMakeup script by clicking on the namesake

option in the scrollable menu (third item at Figure 6.a).

4.2.2 Re-arranging contents around the Web page

Another way to highlight content is to place it in a more suitable position. Figure 8 provides an

example. Here, the DOM elements accounting for the coauthor index is moved upwards from the

bottom section of the page. This operation is achieved by selecting the corresponding DOM node

(see Figure 8.a), click on the MOVE legend and next drag & drop to the new position (see the

resulting page at Figure 8.b). The new position might prevent scrolling for users that mind co-

authors.

a) Initial position of the co-author index.

b) Final position of the co-author index.

Figure 8. Moving DOM elements around the Web page using WebMakeup.

13

4.2.3 Creating new behaviors

WebMakeup allows supporting new behaviors (e.g. setting blink relationships between DOM

elements). As an example, consider the Amazon page of the book “A Game of Thrones”. Two

widgets are created after two DOM nodes: the title DOM and a widget with information of the book

price and how it can be bought. Both widgets joined through the yellow point from the triggering

widget to the triggered widget (see Figure 9.a). It is possible to choose which event (ex. click,

doubleclick and mouseEnter) will trigger the show/hide behavior. At the end, the user can decide if

the current book will be bought and clicking on the triggering element (the book title), the triggered

widget will show the desired information (see Figure 9.b). Clicking on the book title again, the

triggered element will be hidden.

a) Associating between widgets.

b) Resulting web site after deploying the adaptation.

Figure 9. Behavior definition in WebMakeup joining different widgets with wires

4.4 Collaborative features

WebMakeup scripts are stored locally in the Web browser. WebMakeup does not support

collaborative development. Nonetheless, users can export scripts into a file and next share them

through email or other means. Consumers should have WebMakeup installed and use the “import”

option (Figure 6.a). Also in the scrollable menu, the entry “CarryOn” permits consumers to tune

imported scripts to their own likes.

4.5 Programming paradigm

WebMakeup does not require users to write a single line of code to modify Web pages. All

14

programming is achieved through selecting DOM elements and interacting with widget decorators.

For that, WebMakeup is classified as visual programming. Figure 10 highlight this and other EUD

features of WebMakeup, w.r.t. those presented at Figure 1, by shadowing those not covered.

Figure 10. Summary of WebMakeup with respect to the classification presented in Figure 1.

5. User and usage challenges with WA tools
Each tool cited in this chapter has its own idiosyncrasies and their use will reveal very specific

challenges. But beyond the use of a particular tool, WA challenges users to revise what they know

about the web and how to program applications. When it comes to WA, users should be aware of a

number of aspects, namely:

 WA is mainly a browser-based technology. Regardless of the technology employed to store and

run the augmentation scripts, the adaptation only affects how a web site is displayed in the

user’s personal machine. Users must understand that their adaptation is personal and that will

not be visible by other visitors of the same web site.

 WA is mainly a single browse technology. Changes performed by the user will only occur on

the browser where the augmentation has been performed. The same user performing the same

actions on another computer will not see the augmentation. It thus requires replication of the

augmentation multiple times if the users are using multiple execution platforms (e.g. desktop

computers, smartphones.

 Similar to other EUD technologies, WA require the adaption of the code produced by someone

else. This has multiple implications for assessing the code of Web pages before to adapt them

[39][40].

 WA is constricted within the DOM hierarchy. Users should be aware of manipulation of DOM

elements imposes a certain order of access to contents. For instance, elements might appear

visually together but be arranged in separated DOM nodes. This might imply having different

ancestors. This, in turn, prevents these “alongside elements” from being selected as a single

DOM element. This constrain is imposed by the DOM element hierarchy [8]. Notice that the

DOM hierarchy itself does not need to be made visible but manipulated through metaphors and

witty interactive tools. But no matter the tool, it is constricted within the DOM hierarchy

 WA is fragile upon Web-site upgrades. Web sites evolve overtime and with the evolution of a

web site some elements resulting from the augmentations may disappear and/or be replaced by

other elements that directly affect the way WA scripts operate. Thus, whilst some scripts will be

resilient to maintenance of web sites, other scripts will stop working once a Web site is

upgraded. This makes the use of WA a more suitable technique when user’s needs are volatile

[33]. WebMakeup illustrates the feasibility of having dynamic updates for contents but the

bindings between WA scripts and the web site remain fragile and prone to become obsolete

15

when the underlying web site evolves. This a major challenge as, by definition, web

applications are meant to evolve. Beyond, as the users do not own the web application, the loss

of a web augmentation is not predictable.

 WA does not create brand-new applications but enhances existing ones. The inclusion of

contents from other web sites raises some pragmatic questions about the type of relationship

created between web sites [30]. The simplest approach is the clone&own of elements. This

implies that changes in the source element will not propagate to its clones. Alternatively, it is

also possible to keep a dynamic binding with the source element so that changes in the source

ripple throughout its clones.

6. Conclusion
This chapter has presented the principles behind Web Augmentation and highlighted how this

technology shares multiple similar objectives as End User Development. Indeed, as it allows users

to recycle, reuse and exploit material that can be obtained from other web sites it supports the

construction (by the end users themselves) of more usable and more adapted web application. One

of the biggest challenges is how treat dynamic states of Web applications, which means contents

that evolves over time. Whilst this remains an unsolved issue that should be addressed by future

research, it is possible to envisage various copy and paste strategies to address the problem.

In our study of WA tools, we have observed a prominence of tools that run exclusively on the client

side. This is not surprising as one of the advantages of using a client-side approach is the faster

execution that has a huge impact on the user performance while interacting with the web application

making it possible to provide immediate feedback to the users. Moreover, users do not need to

understand sever side functioning and to deal with complex installations on a remote web server

(for which they, most of the time, have no access rights). Whilst client-side approach is not a

panacea, we suggest that this is still a suitable strategy for giving end users more autonomy on the

scripts they want to develop.

As demonstrated in the chapter, there are multiple technologies for performing web augmentation.

We have presented some precise examples through the use of a particular tool called WebMakeup.

For sake of simplicity, we have only provided here simple examples that can be easily reproduced.

Nonetheless, we have demonstrated that using such simple adaptation of contents, behavior and

presentation, web sites can be profoundly modified to better fit with users’ needs.

Despite our efforts, it is important to note that none of the references provided refer to studies with

a large number of users. Because of that, we cannot measure the impact of such as a strategy on the

end-user community. Nonetheless, the tools we have presented are functional and a dedicated

community maintains most of them. We believe that these WA tools deserve more publicity and

that a wider and more systematic communication towards end users would deeply impact usability

of web application and, more generally, of the Web as a whole.

Acknowledgments.

This work is co-supported by the Spanish Ministry of Education, and the European Social Fund under

contract TIN2014-58131-R and the stay scholarship EEBB-I-16-11126. Aldalur has a doctoral grant from the

Spanish Ministry of Science & Education. This project is also supported by the STIC AmSud project

WAMAW-OUR.

References

1. Aghaee, S., and Pautasso, C. End-user programming for web mashups - open research

challenges. In Current Trends in Web Engineering - Workshops, Doctoral Symposium, and

Tutorials, Held at ICWE 2011, Paphos, Cyprus, June 20-21, 2011. Revised Selected Papers,

pages 347–351, 2011.

2. Aghaee, S., and Pautasso, C. End-user development of mashups with naturalmash. J. Vis. Lang.

Comput. 25, 4 (2014), 414–432.

16

3. Agosti, M., Albrechtsen, H., Ferro, N., Frommholz, I., Hansen, P., Orio, N., Panizzi, E.,

Pejtersen, A. M., and Thiel, U. DiLAS: a Digital Library Annotation Service. Proceedings of the

International Workshop on Annotation for Collaboration - Methods, Tools and Practices (IWAC

2005), La Sorbonne, Paris, France, November 23-24 2005, pages 91-101.

4. Ardito, C., Bottoni, P., Costabile, M. F., Desolda, G., Matera, M., Piccinno, A., and Picozzi, M.

Enabling end users to create, annotate and share personal information spaces. In End-User

Development - 4th International Symposium, IS-EUD 2013, Copenhagen, Denmark, June 10-

13, 2013. Proceedings (2013), pp. 40–55.

5. Ardito, C., Costabile, M. F., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., and Picozzi,

M. User-driven visual composition of service-based interactive spaces. J. Vis. Lang. Comput.

25, 4 (2014), 278–296.

6. Ardito, C., Costabile, M. F., Desolda, G., Latzina, M., and Matera, M. Hands-on actionable

mashups. In End-User Development - 5th International Symposium, IS-EUD 2015, Madrid,

Spain, May 26-29, 2015. Proceedings (2015), pp. 295–298.

7. Arellano, C., and Díaz, O. Lightweight end-user software sharing. In End- User Development -

4th International Symposium, IS-EUD 2013, Copenhagen, Denmark, June 10-13, 2013.

Proceedings (2013), pp. 241–246.

8. Bosetti, G., Firmenich, S., Rossi, G., and Winckler, M. Web Objects Ambient: an integrated

platform supporting new kinds of Personal Web experiences. In proceedings of the

International Conference of Web Engineering (ICWE 2016), Lugano, Switzerland, June 6-9,

2016. Proceedings. Lecture Notes in Computer Science 9671, Springer 2016, ISBN 978-3-319-

38790-1, pages 563-566.

9. Bottaro, A., Marino, E., Milicchio, F., Paoluzzi, A., Rosina, M., and Spini, F. Visual

programming of location-based services. In Human Interface and the Management of

Information. Interacting with Information – Symposium on Human Interface 2011, Held as Part

of HCI International 2011, Orlando, FL, USA, July 9-14, 2011, Proceedings, Part I (2011), pp.

3–12.

10. Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., and Trinchese, R. 2004. MADCOW: a

multimedia digital annotation system. In Proceedings of the working conference on Advanced

visual interfaces (AVI '04). ACM, New York, NY, USA, 55-62.

DOI=http://dx.doi.org/10.1145/989863.989870

11. Bouvin, N. O. Unifying Strategies for WA. In: Proc. of the 10th ACM Conference on Hypertext

and Hypermedia, 1999.

12. Brel, C., Dery-Pinna, A., Renevier-Gonin, P., and Riveill, M. Ontocompo: A tool to enhance

application composition. In Human-Computer Interaction - INTERACT 2011 - 13th IFIP TC 13

International Conference, Lisbon, Portugal, September 5-9, 2011, Proceedings, Part IV (2011),

pp. 588–591.

13. Burnett, Margaret M. and Scaffidi, Christopher (2011). End-User Development. In:

Encyclopedia of Human-Computer Interaction. Soegaard, Mads and Dam, Rikke Friis (eds.).

Available free online at http://www.interaction-design.org/encyclopedia/end-

user_development.html

14. Cappiello, C., Daniel, F., Matera, M., Picozzi, M., and Weiss, M. Enabling end user

development through mashups: Requirements, abstractions and innovation toolkits. In End-User

Development - Third International Symposium, IS-EUD 2011, Torre Canne (BR), Italy, June 7-

10, 2011. Proceedings (2011), pp. 9–24.

15. Cappiello, C., Matera, M., and Picozzi, M. End-user development of mobile mashups. In

Design, User Experience, and Usability. Web, Mobile, and Product Design - Second

International Conference, DUXU 2013, Held as Part of HCI International 2013, Las Vegas, NV,

USA, July 21-26, 2013, Proceedings, Part IV (2013), pp. 641–650.

16. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., and Francalanci, C.

Dashmash: A mashup environment for end user development. In Web Engineering - 11th

International Conference, ICWE 2011, Paphos, Cyprus, June 20-24, 2011 (2011), pp. 152–166.

17

17. Chaisatien, P., Prutsachainimmit, K., and Tokuda, T. Mobile mashup generator system for

cooperative applications of different mobile devices. In Web Engineering - 11th International

Conference, ICWE 2011, Paphos, Cyprus, June 20-24, 2011 (2011), pp. 182–197.

18. Challiol, C., Firmenich, S., Bosetti, G. A., Gordillo, S. E., and Rossi, G. Crowdsourcing mobile

web applications. In Current Trends in Web Engineering - ICWE 2013 International Workshops

ComposableWeb, QWE, MDWE, DMSSW, EMotions, CSE, SSN, and PhD Symposium,

Aalborg, Denmark, July 8-12, 2013. Revised Selected Papers (2013), pp. 223–237.

19. Chang, K. S., and Myers, B. A. Webcrystal: understanding and reusing examples in web

authoring. In CHI Conference on Human Factors in Computing Systems, CHI ’12, Austin, TX,

USA - May 05 - 10, 2012 (2012), pp. 3205–3214.

20. Chowdhury, S. R., Rodríguez, C., Daniel, F., and Casati, F. Baya: assisted mashup development

as a service. In Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon,

France, April 16-20, 2012 (Companion Volume) (2012), pp. 409–412.

21. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández- Villamor, J. I., Chepegin, V.

I., Fornas, J. A., Wilson, S., Kögler, C., and Chang, H. End-user-oriented telco mashups: the

OMELETTE approach. In Proceedings of the 21st World Wide Web Conference, WWW 2012,

Lyon, France, April 16-20, 2012 (Companion Volume) (2012), pp. 235–238.

22. Daniel, F., Rodríguez, C., Chowdhury, S. R., Nezhad, H. R. M., and Casati, F. Discovery and

reuse of composition knowledge for assisted mashup development. In Proceedings of the 21st

World Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion

Volume) (2012), pp. 493–494.

23. Díaz, O., Arellano, C., Aldalur, I., Medina, H., and Firmenich, S. End-user browser-side

modification of web pages. In Web Information Systems Engineering - WISE 2014 - 15th

International Conference, Thessaloniki, Greece, October 12-14, 2014, Proceedings, Part I

(2014), pp. 293–307.

24. Díaz, O., Arellano, C., and Azanza, M. A language for end-user WA: Caring for producers and

consumers alike. TWEB 7, 2 (2013), 9.

25. Díaz, O., Pérez, S., and Paz, I. Providing personalized mashups within the context of existing

web applications. In Web Information Systems Engineering WISE 2007, 8th International

Conference on Web Information Systems Engineering, Nancy, France, December 3-7, 2007,

Proceedings (2007), pp. 493–502.

26. Díaz, O., Sosa, J. D., Arellano, C., and Trujillo, S. Web-based tool integration: A WA approach.

In Web Engineering - 12th International Conference, ICWE 2012, Berlin, Germany, July 23-27,

2012. Proceedings (2012), pp. 431–434.

27. Dong, T., Ackerman, M. S., Newman, M. W., and Paruthi, G. Social overlays: Collectively

making websites more usable. In Human-Computer Interaction - INTERACT 2013 - 14th IFIP

TC 13 International Conference, Cape Town, South Africa, September 2-6, 2013, Proceedings,

Part IV (2013), pp. 280–297.

28. Firmenich, S., Bosetti, G., Rossi, G., Winckler, and M., Barbieri, T. Abstracting and structuring

web contents for supporting personal web experiences. In Web Engineering - 16th International

Conference, ICWE 2016, Lugano, Switzerland, June 6-9, 2016. Proceedings, pages 77–95,

2016.

29. Firmenich, D., Firmenich, S., Rivero, J. M., and Antonelli, L. A platform for WA requirements

specification. In Web Engineering, 14th International Conference, ICWE 2014, Toulouse,

France, July 1-4, 2014. Proceedings (2014), pp. 1–20.

30. Firmenich, D., Firmenich, S., Winckler, M., Rossi, G., Distante, D. User Interface Adaptation

Using WA Techniques: Towards a Negotiated Approach. International Conference on Web

Engineering 2015 (ICWE). LNCS vol:9114. p:147-164. Springer.

31. Firmenich, S., Winckler, M., and Rossi, G. A Framework for Concern-Sensitive, Client-Side

Adaptation. In Web Engineering - 11th International Conference, ICWE 2011, Paphos, Cyprus,

June 20-24, 2011. Springer, LNCS 6757, pages 198-213.

18

32. Firmenich, S., Winckler, M., Rossi, and G., Gordillo, S. (2011) A Crowdsourced Approach for

Concern-Sensitive Integration of Information across the Web. Journal of Web Engineering

(JWE). Rinton Press., Vol.10 No.4, December 2011, pages: 289-315.

33. Frajberg, D., Urbieta, M., Rossi, G., Schwinger, W. Volatile Functionality in Action: Methods,

Techniques and Assessment. In proceedings of the International Conference of Web

Engineering (ICWE 2016), Lugano, Switzerland, June 6-9, 2016. Proceedings. Lecture Notes in

Computer Science 9671, Springer 2016, ISBN 978-3-319-38790-1, pages 59-76.

34. Gardiner, S., Tomasic, A., Zimmerman, J., Aziz, R., and Rivard, K. Mixer: Mixed-initiative

data retrieval and integration by example. In Human-Computer Interaction - INTERACT 2011 -

13th IFIP TC 13 International Conference, Lisbon, Portugal, September 5-9, 2011, Proceedings,

Part I (2011), pp. 426–443.

35. Garrido, A., Firmenich, S., Rossi, G., Grigera, J., Medina-Medina, N., and Harari, I.

Personalized Web Accessibility using Client-Side Refactoring. IEEE Internet Computing 17(4):

58-66 (2013).

36. Ghiani, G., Manca, M., Paternò, F., and Porta, C. Beyond Responsive Design: Context-

Dependent Multimodal Augmentation of Web Applications. MobiWIS 2014, LNCS Volume

8640, pp. 71-85, Springer Verlag.

37. Ghiani, G., Paternò, F., and Spano, L. D. Creating mashups by direct manipulation of existing

web applications. In End-User Development – Third International Symposium, IS-EUD 2011,

Torre Canne (BR), Italy, June 7-10, 2011. Proceedings (2011), pp. 42–52.

38. Ghiani G., Paternò F., Spano L.D., and Pintori G., An environment for End-User Development

of Web mashups, International Journal of Human-Computer Studies Volume 87, March 2016,

Pages 38–64, Elsevier.

39. Gross, P. A., and Kelleher, C. Non-programmers identifying functionality in unfamiliar code:

strategies and barriers. J. Vis. Lang. Comput. 21, 5 (2010), 263–276.

40. Gross, P. A., Yang, J., and Kelleher, C. Dinah: an interface to assist nonprogrammers with

selecting program code causing graphical output. In Proceedings of the International Conference

on Human Factors in Computing Systems, CHI 2011, Vancouver, BC, Canada, May 7-12, 2011

(2011), pp. 3397–3400.

41. Guo, J., Han, H., and Tokuda, T. Towards flexible mashup of web applications based on

information extraction and transfer. In Web Information Systems Engineering - WISE 2010 -

11th International Conference, Hong Kong, China, December 12-14, 2010. Proceedings (2010),

pp. 602–615.

42. Han, H., and Tokuda, T. Towards flexible and lightweight integration of web applications by

end-user programming. IJWIS 6(4): 359-373 (2010).

43. Hick, W. E. (1952): On the rate of gain of information, Quarterly Journal of Experimental

Psychology, 4:1, 11-26. Also available at: http://dx.doi.org/10.1080/17470215208416600.

44. Hoang, D. D., Paik, H., and Benatallah, B. An analysis of spreadsheet based services mashup. In

Database Technologies 2010, Twenty-First Australasian Database Conference (ADC 2010),

Brisbane, Australia, 18-22 January, 2010, Proceedings (2010), pp. 141–150.

45. Hoang, D. D., Paik, H., and Dong, W. Mashsheet: Mashups in your spreadsheet. In Web

Information System Engineering - WISE 2011 - 12th International Conference, Sydney,

Australia, October 13-14, 2011. Proceedings (2011), pp. 332–333.

46. Husmann, M., Nebeling, M., Pongelli, S., and Norrie, M. C. Multimasher: Providing

architectural support and visual tools for multi-device mashups. In Web Information Systems

Engineering - WISE 2014 - 15th International Conference, Thessaloniki, Greece, October 12-

14, 2014, Proceedings, Part II (2014), pp. 199–214.

47. Imran, M., Soi, S., Kling, F., Daniel, F., Casati, F., and Marchese, M. On the systematic

development of domain-specific mashup tools for end users. In Web Engineering - 12th

International Conference, ICWE 2012, Berlin, Germany, July 23-27, 2012. Proceedings (2012),

pp. 291–298.

19

48. Iturrioz, J., Azpeitia, I., Díaz, O. Generalizing the "like" button: empowering websites with

monitoring capabilities. In Proceedings of the 29th Annual ACM Symposium on Applied

Computing (SAC '14). ACM, New York, NY, USA, 743-750.

49. Kleek, M. V., Moore, B., Karger, D. R., André, P., and m. c. schraefel. Atomate it! End-user

context-sensitive automation using heterogeneous information sources on the web. In

Proceedings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh,

North Carolina, USA, April 26-30, 2010 (2010), pp. 951–960.

50. Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C.,

Lawrance, J., Lieberman, H., Myers, B., Rosson, M. B., Rothermel, G., Shaw, M., Wiedenbeck,

S. 2011. The state of the art in end-user software engineering. ACM Comput. Surv. 43, 3,

Article 21 (April 2011), 44 pages.

51. Kovachev, D., Renzel, D., Nicolaescu, P., and Klamma, R. Direwolf - distributing and

migrating user interfaces for widget-based web applications. In Web Engineering - 13th

International Conference, ICWE 2013, Aalborg, Denmark, July 8-12, 2013. Proceedings (2013),

pp. 99–113.

52. Krug, M., Wiedemann, F., and Gaedke, M. Smartcomposition: A component based approach for

creating multi-screen mashups. In Web Engineering, 14th International Conference, ICWE

2014, Toulouse, France, July 1-4, 2014. Proceedings (2014), pp. 236–253.

53. Leshed, G., Haber, E. M., Matthews, T., and Lau, T. A. Coscripter: automating & sharing how-

to knowledge in the enterprise. In Proceedings of the 2008 Conference on Human Factors in

Computing Systems, CHI 2008, 2008, Florence, Italy, April 5-10, 2008 (2008), pp. 1719–1728.

54. Lieberman, H., Paterno, F., and Wulf, V. (eds.) End-User Development. Kluwer/Springer, 2005.

55. Massa, D., and Spano, L. D. Facemashup: Enabling end user development on social networks

data. In End-User Development - 5th International Symposium, IS-EUD 2015, Madrid, Spain,

May 26-29, 2015. Proceedings (2015), pp. 204–210.

56. Miján, J. L., Garrigós, I., Firmenich, I. Supporting personalization in legacy web sites through

client-side adaptation. In Web Engineering - 16th International Conference, ICWE 2016,

Lugano, Switzerland, June 6-9, 2016. Proceedings, pp. 588–592, 2016.

57. Nebeling, M., Leone, S., and Norrie, M. C. Crowdsourced web engineering and design. In Web

Engineering - 12th International Conference, ICWE 2012, Berlin, Germany, July 23-27, 2012.

Proceedings (2012), pp. 31–45.

58. Newman, M. W., Lin, J., Hong, J. I., & Landay, J. A. (2003). DENIM: An informal Web site

design tool inspired by observations of practice. Human—Computer Interaction, 18(3), 259-

324.

59. Nicolaescu, P., and Klamma, R. A methodology and tool support for widget based web

application development. In Engineering the Web in the Big Data Era - 15th International

Conference, ICWE 2015, Rotterdam, The Netherlands, June 23-26, 2015, Proceedings (2015),

pp. 515–532.

60. Park, T. H., Saxena, A., Jagannath, S., Wiedenbeck, S., and Forte, A. Openhtml: designing a

transitional web editor for novices. In 2013 ACM SIGCHI Conference on Human Factors in

Computing Systems, CHI ’13, Paris, France, April 27 - May 2, 2013, Extended Abstracts

(2013), pp. 1863–1868.

61. Phuoc, D. L., Polleres, A., Hauswirth, M., Tummarello, G., and Morbidoni, C. Rapid

prototyping of semantic mash-ups through semantic web pipes. In Proceedings of the 18th

International Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009

(2009), pp. 581–590.

62. Poley, E. RUMU editor: a non-wysiwyg web editor for non-technical users. In Proceedings of

the 28th International Conference on Human Factors in Computing Systems, CHI 2010,

Extended Abstracts Volume, Atlanta, Georgia, USA, April 10- 15, 2010 (2010), pp. 4357–4362.

63. Radeck, C., Blichmann, G., and Meißner, K. Capview – functionality aware visual mashup

development for non-programmers. In Web Engineering - 13th International Conference, ICWE

2013, Aalborg, Denmark, July 8-12, 2013. Proceedings (2013), pp. 140–155.

20

64. Rana, J., Morshed, S., and Synnes, K. End-user creation of social apps by utilizing web-based

social components and visual app composition. In 22nd International World Wide Web

Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume (2013),

pp. 1205–1214.

65. Realinho, V., Dias, A. E., and Romão, T. Testing the usability of a platform for rapid

development of mobile context-aware applications. In Human-Computer Interaction -

INTERACT 2011 - 13th IFIP TC 13 International Conference, Lisbon, Portugal, September 5-9,

2011, Proceedings, Part III (2011), pp. 521–536.

66. Repenning, A., Ahmadi, N., Repenning, N., Ioannidou, A., Webb, D. C., and Marshall, K. S.

Collective programming: Making end-user programming (more) social. In End-User

Development - Third International Symposium, IS-EUD 2011, Torre Canne (BR), Italy, June 7-

10, 2011. Proceedings (2011), pp. 325–330.

67. Tayeh, A. A. O., and Signer, B. A dynamically extensible open cross document link service. In

Web Information Systems Engineering - WISE 2015 - 16th International Conference, Miami,

FL, USA, November 1-3, 2015, Proceedings, Part I (2015), pp. 61–76.

68. Tayeh, A. A. O., and Signer, B. Open cross-document linking and browsing based on a visual

plug-in architecture. In Web Information Systems Engineering - WISE 2014 - 15th International

Conference, Thessaloniki, Greece, October 12-14, 2014, Proceedings, Part II (2014), pp. 231–

245.

69. Toomim, M., Drucker, S. M., Dontcheva, M., Rahimi, A., Thomson, B., and Landay, J. A.

Attaching UI enhancements to websites with end users. In Proceedings of the 27th International

Conference on Human Factors in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9,

2009 (2009), pp. 1859–1868.

70. Wajid, U., Namoun, A., and Mehandjiev, N. Alternative representations for end user

composition of service-based systems. In End-User Development - Third International

Symposium, IS-EUD 2011, Torre Canne (BR), Italy, June 7-10, 2011. Proceedings (2011), pp.

53–66.

71. Wang, G., Yang, S., and Han, Y. Mashroom: end-user mashup programming using nested

tables. In Proceedings of the 18th International Conference on World Wide Web, WWW 2009,

Madrid, Spain, April 20-24, 2009 (2009), pp. 861–870.

72. Wang, S., and Wainer, G. A. A mashup architecture with modeling and simulation as a service.

In Web Information Systems Engineering - WISE 2015 - 16th International Conference, Miami,

FL, USA, November 1-3, 2015, Proceedings, Part I (2015), pp. 247–261.

73. Wong, J., and Hong, J. I. Making mashups with marmite: towards end-user programming for the

web. In Proceedings of the 2007 Conference on Human Factors in Computing Systems, CHI

2007, San Jose, California, USA, April 28 - May 3, 2007 (2007), pp. 1435–1444.

74. Wulf, V., Paterno, F., Lieberman, H. 2006. End User Development. Kluwer Academic

Publishers.

75. Zhai, Z., Cheng, B., Wang, Z., Liu, X., Liu, M., Chen, J. Design and implementation: the end

user development ecosystem for cross-platform mobile applications. In Proceedings of the 25th

International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11-15,

2016, Companion Volume, pages 143–144, 2016.

