
HAL Id: hal-02138312
https://hal.science/hal-02138312

Submitted on 23 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Maximum Energy Transmission Rate in
Ultra-Reliable and Low Latency SIET

Nizar Khalfet, Samir Perlaza

To cite this version:
Nizar Khalfet, Samir Perlaza. On the Maximum Energy Transmission Rate in Ultra-Reliable and Low
Latency SIET. BalkanCom 2019 - Third International Balkan Conference on Communications and
Networking, Jun 2019, Skopje, Macedonia. pp.1-4. �hal-02138312�

https://hal.science/hal-02138312
https://hal.archives-ouvertes.fr


On the Maximum Energy Transmission Rate in
Ultra-Reliable and Low Latency SIET

Nizar Khalfet and Samir M. Perlaza

Abstract—In this paper, the maximum energy rate that can be
achieved by a given code designed for simultaneously transmitting
information to an information receiver (IR) and energy to an
energy harvester (EH) through the binary symmetric channel is
studied. The energy transmission rate is measured at the EH that
is not necessarily colocated with the IR. Moreover, the energy
transmission rate is calculated taking into account a reliability
constraint and a latency constraint. The reliability is expressed in
terms of the energy shortage probability, whereas the the latency
is expressed in terms of the duration of the communication in
channel uses. The exact maximum of the energy rate is presented.
Nonetheless, it is not given in closed-form. To remediate this,
approximations of the ESP are explored using large deviations
and Gaussian approximations. These approximations lead to close
form bounds on the energy transmission rate.

Index Terms—Simultaneous Information and Energy Trans-
mission (SIET), Information-Energy Capacity Region, Finite
Block-Length Regime.

I. INTRODUCTION

Simultaneous information and energy transmission (SIET)
refers to systems in which at least one transmitter aims
to simultaneously send information to a set of information
receivers and energy to a set of energy harvesters. This
idea, initially proposed by Nikola Tesla in 1914 [1], is one
of the central ideas in modern communications systems to
wirelessly power up devices with low-energy consumption,
such as sensors and wearable electronic devices [2]. Within
this context, there are two fundamental considerations to be
taken into account: the information and energy transmission
must be both ultra reliable and exhibit a low latency. This
translates into two simple requirements. First, the probability
that the energy transmission rate falls below the targeted rate,
i.e., the energy shortage probability (ESP), must be bounded
above by a given value. Second, the communication must
occur within a fixed number of channel uses. These two
requirements break away from the classical analysis of SIET,
which is typically performed under the assumption that the
duration of the communication is sufficiently long and that the
ESP can be made arbitrarily close to zero. See for instance [3],
[4], [5], [6], [7], and [8].

This paper builds upon existing results in which the fun-
damental limits of SIET are studied in the context of strictly
positive ESP, positive decoding error probability (DEP) and
finite block length, c.f., [9] and [10]. The focus of this paper
is on a system in which a transmitter simultaneously sends
information to an information receiver (IR) and energy to an
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energy harvester (EH) through memoryless binary symmetric
channels. The main contribution consists in characterizing the
exact maximum of the energy rate that can be achieved by any
given code. Nonetheless, such exact bound is not provided in
closed-form. To remediate this, approximations of the ESP are
explored using large deviations and Gaussian approximations.
These approximations lead to close form expressions bounds
on the energy transmission rate, which are the desired results.

II. NOTATION

Throughout this paper, sets are denoted with uppercase
calligraphic letters, e.g., X . Random variables are denoted by
uppercase letters, e.g., X , and their realizations are denoted
by lower case letters, e.g., x. The probability distribution of X
is denoted by PX . Whenever a second random variable Y is
involved, PXY and PY |X denote, respectively, the joint prob-
ability distribution of (X,Y ) and the conditional probability
distribution of Y given X . Let n be a fixed natural number.
An n-dimensional vector of random variables is denoted by
bold upper case letters, e.g., X , (X1, X2, . . . , Xn)T, and
its corresponding realization by bold lower case letters, e.g.,
x , (x1, x2, . . . , xn)T. Let x be a binary vector. Then, the
number of zeros and ones in x are denoted by N(0|x) and
N(1|x), respectively. The notation EX [·] is for the expected
value of the random variable X . The complementary cumu-
lative distribution function Q : R → [0, 1] of the standard
Gaussian distribution is

Q(t) =
1√
2π

∫ ∞
t

exp

Å
−x

2

2

ã
dx, (1)

and the functional inverse of Q is Q−1 : [0, 1]→ R.

III. SYSTEM MODEL

Consider a three-party communication system in which a
transmitter aims at simultaneously sending information to an
IR and energy to an EH through a binary symmetric channel.
Such a system can be modeled by a random transformation

({0, 1}n, {0, 1}n × {0, 1}n, PY Z|X), (2)

where n ∈ N is the block length. Given an input x
4
=

(x1, x2, . . . , xn) ∈ {0, 1}n, the outputs y
4
= (y1, y2, . . . , yn) ∈

{0, 1}n and z
4
= (z1, z2, . . . , zn) ∈ {0, 1}n are observed at the

IR and at the EH, respectively, with probability

PY Z|X(y, z|x) =
n∏

t=1

PY |X(yt|xt)PZ|X(zt|xt), (3)

where for all (x, y, z) ∈ {0, 1}3,

PY |X(y|x)=α11{x 6=y} + (1− α1)1{x=y}, (4)
PZ|X(z|x)=α21{x 6=z} + (1− α2)1{x=z}, (5)



and α1 ∈ [0, 12 ) and α2 ∈ (0, 12 ). In this context, two tasks are
carried out by the transmitter: (a) the information transmission
task; and (b) the energy transmission task.

A. Information Transmission Task

The purpose of this task is to send a message from the
transmitter to the IR. The message index is a realization of a
random variable uniformly distributed in {1, 2, . . . ,M}, with
M ∈ N. To carry out this task within n channel uses, the
transmitter uses an (n,M)-code.

Definition 1 ((n,M)-code): An (n,M)-code for the ran-
dom transformation in (2) is a system

{(u(1),D1), (u(2),D2), . . . , (u(M),DM )} , (6)

where for all (i, j) ∈ {1, 2, . . . ,M}2, with i 6= j,

u(i) , (u1(i), u2(i), . . . , un(i)) ∈ {0, 1}n, (7a)
Di ∩ Dj = ∅, and (7b)
M⋃
i=1

Di ⊆ {0, 1}n. (7c)

Given the system in (6), for all i ∈ {1, 2, . . . ,M}, to transmit
the message with index i, the transmitter inputs the symbol
ut(i) to the channel at time t ∈ {1, 2, . . . , n}. The IR observes
the output yt at the end of channel use t. At the end of n
channel uses, the IR decides that the symbol i was transmitted
if it satisfies the rule

(y1, y2, . . . , yn) ∈ Di. (8)

The decoding error probability associated with the transmis-
sion of message index i, denoted by λi ∈ [0, 1], is

λi , Pr [Y ∈ Dc
i | X = u(i)] , (9)

where the probability is with respect to the marginal PY |X ,
and Dc

i represents the complement of Di with respect to
{0, 1}n. The average probability of error, denoted by λ, is

λ ,
1

M

M∑
m=1

λm. (10)

Information transmission is said to be reliable if the average
or maximum DEP is controlled. This leads to the following
refinements of Definition 1.

Definition 2 ((n,M, ε)-code with maximum DEP): Let
ε ∈ [0, 1] be fixed. An (n,M)-code that satisfies λi < ε, for
all i ∈ {1, 2, . . . ,M}, is said to be an (n,M, ε)-code with
maximum DEP.

Definition 3 ((n,M, ε)-code with average DEP): Let ε ∈
[0, 1] be fixed. An (n,M)-code that satisfies λ < ε is said to
be an (n,M, ε)-code with average DEP.
Note that any (n,M, ε)-code with maximum DEP is also a
(n,M, ε)-code with average DEP. Nonetheless, the converse
is not necessarily true.

B. Energy Transmission Task
Let g : {0, 1} → R+ be a positive real-valued function

that determines the energy harvested from the channel output
symbols. Let

b0
4
= g(0), and b1

4
= g(1) (11a)

be the energy harvested when the channel outputs at the EH
are 0 and 1, respectively. At the end of n channel uses, the
average energy delivered to the EH by the channel outputs
z = (z1, z2, . . . , zn) is given by the function Bn : {0, 1}n →
R+, with

Bn(z),
1

n

n∑
t=1

g(zt) = (b0 − b1)
N(0|z)

n
+ b1. (12)

The objective of the transmitter is to ensure that energy is
harvested at the EH at a rate not smaller than b energy units
per channel use, with b > 0. An energy-shortage event occurs
when the energy harvested at the EH is less than b at the end of
the transmission. The case in which b0 = b1 is trivial, since for
all channel outputs z ∈ {0, 1}n, it holds that Bn(z) = b0 =
b1. That is, the average energy rate at the input of the EH is
independent of the codebook, and either an energy shortage
is never observed if b > b0 = b1; or the the system is always
under energy shortage if b < b0 = b1. Hence, to avoid these
trivial cases, the following assumption is adopted without loss
of generality:

b1 < b0. (13)

The probability of energy-shortage when transmitting the
message with index i ∈ {1, 2, . . . ,M} is

θi,Pr [Bn(Z) < b | X = u(i)] (14)

=Pr

[
n∑

t=1

1{Zt=0}<

Å
n(b− b1)

b0 − b1

ã ∣∣∣∣∣X = u(i)

]
, (15)

where the probability is with respect to the marginal PZ|X .
The average probability of energy-shortage, denoted by θ, is

θ ,
1

M

M∑
i=1

θi. (16)

Note that for all z ∈ Zn, Bn(z) is bounded according to

b1 6 Bn(z) 6 b0. (17)

The inequalities in (17) imply that there exists a case in
which energy transmission might occur with zero (maximal
or average) ESP for all energy transmission rates b 6 b1.
This is because the event Bn(Z) < b1 is observed with
zero probability. Alternatively, any energy transmission rate
b > b0 cannot be achieved with an average or maximal energy-
shortage probability strictly smaller than one.

Energy transmission is said to be reliable if the average
or maximum ESP is controlled. This leads to the following
refinements of Definition 1.

Definition 4 ((n,M, ε, δ, b)-code with maximum ESP):
Let δ ∈ [0, 1] and b ≥ 0 be fixed. An (n,M, ε)-code that
satisfies θi < δ, for all i ∈ {1, 2, . . . ,M}, is said to be an
(n,M, ε, δ, b)-code with maximum ESP.



Definition 5 ((n,M, ε, δ, b)-code with average ESP): Let
δ ∈ [0, 1] and b ≥ 0 be fixed. An (n,M, ε)-code that satisfies
θ < δ is said to be an (n,M, ε, δ, b)-code with average ESP.
Note that any (n,M, ε, δ, b)-code with maximum ESP is also
a (n,M, ε, δ, b)-code with average ESP. Nonetheless, the con-
verse is not necessarily true.

IV. BOUNDS ON THE ENERGY RATE

Assume that the transmitter uses an (n,M, ε, δ, b)-code and
it aims at sending the message index i ∈ {1, 2, . . . ,M}. Then,
for all t ∈ {1, 2, . . . , n}, the random variable 1{Zt=0} in (15)
follows a distribution in which the probability of a “one” is

PZ|X(0|ut(i)) =

ß
α2 if ut(i) = 1
1− α2 if ut(i) = 0

. (18)

Therefore, the random variable
∑n

t=1 1{Zt=0} can be ex-
pressed as follows
n∑

t=1

1{Zt=0} =
∑

t∈{m:um(i)=0}

1{Zt=0} +
∑

t∈{m:um(i)=1}

1{Zt=0},

(19)
which corresponds to the sum of two random vari-
ables with binomial distributions B (N(0|u(i)), 1− α2) and
B (N(1|u(i)), α2), respectively. This implies that for all i ∈
{1, 2, . . . ,M}:

θi=

⌊
n(b−b1)

b0−b1

⌋∑
m=0

Pr

[ ∑
t∈{m:um(i)=0}

1{Zt=0}

+
∑

t∈{m:um(i)=1}

1{Zt=0} = m

∣∣∣∣∣X = u(i)

]
(20)

=

⌊
n(b−b1)

b0−b1

⌋∑
k=0

k∑
s=0

Pr

[ ∑
t∈{m:um(i)=0}

1{Zt=0} = s

∣∣∣∣∣X = u(i)

]

Pr

[ ∑
t∈{m:um(i)=1}

1{Zt=0} = k − s
∣∣∣∣∣X = u(i)

]
(21)

=

⌊
n(b−b1)

b0−b1

⌋∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

åÇ
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+2sα

N(0|u(i))+k−2s
2 . (22)

The equation in (22) is the ground truth individual ESP. Hence,
from Definition 4 and Definition 5 the following holds.

Proposition 1 (Ground-Truth Bound): Consider an
(n,M, ε, δ, b)-code described by the system in (6) for
the random transformation in (2) satisfying (13). Then,
subject to a maximal ESP constraint, it holds that,

b < B̃ (23)

where B̃ is the largest real that satisfies for all i ∈
{1, 2, . . . ,M},ö

n(B̃−b1)

b0−b1

ù∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

åÇ
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+2sα

N(0|u(i))+k−2s
2 < δ, (24)

and subject to an average ESP constraint, the energy rate b
satisfies

b < B̆ (25)

where B̆ is the biggest positive real that satisfies

1

M

M∑
i=1

ö
n(B̆−b1)

b0−b1

ù∑
k=0

k∑
s=0

Ç
N (0|u(i))

s

åÇ
N (1|u(i))

k − s

å
(1− α2)N(1|u(i))−k+2sα

N(0|u(i))+k−2s
2 < δ. (26)

The bounds in Proposition 1 are not in closed-form and
thus, are difficult to calculate. Moreover, they bring very
little insight about the maximum energy rate at which an
(n,M, ε) code can transmit energy. Therefore, it would be
desirable to approximate the individual ESP in order to obtain
an upper bound on the energy transmission rate in a closed
form expression, of course, at the expense of precision. The
following lemma, proved in [11], provides some bounds on
the ESP that are instrumental in obtaining some bounds on
the energy transmission rates.

Lemma 1: Consider the random variable
∑n

t=1 1{Zt=0} in
(14) for a fixed i ∈ {1, 2, . . . ,M}. Then,

Pr

[
n∑

t=1

1{Zt=0}>
Å
n(b− b1)

b0 − b1

ã ∣∣∣∣∣X = u(i)

]
<

exp

(
− n

(
b−b1

b0−b1
−
(

(1−2α2) P̄
(i)
X (0)+α2

))2
b−b1

b0−b1
+
(

(1−2α2) P̄
(i)
X (0)+α2

) )
. (27)

Solving for b in (27) and after some algebraic manipulations
shown in [11], leads to the following proposition.

Proposition 2 (Large Deviation Bound): Consider an
(n,M, ε, δ, b)-code described by the system in (6) for
the random transformation in (2) satisfying (13). Then,
subject to a maximal ESP constraint, it holds that for all
i ∈ {1, 2, . . . ,M},

b<(b0 − b1)
(

(1−2α2) P̄
(i)
X (0)+α2

)
+b1

+
b0 − b1√

n

√
−2
Ä
(1−2α2) P̄

(i)
X (0)+α2

ä
log(1− δ)

−b0 − b1
n

log(1− δ). (28)

and subject to an average ESP constraint, the energy rate b
satisfies

b < B̂, (29)

where B̂ is the biggest positive real that satisfies

1− δ <

1

M

M∑
i=1

exp

(
−n

(
b−b1

b0−b1
−
(

(1−2α2) P̄
(i)
X (0)+α2

))2
b−b1

b0−b1
+
(

(1−2α2) P̄
(i)
X (0)+α2

) )
.(30)

Another bound that follows immediately from the Berry-
Esseen theorem [12] is presented hereunder.



Lemma 2: Consider the random variable
∑n

t=1 1{Zt=0} in
(14) for a fixed i ∈ {1, 2, . . . ,M}. Then,

Pr

[
n∑

t=1

1{Zt=0}<

Å
n(b− b1)

b0 − b1

ã ∣∣∣∣∣X = u(i)

]

≥ Q

Ñ
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − b−b1

b0−b1

ä√
nα2(1− α2)

é
−
n
[
α2(1− α2)3 + (1− α2)α3

2

]
2 (nα2(1− α2))

3/2
(31)

Solving for b in (31) and after some algebraic manipulations
shown in [11], leads to the following proposition.

Proposition 3 (Gaussian Approximation Bound [10]):
Consider an (n,M, ε, δ, b)-code described by the system in
(6) for the random transformation in (2) satisfying (13).
Then, subject to a maximal ESP constraint, it holds that for
all i ∈ {1, 2, . . . ,M},

b < (b0 − b1)
(

(1−2α2) P̄
(i)
X (0)+α2

)
+b1

−

 
(b0 − b1)2α2(1−α2)

n
Q−1

(
δ+

(1−α2)2+α2
2

2
√
nα2(1−α2)

)
,(32)

and subject to an average ESP constraint, the energy rate b
satisfies

b < B̂, (33)

where B̂ is the biggest positive real that satisfies

1

M

M∑
i=1

Q

(
n
Ä
(1− 2α2)P̄

(i)
X (0) + α2 − B̂−b1

b0−b1

ä√
nα2(1− α2)

)

− (1− α2)2 + α2
2

2
√
nα2(1− α2)

< δ. (34)

Proof: The proof of Proposition 3 is presented in [11].
Note that the upper bound in (32), is valid when the following
condition is satisfied

0 < δ +
(1− α2)2 + α2

2

2
√
nα2(1− α2)2

< 1, (35)

given that the domain of the function Q−1 is (0, 1).

V. HOMOGENEOUS CODES

The class of homogeneous codes is of particular interest
in this study due to the fact that an average or maximum
constraint on the ESP leads to the same bound on the en-
ergy transmission rate. A formal definition of these codes is
hereunder.

Definition 6 (Homogeneous Codes): A code C described by
the system in (6) is said to be homogeneous if the following
conditions hold:

N(0|u(1)) = N(0|u(2)) = . . . = N(0|u(M)) and (36)
N(1|u(1)) = N(1|u(2)) = . . . = N(1|u(M)). (37)

The corollary hereunder follows immediately from Proposi-
tion 1 and Proposition 3.

Corollary 1: Consider an (n,M, ε, δ, b)-code described
by the system in (6) for the random transformation in (2)
satisfying (13), and assume it is a homogeneous code. Then,
the bounds on the energy rate b subject to a maximum ESP
and average ESP are identical. That is, the bound in (23) is
identical to (25); the one in (28) is identical to (29); and the
one in (32) is identical to (33).

VI. CONCLUSIONS

In this paper, the exact ESP achieved by each of the
codewords of a given code has been calculated. Using this
result, the exact maximum energy transmission rate for a
given code has been calculated. Nonetheless, the expression is
cumbersome and brings very little light into the understanding
of this problem. Therefore, two lower-bounds on the ESP
achieved by each of the codewords have been reported. Each
lower-bound has been transformed into an upper-bound on the
energy transmission rate of the given code, which is the desired
result. In general, the bounds presented in Proposition 3 are
tighter than those presented in Proposition 2 for small values
of the block length n. Nonetheless, the bounds in Proposition
2 are easier to calculate and perform equally well for large n.
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