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Introduction

In the last 40 years, convex optimization has seen a tremendous rise in popularity, both as a research area, and as a tool used by practicioners across the industry. By and large, the community has realized that the proper division of the field is into convex (feasible, "easy") and nonconvex (sometimes "as hard as it gets"). The reason [START_REF] Boyd | Convex optimization[END_REF] for this is twofold:

1. Starting with the work of Khachiyan [START_REF] Leonid G Khachiyan | Polynomial algorithms in linear programming[END_REF] and Karmarkar [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF], (theoretically and practically) efficient algorithms for convex optimization have been developed.

2. Many interesting problems are either convex, or can be reformulated as such.

These algorithms work so well because they can reason about the global structure of the given problem. More precisely, because of convexity, knowing just the local structure of the objective function (e.g. its Hessian) is enough to achieve fast convergence to the global minimum. In general, the optimization problem being solved by these algorithms has the following form:

min x c, x s.t. Ax = b x ∈ K, ( 1 
)
where K is some "efficitently representable" cone, •, • is the inner product in that cone, and A is a linear operator on K. In order to be "efficiently representable", the cone K is considered to be a direct product K = K 1 × • • • × K r of r basic cones. A basic cone is often taken to be of one of the following three types: If all cones K i are of the same type, the optimization problem is a linear program (LP), secondorder cone program (SOCP), and semidefinite program (SDP), respectively. In particular, we get the following three problems:

1. R + = {x | x ≥ 0}, the cone of nonnegative real numbers, 2. L n = {x = (x 0 , x) ∈ R n+1 | x ≤ x 0 },
min x c T x s.t. Ax = b x i ≥ 0, ∀i ∈ [r] min x c T x s.t. Ax = b x = [x 1 ; . . . ; x r ] x i ∈ L n i , ∀i ∈ [r] min X tr(CX) s.t. tr(A j X) = b j , ∀j ∈ [m] X 0.
It is well-known [START_REF] Boyd | Convex optimization[END_REF] that every LP can be expressed as an SOCP, and every SOCP can be expressed as an SDP. Thus, SOCPs are a sort of "middle ground" between LPs and SDPs. On one hand, the variable we are working with is still a (block-)vector x, and it is still subject to a simple linear constraint Ax = b. On the other hand, the constraint x i ∈ L n i introduces some nonlinearity and thus some of the power of SDPs. Two examples of problems that are expressible as SOCPs but not as LPs are the Markowitz portfolio optimization problem [START_REF] Markowitz | Portfolio selection[END_REF][START_REF] Boyd | Convex optimization[END_REF] in computational finance, and the support-vector machine (SVM [START_REF] Cortes | Support-vector networks[END_REF]) training problem in machine learning. An extensive list of problems that can be formulated as SOCPs can be found in [START_REF] Alizadeh | Second-order cone programming[END_REF].

Nowadays, these problems are solved (both using commercial [START_REF] Erling | The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm[END_REF] and open-source solvers [START_REF] Borchers | CSDP, a C library for semidefinite programming[END_REF][START_REF] Domahidi | ECOS: An SOCP solver for embedded systems[END_REF][START_REF] Reha H Tütüncü | Solving semidefinite-quadraticlinear programs using SDPT3[END_REF]) using a family of algorithms called interior-point methods (IPM). These algorithms are "just" an application of Newton's method on a special nonlinear system of equations, and as such, the main computational effort is spent on solving linear systems. Thus, if we could improve the time needed to solve a linear system, we would also improve the complexity of our IPM by the same factor.

Fortunately, it turns out that such a speedup can be obtained when using quantum computers. Starting with the work of [START_REF] Harrow | Quantum algorithm for linear systems of equations[END_REF], it has become possible to solve a (well-conditioned) linear system in time polylogarithmic in its dimension. This basic technique has been improved significantly, and here we use the quantum linear algebra algorithms from [START_REF] Chakraborty | The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation[END_REF][START_REF] Gilyén | Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics[END_REF], which are themselves based on [START_REF] Kerenidis | Quantum recommendation systems[END_REF][START_REF] Kerenidis | Quantum gradient descent for linear systems and least squares[END_REF]. Of course, when solving Ax = b, x ∈ R n , it is not even possible to write down all n coordinates of the solution vector x in time o(n). Instead, these algorithms encode vectors as quantum states, so that

z ∈ R n (with z = 1) is encoded as |z = n i=1 z i |i , (2) 
where we write |i for the joint log 2 (n) -qubit state corresponding to log 2 (n) -bit binary expansion of i. Then, the solution they output is a quantum state |ϕ close to A -1 b . In case a "real" (classical) solution is needed, we need to perform tomography on |ϕ , and obtain a classical vector x that is close to |ϕ , so that finally we have a guarantee xx ≤ ϵ x for some ϵ > 0. An efficient vector state tomography algorithm is given in [START_REF] Kerenidis | A quantum interior point method for LPs and SDPs[END_REF].

The main technical contribution of this report is an approximate IPM algorithm for SOCP, which assumes that all linear systems are solved up to a relative error ϵ. We analyze the performance of this algorithm, and apply the analysis to the case when the linear system solver is the quantum one from [START_REF] Chakraborty | The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation[END_REF][START_REF] Gilyén | Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics[END_REF]. Although a similar analysis has been done by [START_REF] Kerenidis | A quantum interior point method for LPs and SDPs[END_REF] for the case of LPs and SDPs, we feel that our analysis of the SOCP case is especially interesting, since it uses Euclidean Jordan algebras to underscore the similarities between SOCPs on one hand, and LPs and SDPs on the other. Apart from [START_REF] Kerenidis | A quantum interior point method for LPs and SDPs[END_REF], our analysis is inspired by the analysis of a classical SOCP IPM from [START_REF] Renato | Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[END_REF], and uses [START_REF] Alizadeh | Second-order cone programming[END_REF] as a dictionary for translating concepts between the algebra of Hermitian matrices and the Jordan algebra of the second-order cone.

The rest of the report is organized in three sections:

1. First, in Section 2, we introduce the necessary background on Jordan algebras and quantum linear algebra algorithms.

2. Then, in Section 3 we present second-order conic programming, and a classical IPM for solving it.

3. The main technical results are contained in Section 4, where we present our quantum IPM for SOCP, and analyze its runtime and convergence guarantees.

4.

In Section 5, we use our algorithm to train a Support Vector Machine (SVM) binary classifier. We present some numerical results that demonstrate the performance of our algorithm when applied to real-world data.

5. Finally, in Section 6, we present some concluding remarks as well as possible directions for future research.

Preliminaries

The goal of this section is to introduce the technical framework necessary to follow the results in Sections 3 and 4. In particular, the definitions of the Jordan product • and the matrix representation Arw(x) (and their block extensions) are necessary for understanding the algorithm itself, whereas the rest is used only for the analysis in Section 4. On the quantum linear algebra side, we give precise meaning to the statement "linear systems can be solved quantumly in polylogarithmic time", and present the performance and correctness guarantees of the relevant algorithms.

Euclidean Jordan algebras

Jordan algebras were originally developed to formalize the notion of an algebra of observables in quantum mechanics [START_REF] Jordan | Über verallgemeinerungsmöglichkeiten des formalismus der quantenmechanik[END_REF][START_REF] Adrian | On Jordan algebras of linear transformations[END_REF], but they have since been applied to many other areas, most interestingly to provide a unified theory of IPMs for representable symmetric cones [START_REF] Sh Schmieta | Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones[END_REF]. In this report, we will not strive for such generality, and will instead focus on SOCPs and the Lorentz cone. Still, most of the results in this section have obvious counterparts in the algebra of Hermitian matrices, to the point that the corresponding claim can be obtained using wordby-word translation.

The main object under consideration is the n-dimensional Lorentz cone, defined for n ≥ 0 as

L n := {x = (x 0 ; x) ∈ R n+1 | x ≤ x 0 }.
We think of the elements of L n as being "positive" (just like positive semidefinite matrices), since for n = 0, L 0 = R + is exactly the set of nonnegative real numbers. The Jordan product of two vectors (x 0 , x) ∈ R n+1 and (y 0 , y) ∈ R n+1 is defined as

x • y := x T y x 0 y + y 0 x
, and has the identity element e = 1 0 n , where 0 n is the column vector of n zeros. This product is the analogue to the matrix product X • Y , however, it is commutative and non-associative. In the special case of x • • • • • x, the order of operations does not matter, so we can unambiguously define

x k = x • • • • • x k times
, and we even have x p • x q = x p+q , so • is power-associative. For every vector x, we can define the matrix (or linear) representation of x, Arw(x) ("arrowhead matrix") as Arw(x) := x 0 x T x x 0 I n , so we have Arw(e) = I, as well as an alternative definition of x • y:

x • y = Arw(x)y = Arw(x) Arw(y)e.

What makes the structure above particularly interesting is the fact that for any vector, we can define its spectral decomposition in a way the agrees with our intuition from the algebra of Hermitian matrices: We do this by noting that for all x, we have

x = 1 2 x 0 + x 1 x ∥ x∥ + 1 2 x 0 -x 1 -x ∥ x∥ , ( 3 
)
so we can define the two eigenvalues and eigenvectors of x as

λ 1 := λ 1 (x) = x 0 + x , λ 2 := λ 2 (x) = x 0 -x (4) c 1 := c 1 (x) = 1 2 1 x ∥ x∥ , c 2 := c 2 (x) = 1 2 1 -x ∥ x∥ .
(5)

Thus, using the notation from (4), we can rewrite (3) as x = λ 1 c 1 +λ 2 c 2 . The set of eigenvectors {c 1 , c 2 } is called the Jordan frame of x, and satisfies several properties:

Proposition 1 (Properties of Jordan frames). Let x ∈ R n+1 and let {c 1 , c 2 } be its Jordan frame. Then, the following holds:

1. c 1 • c 2 = 0 (the eigenvectors are "orthogonal") 2. c 2 1 = c 1 and c 2 2 = c 2 3. c 1 , c 2 are of the form 1 2 ; ± c with c = 1 2
On the other hand, just like a given matrix is positive (semi)definite if and only if all of its eigenvalues are positive (nonnegative), a similar result holds for L n and int L n (the Lorentz cone and its interior):

Proposition 2. Let x ∈ R n+1 have eigenvalues λ 1 , λ 2 .
Then, the following holds:

1. x ∈ L n if and only if λ 1 ≥ 0 and λ 2 ≥ 0.

2.

x ∈ int L n if and only if λ 1 > 0 and λ 2 > 0. Now, using this decomposition, we can define arbitrary real powers x p for p ∈ R as x p := λ p 1 c 1 + λ p 2 c 2 , and in particular the "inverse" and the "square root"

x -1 = 1 λ 1 c 1 + 1 λ 2 c 2 , if λ 1 λ 2 = 0, x 1/2 = λ 1 c 1 + λ 2 c 2 , if x ∈ L n .
Moreover, we can also define some operator norms, namely the Frobenius and the spectral one:

x F = λ 2 1 + λ 2 2 = √ 2 x , x 2 = max{|λ 1 |, |λ 2 |} = |x 0 | + x .
It is worth noting that both these norms and the powers x p can be computed in exactly the same way for matrices, given their eigenvalue decompositions.

Finally, the analysis in Section 4 requires an analogue to the operation Y → XY X. It turns out that for this we need another matrix representation (quadratic representation) Q x , defined as

Q x := 2 Arw 2 (x) -Arw(x 2 ) = x 2 2x 0 x T 2x 0 x λ 1 λ 2 I n + 2 x x T .
Now, the matrix-vector product Q x y will behave as the quantity XY X. To simplify the notation, we also define the matrix

T x := Q x 1/2 .
The definitions that we introduced so far are suitable for dealing with a single constraint x ∈ L n . For dealing with multiple constraints x 1 ∈ L n 1 , . . . , x r ∈ L nr , we need to deal with block-vectors x = (x 1 ; x 2 ; . . . ; x r ) and y = (y 1 ; y 2 ; . . . ; y r ). We call the number of blocks r the rank of the vector (thus, up to now, we were only considering rank-1 vectors). Now, we extend all our definitions to rank-r vectors.

1. x • y := (x 1 • y 1 ; . . . ; x r • y r ) 2. The matrix representations Arw(x) and Q x are the block-diagonal matrices containing the representations of the blocks:

Arw(x) := Arw(x 1 ) ⊕ • • • ⊕ Arw(x r ) and Q x := Q x 1 ⊕ • • • ⊕ Q xr 3.
x has 2r eigenvalues (with multiplicities) -the union of the eigenvalues of the blocks x i .

The eigenvectors of x corresponding to block i contain the eigenvectors of x i as block i, and are zero everywhere else.

4. The identity element is e = (e 1 ; . . . ; e r ), where e i 's are the identity elements for the corresponding blocks.

Thus, all things defined using eigenvalues can also be defined for rank-r vectors:

1. The norms are extended as x 2 F := r i=1 x i 2 F and x 2 := max i x i 2 , and 2. Powers are computed blockwise as x p := (x p 1 ; . . . ; x p r ) whenever the corresponding blocks are defined.

Quantum linear algebra

As it was touched upon in the introduction, claiming that "we can solve linear systems in polylogarithmic time" doesn't make sense in the classical RAM computational model. Instead, given a matrix A and a vector b, we construct the quantum state A -1 b (using the notation from ( 2)). Once we have the state A -1 b , can use it in further computations, sample from the corresponding discrete distribution (this forms the basis of the quantum recommendation system algorithm [START_REF] Kerenidis | Quantum recommendation systems[END_REF]), or perform tomography on it to recover the underlying classical vector. Here, we clarify how do we prepare classical vectors and matrices for use within a quantum algorithm, as well as how do we get classical data back, once the quantum computation is done.

In this section, we assume that we want to obtain a (classical) vector x ∈ R n that satisfies xx ≤ δ x , where Ax = b and A ∈ R n×n , b ∈ R n . We also assume that A is symmetric, since otherwise we can work with its symmetrized version sym(A) = 0 A A T 0 . The quantum linear system solvers from [START_REF] Chakraborty | The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation[END_REF][START_REF] Gilyén | Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics[END_REF] require access to an efficient block encoding of A, which is defined as follows:

Definition. Let A ∈ R n×n be a matrix. Then, the ℓ-qubit unitary matrix U ∈ C 2 ℓ ×2 ℓ is a (ζ, ℓ) block encoding of A if U = A/ζ • • • .
Furthermore, U needs to be implemented efficiently, i.e. using an ℓ-qubit quantum circuit of depth (poly)logarithmic in n. Such a circuit would allow us to efficiently create states |A i corresponding to columns of A. Moreover, we need to be able to construct such a data structure efficiently from the classical description of A. It turns out that we are able to fulfill both of these requirements using a data structure built on top of QRAM [START_REF] Kerenidis | Quantum recommendation systems[END_REF].

Theorem 1 (Block encodings using QRAM [START_REF] Kerenidis | Quantum recommendation systems[END_REF][START_REF] Kerenidis | Quantum gradient descent for linear systems and least squares[END_REF]). There exist QRAM data structures for storing vectors v i ∈ R n , i ∈ [m] and matrices A ∈ R n×n such that with access to these data structures one can do the following: [START_REF] Adrian | On Jordan algebras of linear transformations[END_REF]. In other words, the unitary |i |0 → |i |v i can be implemented efficiently.

1. Given i ∈ [m], prepare the state |v i in time O

A (ζ(A), 2 log n) for ζ(A) = min( A

F / A 2 , s 1 (A)/ A 2 ), s 1 (A) = max i j |A i,j | can be implemented

in time O(polylog(n)). Moreover, this block encoding can be constructed in a single pass over the matrix A, and it can be updated in O(log n) time per entry.

Here |i is the notation for the log(m) qubit state corresponding to the binary expansion of i. The QRAM can be thought of as the quantum analogue to RAM, i.e. an array [b (1) , . . . , b (m) ] of w-bit bitstrings, whose elements we can access given their address (position in the array). More precisely, QRAM is just an efficient implementation of the unitary transformation

|i |0 ⊗w → |i b (i) 1 ⊗ • • • ⊗ b (i) w , for i ∈ [m].
Nevertheless, from now on, we will also refer to storing vectors and matrices in QRAM, meaning that we use the data structure from Theorem 1. Once we have these block encodings, we may use them to perform linear algebra:

Theorem 2. (Quantum linear algebra with block encodings) [START_REF] Chakraborty | The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation[END_REF][START_REF] Gilyén | Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics[END_REF] Let A ∈ R n×n be a matrix with non-zero eigenvalues in the interval

[-1, -1/κ] ∪ [1/κ, 1]
, and let ϵ > 0. Given an implementation of an (ζ, O(log n)) block encoding for A in time T U and a procedure for preparing state |b in time T b ,

1. A state ϵ-close to A -1 b can be generated in time O((T U κζ + T b κ) polylog(κζ/ϵ)).

A state ϵ-close to |Ab can be generated in time O((T

U κζ + T b κ) polylog(κζ/ϵ)). 3. For A ∈ {A, A -1 }, an estimate Λ such that Λ ∈ (1 ± ϵ) Ab can be generated in time O((T U + T b ) κζ ϵ polylog(κζ/ϵ)).
Finally, in order to recover classical information from the outputs of a linear system solver, we require an efficient procedure for quantum state tomography. The tomography procedure is linear in the dimension of the quantum state. Theorem 3 (Efficient vector state tomography, [START_REF] Kerenidis | A quantum interior point method for LPs and SDPs[END_REF]). There exists an algorithm that given a procedure for constructing |x (i.e. a unitary mapping U : |0 → |x in time T U ) and precision δ > 0 produces an estimate

x ∈ R d with x = 1 such that x -x ≤ √ 7δ with probability at least (1 -1/d 0.83 ). The algorithm runs in time O T U d log d δ 2 .
Of course, repeating this algorithm O(1) times allows us to increase the success probability to at least 1 -1/ poly(n). Putting Theorems 1, 2 and 3 together, assuming that A and b are already in QRAM, we obtain that the complexity for solving a linear system Ax = b to precision

δ is O n • κζ δ 2 .
For well-conditioned matrices, this presents a significant over O(n ω ) needed for solving linear systems classically, especially when n is large and the desired precision is not too high.

Second-order conic programming

Now that the necessary building blocks have been introduced, we can introduce SOCP, and describe the basic classical IPM that we use as the base of its quantum counterpart. Formally, a SOCP in its standard form is the following optimization problem:

min r i=1 c T i x i s.t. r i=1 A (i) x i = b x i ∈ L n i , ∀i ∈ [r].
Concatenating the vectors (x 1 ; . . . ; x r ) =: x, (c 1 ; . . . ; c r ) =: c, and concatenating the matrices [A (1) • • • A (r) ] =: A horizontally, we can write the SOCP more compactly as an optimization problem over the product of the corresponding Lorentz cones,

L := L n 1 × • • • × L nr : min c T x s.t. Ax = b x ∈ L, ( 6 
)
max b T y s.t. A T y + s = c s ∈ L. ( 7 
)
The problem ( 6) is the SOCP primal, and ( 7) is its corresponding dual. A solution (x, y, s) satisfying the constraints of both ( 6) and ( 7) is feasible, and if in addition it satisfies x ∈ int L and s ∈ int L, it is strictly feasible. If at least one constraint of ( 6) or [START_REF] Chakraborty | The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation[END_REF], is violated, the solution is infeasible. Our goal is to work only with strictly feasible solutions, as they are less likely to become infeasible if corrupted by noise. As it is often the case when describing IPMs, we assume that there exists a strictly feasible solution, since there are well-known methods for reducing a feasible but not strictly feasible problem to a strictly feasible one [START_REF] Boyd | Convex optimization[END_REF].

Just like the gradient of a function vanishes at its (unconstrained) local optimum, similar optimality conditions exist for SOCP as well -at the optimal solution (x * , y * , s * ), the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Ax * = b (primal feasibility), A T y * + s * = c (dual feasibility), (8) 
x * T s * = 0 (complementary slackness).

Since SOCPs are convex, these conditions are both necessary and sufficient for optimality. Convex duality theory tells us that weak duality holds, i.e. that at a feasible solution (x, y, s) the dual objective is bounded by the primal one: c T x ≥ b T y. The difference between these two values is called the duality gap, it is denoted by µ, and usually normalized by a factor of 1 r :

µ := 1 r x T c -b T y = 1 r x T (c -A T y) = 1 r x T s.
Therefore, at the optimum, by [START_REF] Cortes | Support-vector networks[END_REF], the duality gap is 0, and thus strong duality holds. Furthermore, note that together with x * , s * ∈ L, the complementary slackness is equivalent to

x * • s * = 0.
Unfortunately, there is no fast and easy method for solving (8) directly (indeed, the complementary slackness condition prevents it from being strictly feasible). What makes an IPM work is that it solves a series of strictly feasible problems of increasing difficulty, so that their solutions converge to a solution of [START_REF] Cortes | Support-vector networks[END_REF]. These problems are designed so that at the beginning, "the only thing that matters" is that they are strictly feasible no matter the objective value, and as the algorithm progresses, the importance of the objective increases, while the importance of strict feasibility shrinks. This is done by defining a sequence of barrier problems

arg min c T x + νL(x) s.t. Ax = b x ∈ L and arg max b T y -νL(s) s.t . A T y + s = c y ∈ L , ( 9 
)
for all ν > 0. Their name comes from the barrier function L(z), whose purpose is to approach ∞ as z approaches the boundary of the cone L. For a single Lorentz cone L n , it is defined as

L n (z) = -log z 2 0 -z 2 ,
and for the product cone

L = L n 1 × • • • × L nr ,
it is the sum of the blockwise barriers

L(x) = r i=1 L n i (x i ).
The primal-dual pair (9) also has KKT optimality conditions similar to (8):

Ax = b A T y + s = c (10) x • s = νe.
We refer to the set of solutions of [START_REF] Gilyén | Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics[END_REF] for ν ≥ 0 as the central path. The goal of all IPMs is to trace the central path in the direction ν → 0. Although this can not be done exactly, it turns out that good theoretical guarantees can be proved as long as the iterates stay sufficiently close to the central path. We define the distance from the central path as d(x, s, ν) = T x s -νe F , so the corresponding η-neighborhood is given by This set can be though of as the set of all points that are η-close to the central path at parameter ν. Intuitively, the elements of N η (ν) have duality gap close to ν, so decreasing the central path parameter by a certain factor is equivalent to decreasing the duality gap by the same factor.

N η (ν) = {(x,
In the classical short-step IPM [START_REF] Renato | Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[END_REF], we move along the central path by iteratively decreasing the duality gap by a factor of σ := 1 -χ √ r (for some constant χ > 0) at each step. More precisely, in each step we apply to our current iterate (x, y, s) one round of Newton's method for solving the system [START_REF] Gilyén | Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics[END_REF] with ν = σµ. By linearizing the last constraint of (10), we obtain the following linear system (Newton system) for computing the update (∆x, ∆y, ∆s):

   A 0 0 0 A T I Arw(s) 0 Arw(x)       ∆x ∆y ∆s    =    b -Ax c -s -A T y σµe -x • s    . ( 11 
)
Since the system above is just a linearization of the true central path condition, we do not expect to follow the central path exactly. Nevertheless, it can be shown that the solutions generated by the interior point method remain in an η-neighborhood of the central path, for some constant η > 0. The classical interior point method for SOCP is summarized in Algorithm 1.

Algorithm 1

The interior point method for SOCPs Require: Matrix A and vectors b, c in memory, precision ϵ > 0.

1. Find feasible initial point (x, y, s, µ) := (x, y, s, µ 0 ).

Repeat the following steps for O(

√ r log(µ 0 /ϵ)) iterations.
a) Solve the Newton system [START_REF] Harrow | Quantum algorithm for linear systems of equations[END_REF] to get ∆x, ∆y, ∆s.

b) Update x ← x + ∆x, y ← y + ∆y, s ← s + ∆s and µ = 1 r x T s.

Output (x, y, s).

It can be shown that this algorithm halves the duality gap every O( √ r) iterations, so indeed, after O( √ r log(µ 0 /ϵ)) it will converge to a (feasible) solution with duality gap at most ϵ.

A quantum interior-point method

Having introduced the classical IPM for SOCP, we can finally introduce our quantum IPM (Algorithm 2). In a way, it is similar to the SDP solver from [START_REF] Kerenidis | A quantum interior point method for LPs and SDPs[END_REF] since we apply a quantum linear system solver to get the solutions of the Newton system [START_REF] Harrow | Quantum algorithm for linear systems of equations[END_REF] as quantum states and then Solve the Newton linear system using block encoding of the Newton matrix (Theorem 2 ) to find estimate (∆x; ∆y; ∆s) such that with probability 1 -1/ poly(n), (∆x; ∆y; ∆s) -(∆x; ∆y; ∆s) ≤ δ (∆x; ∆y; ∆s) . c) Estimate (∆x; ∆y; ∆s).

Let U N the procedure that solves the Newton linear system to produce states (∆x; ∆y; ∆s) to accuracy δ 2 /n (x,y,s). perform tomography to recover the solutions. However, it differs from the SDP solver as the construction of block encodings for the Newton matrix for the SOCP case is much simpler than that for the general SDP case. A procedure for constructing these block encodings is presented in Appendix A. We now state our main result about a single iteration of an approximate IPM, from which the runtime and convergence results follow as consequences: Theorem 4. Let χ = η = 0.01 and ξ = 0.001 be positive constants and let (x, y, s) be solutions of ( 6) and [START_REF] Chakraborty | The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation[END_REF] with µ = 1 r x T s and d(x, s, µ) ≤ ηµ. Then, the Newton system (11) has a unique solution (∆x, ∆y, ∆s). If we assume that ∆x, ∆s are approximate solutions of (11) that satisfy

∆x -∆x F ≤ ξ T x -1
and ∆s -∆s

F ≤ ξ 2 T s -1 .
If we let x next := x + ∆x and s next := s + ∆s, the following holds:

1. The updated solution is strictly feasible, i.e. x next ∈ int L and s next ∈ int L.

The updated solution satisfies

d(x next , s next , µ) ≤ ηµ and 1 r x T next s next = µ for µ = σµ, σ = 1 -α √ r and a constant 0 < α ≤ χ.
Since the Newton system [START_REF] Harrow | Quantum algorithm for linear systems of equations[END_REF] is the same as in the classical case, we can reuse Theorem 1 from [START_REF] Renato | Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[END_REF] for the uniqueness part of Theorem 4. Therefore, we just need to prove the two parts about strict feasibility and improving the duality gap.

Technical results

Before proving Theorem 4, however, we need several technical results that will be used throughout its proof in section 4.2. We start with a few general facts about vectors, matrices, and their relationship with the Jordan product •.

Claim 1 (Algebraic properties). Let x, y be two arbitrary block-vectors. Then, the following holds:

1. The spectral norm is subadditive: x + y 2 ≤ x 2 + y 2 .

The spectral norm is bounded by the Frobenius one:

x 2 ≤ x F .
3. If A is a matrix with minimum and maximum singular values σ min and σ max respectively, then the norm Ax is bounded as σ min x ≤ Ax ≤ σ max x .

4. The minimum eigenvalue of x + y is bounded as λ min (x + y) ≥ λ min (x) -y 2 .

The following submultiplicativity property holds

: x • y F ≤ x 2 • y F .
Although these statements look obviously true, there are nevertheless a few remarks to be made: Firstly, the vector spectral norm • 2 is not actually a norm, since there exist nonzero vectors outside L which have zero norm. It is, however, still bounded by the Frobenius norm (just like in the matrix case), which is in fact a proper norm. Secondly, the minimum eigenvalue bound also holds for matrix spectral norms, with the exact same statement. Finally, the last property is reminiscent of the matrix submultiplicativity property

A • B F ≤ A 2 B F .
We now proceed with several properties of the quadratic representation Q x .

Claim 2 (Properties of Q x ). Let x ∈ int L. Then, the following holds:

1. Q x e = x 2 , and thus T x e = x.

Q x

-1 = Q -1
x , and more generally Q x p = Q p x for all p ∈ R.

3. Q x 2 = x 2 2 ,

and thus

T x 2 = x 2 . 4. Q x preserves L, i.e. Q x (L) = L and Q x (int L) = int L
As a consequence of the last part of this claim, we also have Q x 2 ≤ x 2 F as well as

T x 2 ≤ x F .
Finally, we state a lemma about various properties that hold in a neighborhood of the central path.

Lemma 1 (Properties of the central path). Let ν > 0 be arbitrary and let x, s ∈ int L. Then, x and s satisfy the following properties:

1. For all ν > 0, the duality gap and distance from the central path are related as

rν - r 2 • d(x, s, ν) ≤ x T s ≤ rν + r 2 • d(x, s, ν).
2. The distance from the central path is symmetric in its arguments i.e. d(x, s, ν) = d(s, x, ν).

3. Let µ = 1 r x T s. If d(x, s, µ) ≤ ηµ, then (1 + η) s -1 2 ≥ µ -1 x 2 .
Again, the first and the last part have nice intuitive interpretations: In the former, we claim that the duality gap is roughly equal to the central path parameter, and the latter would be trivially true if • was associative and we had x • s = µe.

A single IPM iteration

The results above allow us to introduce commutative scalings, a method commonly used for proving IPM convergence. Our analysis is inspired by the general case analysis from [START_REF] Ben | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF], the derived SDP analysis from [START_REF] Kerenidis | A quantum interior point method for LPs and SDPs[END_REF], and uses some technical results from the SOCP analysis in [START_REF] Renato | Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[END_REF]. The proof of Theorem 4 consists of three main steps:

1. Rescaling x and s so that they share the same Jordan frame.

2. Bounding the norms of ∆x and ∆s, and proving that x + ∆x and s + ∆s are still strictly feasible (in the sense of belonging to int L, without caring too much about the linear constraints).

3. Proving that the new solution (x + ∆x, y + ∆y, s + ∆s) is in the η-neighborhood of the central path, and the duality gap/central path parameter have decreased by a constant factor.

Rescaling x and s

As in the case of SDPs, the first step of the proof uses the symmetries of the Lorentz cone to perform a commutative scaling, that is to reduce the analysis to the case when x and s share the same Jordan frame. Although • is commutative by definition, two vectors sharing a Jordan frame are akin to two matrices sharing a system of eigenvectors, and thus commuting (some authors [START_REF] Alizadeh | Second-order cone programming[END_REF] say that the vectors operator commute in this case). The easiest way to achieve this is to scale by T x = Q x 1/2 and µ -1 , i.e. to change our variables as

x → x ′ := T -1 x x = e and s → s ′ := µ -1 T x s. Note that for convenience, we have also rescaled the duality gap to 1. Recall also that in the matrix case, the equivalent of this scaling was X → X -1/2 XX -1/2 = I and S → µ -1 X 1/2 SX 1/2 . We use the notation z ′ to denote the appropriately-scaled vector z, so that we have

∆x ′ := T -1 x ∆x, ∆s ′ := µ -1 T x ∆s
For approximate quantities (e.g. the ones obtained using tomography, or any other approximate linear system solver), we use the notation • , so that the increments become ∆x and ∆s, and their scaled counterparts are ∆x :

′ := T -1 x ∆x
∆x ′ -∆x ′ F = T x -1 ∆x -T x -1 ∆x F ≤ T x -1 • ∆x -∆x F ≤ ξ, and ∆s ′ -∆s ′ F = µ -1 T x ∆s -T x ∆s F ≤ µ -1 T x ∆s -∆s F = µ -1 x 2 ∆s -∆s F ≤ (1 + η) s -1 2 ∆s -∆s F by Lemma 1 ≤ 2 T s -1 ∆s -∆s F ≤ ξ.
Throughout the analysis, we will make use of several constants: η > 0 is the distance from the central path, i.e. we ensure that our iterates stay in the η-neighborhood N η of the central path. The constant σ = 1 -χ/ √ r is the factor by which we aim to decrease our duality gap, for some constant χ > 0. Finally constant ξ > 0 is the approximation error for the scaled increments ∆x ′ , ∆s ′ . Having this notation in mind, we can state several facts about the relation between the duality gap and the central path distance for the original and scaled vectors.

Claim 3.

The following holds for the scaled vectors x ′ and s ′ :

1. The scaled duality gap is 1 r x ′T s ′ = 1.

d(x, s, µ) ≤ ηµ is equivalent to s

′ -e ≤ η. 3. d(x, s, µσ) = µ • d(x ′ , s ′ , σ), for all σ > 0.
Moreover, if x, s are some vectors scaled using the same scaling, the duality gap between their unscaled counterparts can be recovered as µ r x T s. At this point, we claim that it suffices to prove the two parts of Theorem 4 in the scaled case. Namely, assuming that x ′ next ∈ int L and s ′ next ∈ int L, by construction and Claim 2, we get

x next = T x x ′ next and s next = T x -1 s ′ next and thus x next , s next ∈ int L. On the other hand, if µd(x ′ next , s ′ next , σ) ≤ ηµ, then d(x next , s next , µ) ≤ ηµ follows by Claim 3. Similarly, from 1 r x ′T next s ′ next = σ, we also get 1 r x T next s next = µ.
We conclude this part with two technical results from [START_REF] Renato | Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[END_REF], that use the auxiliary matrix R xs defined as R xs := T x Arw(x) -1 Arw(s)T x . These results are useful for the later parts of the proof of Theorem 4.

Claim 4 ([19], Lemma 3).

Let η be the distance from the central path, and let ν > 0 be arbitrary. Then, R xs is bounded as R xs -νI ≤ 3ην.

Claim 5 ([19], Lemma 5, proof). Let µ be the duality gap. Then, the scaled increment ∆s ′ is

∆s ′ = σe -s ′ -µ -1 R xs ∆x ′ .

Maintaining strict feasibility

The main tool for showing that strict feasibility is conserved is the following bound on the increments ∆x ′ and ∆s ′ : Lemma 2 ([19], Lemma 6). Let η be the distance from the central path and let µ be the duality gap. Then, we have the following bounds for the scaled direction:

∆x ′ F ≤ Θ √ 2 , ∆s ′ F ≤ Θ √ 2, where Θ = 2 η 2 /2 + (1 -σ) 2 r 1 -3η
Moreover, if we substitute σ with its actual value

1 -χ/ √ r, we get Θ = √ 2η 2 +4χ 2 1-3η
, which we can make arbitrarily small by tuning the constants. Now, we can immediately use this result to prove

x ′ next , s ′ next ∈ int L.
Lemma 3. Let η = χ = 0.01 and ξ = 0.001. Then, x ′ next and s ′ next are strictly feasible, i.e.

x ′ next , s ′ next ∈ int L.
Proof. By Claim 1 and Lemma 2,

λ min (x) ≥ 1 -∆x ′ F ≥ 1 -Θ √ 2 -ξ.
On the other hand, since d(x, s, µ) ≤ ηµ, we have d(x ′ , s ′ , 1) ≤ η, and thus

η 2 ≥ s ′ -e 2 F = 2r i=1 (λ i (s ′ ) -1) 2
The above equation implies that

λ i (s ′ ) ∈ [1 -η, 1 + η] , ∀i ∈ [2r]. Now, using Claim 1 twice (together with the fact that z 2 ≤ z F ), λ min (s) ≥ λ min (s ′ + ∆s ′ ) -∆s ′ -∆s ′ F ≥ λ min (s ′ ) -∆s ′ F -∆s ′ -∆s ′ F ≥ 1 -η -Θ √ 2 -ξ,
where we used Lemma 2 for the last inequality. Substituting η = χ = 0.01 and ξ = 0.001, we get that λ min (x) ≥ 0.8 and λ min (s) ≥ 0.8.

Maintaining closeness to central path

Finally, we move on to the most technical part of the proof of Theorem 4, where we prove that x ′ next , s ′ next is still close to the central path, and the duality gap has decreased by a constant factor. We split this into two lemmas. Lemma 4. Let η = χ = 0.01, ξ = 0.001, and let α be any value satisfying

0 < α ≤ χ. Then, for σ = 1 -α/ √ r, the distance to the central path is maintained, that is, d(x ′ next , s ′ next , σ) < ησ.
Proof. By Claim 3, the distance of the next iterate from the central path is

d(x ′ next , s ′ next , σ) = T x ′ next s ′ next -σe F
, and we can transform it as

d(x ′ next , s ′ next , σ) = T x ′ next s ′ next -σe F = T x ′ next s ′ next -σT x ′ next T x ′-1 next e F ≤ T x ′ next • s ′ next -σ • (x ′ next ) -1 . So, it is enough to bound z F := s ′ next -σ • x ′-1 next F
from above, since

T x ′ next = x ′ next 2 ≤ 1 + ∆x ′ 2 ≤ 1 + ∆x ′ 2 + ξ ≤ 1 + Θ √ 2 + ξ.
We split z as

z = s ′ + ∆s ′ -σe + ∆x ′ z 1 + (σ -1)∆x ′ z 2 + σ e -∆x ′ -(e + ∆x ′ ) -1 z 3
, and we bound z 1 F , z 2 F , and z 3 F separately.

1. By the triangle inequality, z 1 F ≤ s ′ + ∆s ′ -σe + ∆x ′ F + 2ξ. Furthermore, after substituting ∆s ′ from Claim 5, we get

s ′ + ∆s ′ -σe + ∆x ′ = σe -µ -1 R xs ∆x ′ -σe + ∆x ′ = α -χ √ r e + µ -1 (µI -R xs )∆x ′ .
Using the bound for µI -R xs from Claim 4 as well as the bound for ∆x ′ F from Lemma 2, we obtain

z 1 F ≤ 2ξ + χ √ r + 3 √ 2 ηΘ. 2. z 2 F ≤ χ √ r Θ √
2 + ξ , where we used the bound from Lemma 2 again.

3. Here, we first need to bound (e + ∆x ′ ) -1 -(e + ∆x ′ ) -1

F

. For this, we use the submultiplicativity of • F from Claim 1:

(e + ∆x ′ ) -1 -(e + ∆x ′ ) -1 F = (e + ∆x ′ ) -1 • e -(e + ∆x ′ ) • (e + ∆x ′ ) -1 F ≤ (e + ∆x ′ ) -1 2 • e -(e + ∆x ′ + ∆x ′ -∆x ′ ) • (e + ∆x ′ ) -1 F = (e + ∆x ′ ) -1 2 • (∆x ′ -∆x ′ ) • (e + ∆x ′ ) -1 F ≤ (e + ∆x ′ ) -1 2 • ∆x ′ -∆x ′ F • (e + ∆x ′ ) -1 2 ≤ ξ • (e + ∆x ′ ) -1 2 • (e + ∆x ′ ) -1 2 . Now, we have the bound (e + ∆x ′ ) -1 2 ≤ 1 1-∥∆x ′ ∥ F and similarly (e + ∆x ′ ) -1 2 ≤ 1 1-∥∆x ′ ∥ F -ξ , so we get (e + ∆x ′ ) -1 -(e + ∆x ′ ) -1 F ≤ ξ (1 -∆x ′ F -ξ) 2 .
Using this, we can bound z 3 F :

z 3 F ≤ σ e -∆x ′ -(e + ∆x ′ ) -1 F + ξ + ξ (1 -∆x ′ F -ξ) 2 .
If we let λ i be the eigenvalues of ∆x ′ , then by Lemma 2, we have

e -∆x ′ -(e + ∆x ′ ) -1 F = 2r i=1 (1 -λ i ) - 1 1 + λ i 2 = 2r i=1 λ 4 i (1 + λ i ) 2 ≤ Θ √ 2 -Θ 2r i=1 λ 2 i ≤ Θ 2 2 - √ 2Θ .
Combining all bound from above, we obtain

d(x ′ next , s ′ next , σ) ≤ 1 + Θ √ 2 + ξ • 2ξ + χ √ r + 3 √ 2 ηΘ + χ √ r Θ √ 2 + ξ + σ Θ 2 2 - √ 2Θ + ξ + ξ (1 -Θ/ √ 2 -ξ) 2   .
Finally, if we plug in χ = 0.01, η = 0.01, ξ = 0.001, we get d(x, s, σ) ≤ 0.005σ, which is less than ησ in the "interesting case" when r is large enough. Now, we prove that the duality gap decreases.

Lemma 5. For the same constants, the updated solution satisfies 

which in turn implies 1 r x ′T next s ′ next ≤ 1 - 0.01 √ r 1 + d(x ′ next , s ′ next , σ) σ √ 2r .
Since Lemma 1 holds for α ≤ χ, by instantiating it for α = χ, from its proof, we obtain d(x ′ next , s ′ next , σ) ≤ 0.005σ, and thus

1 r x ′T next s ′ next ≤ 1 - 0.005 √ r
Therefore, the final α for this Lemma is 0.005.

Running time and convergence

By Theorem 4, each iteration of Algorithm 2 decreases the duality gap by a factor of 1 -α/ √ r, it can be shown that we need O( √ r) iterations to decrease the duality gap by a factor of 2. Therefore, to achieve a duality gap of ϵ, Algorithm 2 requires

T = O √ r log n/ϵ
iterations, which is the same as the bound we had for the classical IPM in Algorithm 1. Here, n is the dimension of x, or, equivalently, n = r + r i=1 n i . By contrast, whereas each iteration of Algorithm 1 is some linear algebra with complexity O(n 3 ), in Algorithm 2 we need to solve the Newton system to a precision dependent T x -1 and T s -1 . Thus, to bound the running time of the algorithm (since the runtime of Theorem 3 depends on the desired precision), we need to bound T x -1 and T s -1 . Indeed, by Claim 2, we get

T x -1 = x -1 = λ (x) -1 and T s -1 = s -1 = λ min (s) -1 .
If the tomography precision for iteration i is chosen to be at least (i.e. smaller than)

δ i := ξ 4 min λ min (x i ), λ min (s i ) ,
then the premises of Theorem 4 are satisfied. The tomography precision for the entire algorithm can therefore be chosen to be δ := min i δ i . Note that these minimum eigenvalues are related to how close is the current iterate to the boundary of L -as long as x i , s i are not "too close" to the boundary of L, their minimal eigenvalues should not be "too small". There are two more parameters that impact the runtime of Theorem 3: the condition number of the Newton matrix κ i and the matrix parameter ζ i of the QRAM encoding in iteration i. For both of these quantities we define their global versions as κ = max i κ i and ζ = max i ζ i . In Section 5 we present some numerical experiments that give some indications on how these parameters behave for real-world problems. Finally, we can state the theorem about the entire running time of Algorithm 2: Theorem 5. Let (6) be a SOCP with A ∈ R m×n , m ≤ n, and L = L n 1 × • • • × L nr . Then, Algorithm 2 achieves duality gap ϵ in time

T = O √ r log n/ϵ • nκζ δ 2 log κζ δ .
This complexity can be easily interpreted as product of the number of iterations and the cost of n-dimensional vector tomography with error δ. So, improving the complexity of the tomography algorithm would improve the running time of Algorithm 2 as well.

Note that up to now, we cared mostly about strict (conic) feasibility of x and s. Now, address the fact that the linear constraints Ax = b and A T y + s = c are not exactly satisfied during the execution of the algorithm. Luckily, it turns out that this error is not accumulated, but is instead determined just by the final tomography precision: Theorem 6. Let (6) be a SOCP as in Theorem 5. Then, after T iterations, the (linear) infeasibility of the final iterate x, y, s is bounded as

Ax T -b ≤ δ A , A T y T + s T -c ≤ δ A + 1 .
Proof. Let (x T , y T , s T ) be the T -th iterate. Then, the following holds for Ax T -b:

Ax T -b = Ax 0 + A T t=1 ∆x t -b = A T t=1 ∆x t . ( 12 
)
On the other hand, the Newton system at iteration T has the constraint A∆x T = b -Ax T -1 , which we can further recursively transform as,

A∆x T = b -Ax T -1 = b -A x T -2 + ∆x T -1 = b -Ax 0 - T -1 t=1 ∆x t = - T -1 t=1 ∆x t .
Substituting this into equation ( 12), we get

Ax T -b = A ∆x T -∆x T .
Similarly, using the constraint

A T ∆y T + ∆s T = c -s T -1 -A T y T -1 we obtain that A T y T + s T -c = A T ∆y T -∆y T + ∆s T -∆s T .
Finally, we can bound the norms of these two quantities,

Ax T -b ≤ δ A , A T y T + s T -c ≤ δ A + 1 .

Numerical results

As mentioned before, SOCPs encompass an extremely broad family of problems, of both theoretical and practical importance. For example, both quadratic (QP) and quadratically-constrained quadratic programs (QCQP) can be easily reduced to SOCP. Whereas an extensive list of problems and their reductions to SOCP can be found in [START_REF] Alizadeh | Second-order cone programming[END_REF], in this section we focus on the support vector machine (SVM) training problem from machine learning. Given a set of vectors

X = {x (i) | i ∈ [m]} ( training 
examples) and their labels y (i) ∈ {-1, 1}, the objective of the SVM training process is to find the "best" hyperplane that separates training examples with label 1 from those with label -1. More precisely, the SVM solution is the hyperplane with the maximum margin in the case when X can be separated using a single hyperplane (i.e. if X is linearly separable), and a solution of a certain penalized optimization problem, otherwise. Since SVM is used here just as an example of SOCP, we skip any further theoretical discussion about it, and just state the optimization problem that needs to be solved in order to obtain the said hyperplane:

min w,b,ξ w 2 + C ξ 1 s.t. y (i) (w T x (i) + b) ≥ 1 -ξ i , ∀i ∈ [m] ξ ≥ 0. (13) 
There are, however, two key theoretical takeaways, related to the fact that solving SVMs using an SOCP solver (classical or quantum) requires a number of iterations proportional to √ r, the square root of the number of conic constraints:

1. "Computing" the quadratic term w 2 in the objective function can be done using a single conic constraint.

2. Ensuring that ξ ≥ 0 requires m conic constraints, namely

ξ i ∈ L 0 for i ∈ [m].
It is also well-known that the SVM problem can be modified and expressed as a least-squares problem:

min w 2 + C ξ 2 s.t. y (i) (w T x (i) + b) = 1 -ξ i , ∀i ∈ [m] (14) 
This formulation is called least-squares SVM (LS-SVM or ℓ 2 -SVM) and it lacks some notable properties of the regular SVM (as introduced in ( 13)), such as weight sparsity. Nevertheless, being a least-squares problem, it can easily be solved by solving a single linear system (as seen in [START_REF] Rebentrost | Quantum support vector machine for big data classification[END_REF]), as well as in O(1) iterations of Algorithm 2. Finally, we present some numerical results that demonstrate the performance of our algorithm when applied to a real-world problem. The problem of choice is a random instance of SVM with 100 data points and 50 features. The target duality gap was set to 10 -3 , and the experiment was ran under two noise models: first, in order to get a baseline, we ran the algorithm with no noise, i.e. with exact Newton system solutions. Then, we ran the algorithm with iid Gaussian noise of variance δ i / √ 50 (this kind of noise was selected to match in expectation the precision guarantees by Theorem 4). For both settings, we tracked the duality gap µ, the minimum eigenvalues λ min (x) and λ min (s), as well as κ, the condition number of the Newton matrix. The results can be seen on Figure 1 and Figure 2. We see that in both cases the duality gap decreases exponentially (as it should), until it reaches its target value of 10 -3 . In both cases, the eigenvalues λ min (x) and λ min (s) seem to be constant multiples of µ, although it is currently an open question to determine this factor just in terms of the input data. Similarly, the condition number κ if the Newton matrix seems to grow polynomially with the duality gap µ, and here it would also be interesting to find the underlying theoretical relationship. 

Iteration

Central path distance (no noise) Central path distance (with noise)

Figure 3: Distances from the central path Interestingly, the only parameter where the impact of noise can be seen is the distance of the current iterate from the central path. Namely, we start the IPM from a strictly feasible solution, albeit one that is close to the central path. On Figure 3 we see that in the noiseless case, the iterate enters N η after just a few iterations, whereas in the noisy case the distance falls off exponentially until the iterate enters N η .

Concluding remarks

In this report, we presented an approximate interior-point method for second-order conic programming, that converges in the same number of iterations as its exact counterpart (e.g. from [START_REF] Renato | Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[END_REF][START_REF] Ben | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF]), namely O( √ r log(n/ϵ)). By using a quantum algorithm for solving linear systems, the per-iteration complexity has been reduced from O(n 3 ) to O nκζ δ 2 log κζ δ , which opens the possibility of a significant speedup for large n. The presence of this speedup is further corroborated with numerical experiments, using random SVM instances as model problems.

The theoretical analysis presented in Section 4 is interesting in its own right, especially when compared to SDP analyses, both exact [START_REF] Ben | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF] and approximate [START_REF] Kerenidis | A quantum interior point method for LPs and SDPs[END_REF]. We see that these analyses share the same structure, even down to the proof of more technical results, such as Lemma 4. This suggests the existence of a simple unified theoretical analysis of approximate IPMs for LP, SOCP and SDP, using the Jordan-algebraic framework.

Finally, this analysis could be improved by finding theoretical bounds for the constants κ, ζ and δ. Of them, it seems that proving that δ i = Θ(µ i ), and thus δ = Θ(ϵ) should be the most straightforward. On the other hand, κ and ζ are influenced by the input matrix A, over which we have no control.

Nevertheless, experiments suggest that at least in practice "everything works out" much more easily than in theory. A prime example of this is the fact that both Algorithm 1 and 2 converge in the same number of iterations (compare Figures 1 and2), which suggests that there is no loss in the speed of convergence (i.e. in practice, σ = σ). Additionally, it seems that the requirement of starting within the a tight neighborhood N η of the central path is not so strict anymore, as the algorithm will converge it exponentially quickly.

  the Lorentz cone of dimension n, 3. S n×n + = {X ∈ R n×n | X symmetric positive semidefinite}, the cone of n × n positive semidefinite matrices.

  y, s) | (x, y, s) strictly feasible and d(x, s, ν) ≤ ην}.

Algorithm 2 2 .

 22 The quantum interior point method for SOCPs Require: Matrix A and vectors b, c in QRAM, parameters T, δ > 0. 1. Find feasible initial point (x, y, s, µ) = (x, y, s, µ 0 ) and store the solution in the QRAM. Repeat the following steps for T iterations. a) Compute the vector σµe -x • s classically and store it in QRAM. Estimate (∆x; ∆y; ∆s) b) Estimate norm of (∆x; ∆y; ∆s).

Figure 1 :

 1 Figure 1: SVM experiment without noise.
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Figure 2 :

 2 Figure 2: SVM experiment with a noise model that simulates the tomography algorithm with the precision parameter δ = min{λ min (x), λ min (s)}, as required by Theorem 4.

  and ∆s ′ := µ -1 T x ∆s. Finally, we denote the scaled version of the next iterate as x ′ next := e + ∆x ′ and s ′ next := s ′ + ∆s ′ . Now, we see that the statement of Theorem 4 implies the following bounds on ∆x ′ -∆x

′ F and ∆s ′ -∆s ′ F

Appendices

A. Constructing the block encodings of the Newton matrix

Recall that the Newton system at each iteration is determined the Newton matrix M and the right-hand side r, defined as

In order to achieve the complexity from Theorem 5, both need to be constructed in O(n) time each iteration. Moreover, we allow ourselves a one-time cost of O(nnz(A)) (where nnz(A) is the number of nonzero entries in A) to construct a block encoding of A, that will be reused in later iterations. Since the identity block can be easily constructed, the only remaining task is to quickly construct block encodings for Arw(x) and Arw(s), since they change every iteration. Luckily, both of them are sparse, with 3n-2r entries, so they can be constructed entry-by-entry in O(n) time per iteration.

On the other hand, we also need to explain how to efficiently construct |r every iteration. First off, note that given |u and |v , we can construct |u -v , if we multiply (u; v) by the matrix [I -I]. Thus, for constructing |b -Ax , we exploit the fact that |Ax can be constructed in O(κζ), and then just use the trick above to perform subtraction. Similarly, cs -A T y can be constructed using 3 multiplications. Finally, since we do not need to perform any dense matrix-vector multiplications to compute σµe -x • s, we can compute it completely classically, in O(n). In total, constructing |r takes O (nκζ), which is still dominated by needed to perform tomography.