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Abstract: In order to control the length of micro-channels ablated at the surface of 
dielectrics, we use annular filtering apertures for tailoring the depth of focus of micrometric 
Gaussian-Bessel beams. We identify experimentally and numerically the appropriate beam 
truncation that promotes a smooth axial distribution of intensity with a small elongation, 
suitable for processing micro-channels of small aspect ratio. Single-shot channel fabrication is 
demonstrated on the front surface of a fused silica sample, with sub-micron diameter, high-
quality opening, and depth of few micrometers, using 1 ps low-energy (< 0.45 µJ) pulse. 
Finally, we realize 10 × 10 matrices of densely packed channels with aspect ratio ~5 and a 
spatial period down to 1.5 μm, as a prospective demonstration of direct laser fabrication of 2D 
photonic-crystal structures. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Bessel beams have attracted great attention since firstly demonstrated by Durnin [1]. Such 
beams can maintain their transverse shape invariant over quite long propagation distance, 
denoted as “diffraction-free”. Moreover, they have the capability to reconstruct themselves 
behind a small obstacle, exhibiting high robustness during propagation [2]. These features 
make Bessel beams attractive in the field of super-resolution imaging [3], optical 
manipulation [4,5], and laser machining [6–10]. In the context of deep drilling with ultrafast 
laser pulse in transparent materials, zero-order Bessel beam shows its decisive advantages 
over Gaussian beam, that can be summarized in terms of penetration geometry, nonlinear 
robustness and interaction phenomenology [11,12]. In particular, a Bessel beam overcomes to 
certain extent the transient surface plasma screening effects that limit Gaussian beam 
applicability to depths of hundreds of nanometers [13], since it permits extended penetration 
of the laser pulse inside the bulk material. Ultrahigh aspect ratio (depth/diameter) channels 
exceeding 1200:1 have been reported [14] by using femtosecond (fs) micro-Bessel beams. 
Juxtaposing several nanochannels has proven its efficiency for cutting or cleaving transparent 
samples [15]. 

Bessel-beams have also been considered as interesting tools for the fabrication of 
photonic-crystal structures [16]. In this context, the characteristic dimensions of the fabricated 
channels or holes are critical. For instance, in integrated optics, 2D photonic crystal structures 
providing novel optical functions like super-prism, negative diffraction/refraction [17] or 
photonic band gap [18,19] are usually composed by a block of periodically arranged holes. 
Typically, these holes are desired to have taper-free profiles, hundreds of nanometers in 
diameter and a few micrometers in depth. Despite the effectiveness of short-pulse-duration 
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Gaussian-Bessel beams for drilling high aspect ratio channels, it is quite challenging to 
precisely manipulate the characteristics of the fabricated holes and to access diverse aspect 
ratios. In our previous work [20], we demonstrated the front-surface fabrication of moderate 
aspect ratio micro-channels in fused silica by Gaussian–Bessel laser pulse of picosecond (ps) 
duration. High quality taper-free channels with excellent cylindrical shape, mean diameter of 
~1.2 µm and length of ~40 μm were fabricated. However, further downscaling of the spatial 
characteristics of these channels is still required. 

Fabricating taper-free channels (from the front surface) with aspect ratio of a few units is 
challenging. Highly focused Gaussian beams are not well suited to this aim, because: (i) 
strong absorption of the beam in the first hundred(s) of nanometers of the material may 
drastically limit the accessible depth, so the crater profile does not replicate the beam profile 
[13], and (ii) considering a radial energy relaxation profile, a Gaussian-Bessel beam is prone 
to reduce channel tapering with respect to Gaussian beam, and also to avoid non-uniform 
crater profiles observed in the literature [21]. However, it is not straightforward for a 
Gaussian-Bessel beam to directly fabricate channels with aspect ratio of a few units. This 
requires dedicated engineering of the beam. Shaping the spatial phase and/or the amplitude 
was shown to be effective in tailoring the intensity distribution. For instance, the side lobes of 
a conventional Bessel beam can be eliminated by introducing a specially designed binary 
phase plate in the beam path before the axicon [22]. Beam filtering at the Fourier plane of a 4f 
optical system with a stopper and aperture efficiently suppresses the undesired axial 
modulation [23]. The axial intensity profile can also be customized: by using spatial light 
modulators that enable to engineer the beam propagation, on-axis intensities with uniform, 
increasing/decreasing [24,25] or length-tunable profiles [26] have been demonstrated. In the 
present work, we use a simple and convenient solution – near-field filtering with an annular 
slit – to tailor the depth of focus (DOF) of the Gaussian-Bessel beam, and we show the 
interests of this technique to machine short-length microchannels on the front-surface of 
transparent dielectric materials. 

The paper is organized as follows. First, we generate and characterize a truncated 
Gaussian-Bessel (TGB) beam that preserves the merit of Bessel beams and has about one 
quarter the DOF of the initial Gaussian-Bessel beam. To support our development, we 
analyze numerically the influence of the annular slit width on the spatial beam distribution. 
Then we use our customized TGB beam to perform single-shot ablation experiments on the 
front surface of a fused silica sample at different pulse energy and for the two pulse durations 
of 25 fs and 1 ps. The geometrical characteristics of the ablated channels are characterized by 
optical microscopy and scanning electron microscopy. Finally, we demonstrate that under 
proper processing conditions, arrays of non-through channels matching the requirements for 
the fabrication of photonic integrated circuits (submicron opening size, aspect ratio < 10, 
repeatability with high accuracy) are accessible. 

2. Generation and characterization of a short-DOF beam by truncation of a 
Gaussian-Bessel beam 

The experiment is performed with the beam line 5A (1 mJ, 100 Hz, 25 fs, linearly polarized, 
800 nm) of the Ti:Sapphire ASUR laser platform (Applications des Sources Ultra-Rapides) of 
LP3 laboratory. The schematic of the beam shaping setup is shown in Fig. 1(a). It basically 
consists of an axicon (Altechna, 1-APX-2-H254-P, n = 1.45, nominal base angle = 1°) 
providing a first Bessel region, and a 4f demagnification optical system (with a factor of 50) 
made of a lens (f1 = 500 mm) and a microscope objective (20 ×, NA = 0.4, f2 = 10 mm, 
Mitutoyo NIR, working distance 20 mm) to get a second Bessel region (with half conical 
angle of 21.4° in air) adapted for micromachining. The setup and characteristics of the optical 
elements used are the same as in [20] except that here we further tailor the beam by inserting 
specially designed annular apertures in the beam path, just after the axicon. These annular 
apertures are home made by laser peeling treatment on metal-coated (600 nm thick copper 
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axicon tip apex, which leads to the typical horn-shape at the beginning of the Gaussian-Bessel 
beam and the intensity oscillations along the propagation axis [24,27]. The mean size of the 
central lobe of the beam is estimated as ~840 nm and DOF ~80 μm at full width at half 
maximum (FWHM). 

A straightforward technique to achieve a Bessel beam with shorter DOF is to truncate the 
incident Gaussian beam with a circular aperture [28]. However, in view of keeping away the 
undesired effects from the imperfect apex of the axicon, that induce intensity modulations 
along the propagation axis, we additionally block the central area of the beam. To this aim, 
we thus place an annular aperture, with width of 420 μm and mean radius of 1185 µm to 
perform beam truncation just next to the axicon. The insertion energy loss of the annular slit 
was measured to be relatively high, approximately 86%, but this is not detrimental for the 
present experiments since we dispose of a large reserve of energy. The TGB beam is shown 
in Fig. 1(c). The size of the central lobe is slightly increased (~970 nm at FWHM), and 
interestingly a slight inverse tapering profile of the beam is observed. These effects come 
from the fact that the slit truncation causes wave diffraction. Finally, the TGB beam obtained 
here not only clearly shows a shorter DOF, from ~80 μm (Gaussian-Bessel beam) to ~20 μm, 
but also it has a smoother axial intensity profile and a better stability of beam distribution than 
the initial Gaussian-Bessel beam in practice. Figure 1(d) plots the normalized axial intensities 
of these two beams, and shows their relative axial positioning. 

3. Simulation of the truncated Gaussian-Bessel beam 

In this section, the propagation of the truncated beam is simulated, in order to justify our 
choice of the appropriate annular slit width, and to identify the limitations of this method to 
get the shortest uniform DOF. The simulation is performed only in the first Bessel region due 
to the paraxial conditions required by the scalar Fresnel diffraction theory. However, the 
beam propagation in the second Bessel region is closely related to the first region through the 
4f system taking into account its image relay function (with a demagnification factor of 50 
and 2500, respectively in transversal and axial directions). 

3.1 Modeling of propagation 

Free wave propagation can be described according to the Fresnel diffraction integral [29]: 

 ( ) ( ) ( ) ( )exp
, , ,

ikZ
U x y U x y h x y

i Zλ
⊗′ =     (1) 

( ),U x y′  is the complex amplitude of the field to be solved at a plane where the beam has 

traveled along a distance Z. ( ),U x y  is the input field distribution at the original point of Z = 

0. The symbol ‘⊗’ stands for the convolution operator. ( ),h x y is the convolution kernel 

containing the quadratic phase term [29]: 

 ( ) ( )2 2, exp
2

ik
h x y x y

Z
 = +  

 (2) 

Discretizing the two terms in Eq. (1) to ( ),U m n  and ( ),h m n , and making use of the 

convolution theorem, the above-mentioned convolution calculations can be switched to two 
Fourier transforms and one inverse Fourier transform (see Eq. (3)). The reason of this 
mathematical treatment is to improve the computing speed thanks to the fast Fourier 
transform (FFT) algorithm. 

 ( ) ( ) ( ) ( ){ }1exp
, , , ,

ikZ
U m n Z FFT FFT U m n FFT h m n

i Zλ
−= × ⋅  ′     (3) 
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stationary way and waste less energy than fs pulses before the laser pulse deposits its energy 
in the material in the intense central core volume. Note that it has been shown that Bessel 
beams with low cone angle are more vulnerable to nonlinearities [32]. Increasing the latter 
could be a route for reducing the limitation observed with ultrashort (25 fs) pulses. Finally, 
Bhuyan et al. [34] reported that, at low cone angle of 7° in fused silica, chirping laser pulses 
from fs to ps regime can be an effective strategy to fight against the poor stability of nonlinear 
Bessel beams, and to improve the energy deposition efficiency for bulk material modification, 
which is in support of our experimental result. Similar conclusions were also obtained by 
Garzillo et al. [35] in a different glassy material (BK7). 

The most interesting range for short-length channel processing (1 ps case, E < 0.5 µJ) is 
plotted in Fig. 6(c), regrouping the evolution of channel diameter and length. It clearly shows 
that small aspect ratios, in the range of ~5, with sub-micrometric opening diameter, can be 
obtained using 1 ps pulses of low energy. The shortest channel length could approach the 
level of one micron with the lowest energy applied here of 0.28 μJ. Moreover, comparing the 
in-depth transverse profiles at different depths (using for example the case of energy of 0.36 
µJ in Fig. 4), we observe that the diameter of the channel does not vary significantly, in 
agreement with previous experiments and dedicated analysis [20]. Using post-mortem 
polishing procedure, it is possible to further decrease the aspect ratio by removing calibrated 
thicknesses of matter at the sample surface, as also demonstrated in [20]. This way, taper-free 
holes with even smaller aspect ratio (in the range 1-5) and diameter opening below the upper 
wavelength of visible range are reachable when small-energy 1 ps pulses are used. 

4.3 Processing of matrices of channels 

Finally, to highlight the interest of the tailored short TGB laser pulses and their flexibility for 
single step direct writing of two-dimensional photonic crystal structures, we fabricated square 
matrices of 10 × 10 channels with spatial pitch of respectively 5 μm, 3 μm, and 1.5 μm (see 
Figs. 7(a)-7(c)). They are processed sequentially by using single pulses of 1 ps duration and 
0.36 μJ energy, corresponding to channel dimensions of 680 nm in diameter and 3.6 µm in 
length (see Fig. 6(c), which is used as a look-up table). We chose these parameters on the 
basis of the results shown above. 

The obtained matrices show densely-packed channels, that are regular in terms of 
morphology, with little residual side effects (such as bump, melted zone, etc.) around the 
opening of every channel. Indeed, the surrounding affected zone is << 100 nm (much below 
the inter-channel spacing, even in the 1.5 µm case). Fluctuations in the separation of channels 
are observed, which is mainly attributed to the limitations of the translation stage. Note the 
pollutants on surface become more apparent when smaller separations are applied due to the 
increasing density of residues. Air-blowing or liquid immersion strategies can be considered 
during the laser ablation for improvement in future works. 

To confirm the void nature of the channels in bulk, the sample surface is repeatedly 
polished, metalized and characterized by SEM. As an example, we show in Fig. 7(d) the 
sample surface of the 5 µm pitch matrix when 0.5 μm material thickness is removed by 
polishing away. The filling of the channels (see the white spots in SEM) is attributed to post 
processing polishing substances. Indeed, these fillings have been identified as CeO2 from 
Energy Dispersive Spectroscopy (EDS) coming from 2.5 μm CeO2 powder used for sample 
polishing, see Fig. 7(e). The dark spots in Si image (Fig. 7(f)) explicitly indicate the lack of a-
SiO2, thus confirming the void formed there. 

                                                                                              Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 7005 



Fig. 7
by the
yellow
matrix

5. Conclusio

Annular apert
processing of 
the energy, p
through both 
method in tai
For channel p
We demonstr
length in the m
pulses are app
“lattice consta
need of post-p
using addition
conditions. W
(complementa
application of
crystal structu

Funding 

China Schola
China (Gran
(No.LY14F05
European Com
Côte d’Azur,
University. 

7. 10 × 10 channel
e TGB beam with
w dashed boxes in
x for better resolut

ons 

ture truncated 
f channels with
pulse duration
simulation and
loring the dept

processing, 1 p
rate that sub-m
micrometric ra
plied with puls
ant” as small a
polishing of th
nal post-polish

We anticipate th
ary to other w
f such nanofab
ures in various 

arship Council
nt No.2018YF
50002), Agenc
mmunity, Min
 Department o

 arrays, with perio
h 1 ps pulse dura
n (b) and (c), the 
tion. (d,e,f): eleme

Gaussian-Bes
h moderate to s
n and truncatio
d experimenta
th-of-field of t

ps pulse duratio
micron size ch
ange and neglig
se energy less 
as 1.5 μm are f
he surface) and
hing procedure

hat the high flex
works, e.g. [1
brication techn
materials. 

l (CSC), Natio
B11074), Nat

ce Nationale d
nistry of Resea
of Bouches-du

ods of: (a) 5 µm, (
ation and 0.36 μJ 

insets show zoom
ental analysis by E

ssel beam tech
small aspect ra
on factor. Tru
l studies to rev
the Gaussian-B
on has been fo
hannels (down
gible side effec
than 0.45 μJ. 

fabricated, with
d an aspect rati
e [20] or upsc
xibility offered
16].) contribut
nique, in view

onal Key Res
tional Natural

de la Recherch
arch and High
u-Rhône, City 

(b) 3 µm, and (c) 
pulse energy. As

ms in the upper-ri
EDS on the polishe

hnique has bee
atio (from ~12 
uncation cond
veal the range 

Bessel beam (re
ound to be mor
n to 300 nm d
cts can be proc
Finally, 10 × 

h a good openi
io of ~5 which
caled by varyi
d by the irradia
tes to open b

w of direct lase

earch and De
l Science Fo
he (project Sm
h Education, R

of Marseille,

1.5 μm, fabricated
s indicated by the
right corner of the
ed sample surface. 

en developed f
to ~3), contro

ditions are inv
 of applicabili
eduction by a 
re favorable th
diameter) with
cessed when si
10 channel arr
ing quality (wi
h can be down
ing the laser 

ation from the f
broader perspe
er writing of p

evelopment Pro
oundation of 
mart-Lasir 11B
Region Provenc
, CNRS, Aix-

 

d 
e 
e 

for direct 
llable via 

vestigated 
ity of this 
factor 4). 

han 25 fs. 
h variable 
ingle 1 ps 
rays with 
ithout the 
scaled by 
operating 
front side 

ectives of 
photonic-

ogram of 
Zhejiang 

BS09026), 
ce-Alpes-
Marseille 

                                                                                              Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 7006 



Acknowledgments 

We thank D. Grojo, R. Clady, L. Charmasson and J. L. Bellemain for helpful discussions and 
technical assistance. 

References 

1. J. Durnin, J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). 
2. R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A. Syrett, “Interboard optical data 

distribution by Bessel beam shadowing,” Opt. Commun. 122(4-6), 169–177 (1996). 
3. N. Blow, “Cell imaging: New ways to see a smaller world,” Nature 456(7223), 825–828 (2008). 
4. C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. 

Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” 
J. Phys. At. Mol. Opt. Phys. 48(9), 94006–94016 (2015). 

5. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005). 
6. G. Zhang, R. Stoian, W. Zhao, and G. Cheng, “Femtosecond laser Bessel beam welding of transparent to non-

transparent materials with large focal-position tolerant zone,” Opt. Express 26(2), 917–926 (2018). 
7. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect 

ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 
(2010). 

8. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 
6(5), 607–621 (2012). 

9. R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced 
tools for laser materials processing,” Adv. Opt. Technol. 7(3), 165–174 (2018). 

10. F. Courvoisier, R. Stoian, and A. Couairon, “Ultrafast laser micro- and nano-processing with nondiffracting and 
curved beams,” Opt. Laser Technol. 80, 125–137 (2016). 

11. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser 
processing,” Appl. Phys. Lett. 87(17), 171103 (2005). 

12. M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High 
aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 
(2010). 

13. O. Utéza, N. Sanner, B. Chimier, A. Brocas, N. Varkentina, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, 
“Control of material removal of fused silica with single pulses of few optical cycles to sub-picosecond duration,” 
Appl. Phys., A Mater. Sci. Process. 105(1), 131–141 (2011). 

14. S. Mitra, M. Chanal, R. Clady, A. Mouskeftaras, and D. Grojo, “Millijoule femtosecond micro-Bessel beams for 
ultra-high aspect ratio machining,” Appl. Opt. 54(24), 7358–7365 (2015). 

15. L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, “High speed cleaving of crystals with 
ultrafast Bessel beams,” Opt. Express 25(8), 9312–9317 (2017). 

16. F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel 
beams to laser ablation,” Appl. Phys., A Mater. Sci. Process. 112(1), 29–34 (2013). 

17. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact 
wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14(6), 
2413–2422 (2006). 

18. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a 
lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005). 

19. G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium 
niobate photonic crystals,” Opt. Express 16(9), 6302–6316 (2008). 

20. X. Liu, N. Sanner, M. Sentis, R. Stoian, W. Zhao, G. Cheng, and O. Utéza, “Front-surface fabrication of 
moderate aspect ratio micro-channels in fused silica by single picosecond Gaussian-Bessel laser pulse,” Appl. 
Phys., A Mater. Sci. Process. 124(2), 206 (2018). 

21. N. Götte, T. Winkler, T. Meinl, T. Kusserow, B. Zielinski, C. Sarpe, A. Senftleben, H. Hillmer, and T. Baumert, 
“Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics,” Optica 3(4), 389–395 
(2016). 

22. F. He, J. Yu, Y. Tan, W. Chu, C. Zhou, Y. Cheng, and K. Sugioka, “Tailoring femtosecond 1.5-μm Bessel 
beams for manufacturing high-aspect-ratio through-silicon vias,” Sci. Rep. 7(1), 40785 (2017). 

23. M. K. Bhuyan, P. K. Velpula, M. Somayaji, J. P. Colombier, and R. Stoian, “3D Nano-fabrication using 
controlled Bessel-glass interactions in ultrafast modes,” J. Laser Micro Nanoen. 12, 274–280 (2017). 

24. T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 
17(18), 15558–15570 (2009). 

25. I. Ouadghiri-Idrissi, R. Giust, L. Froehly, M. Jacquot, L. Furfaro, J. M. Dudley, and F. Courvoisier, “Arbitrary 
shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator,” 
Opt. Express 24(11), 11495–11504 (2016). 

26. Z. Yao, L. Jiang, X. Li, A. Wang, Z. Wang, M. Li, and Y. Lu, “Non-diffraction-length, tunable, Bessel-like 
beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling,” Opt. 
Express 26(17), 21960–21968 (2018). 

                                                                                              Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 7007 



27. J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated Bessel beam application for intra-volume 
glass modification,” Opt. Express 24(25), 28433–28443 (2016). 

28. M. Cywiak, D. Cywiak, and E. Yáñez, “Finite Gaussian wavelet superposition and Fresnel diffraction integral 
for calculating the propagation of truncated, non-diffracting and accelerating beams,” Opt. Commun. 405, 132–
142 (2017). 

29. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 2005). 
30. P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, 

“Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 
223902 (2007). 

31. M. A. Porras, C. Ruiz-Jiménez, and J. C. Losada, “Underlying conservation and stability laws in nonlinear 
propagation of axicon-generated Bessel beams,” Phys. Rev. A 92(6), 063826 (2015). 

32. P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed 
Bessel beams,” Phys. Rev. A 77(4), 043814 (2008). 

33. P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, “Spatio-temporal 
dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring,” Laser Photonics Rev. 10(2), 
230–244 (2016). 

34. M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio 
bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 
104(2), 021107 (2014). 

35. V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, “Optimization of laser 
energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass,” J. Appl. Phys. 120(1), 
013102 (2016). 

 

                                                                                              Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 7008 




