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A FIRST-ORDER BI-PROJECTION SCHEME FOR INCOMPRESSIBLE

TWO-PHASE BINGHAM FLOWS

RÉNALD CHALAYER AND THIERRY DUBOIS

Abstract. A first-order bi-projection scheme for the numerical simulation of two-phase im-
miscible, incompressible and isothermal flows of viscoplastic media is presented. As in the
Uzawa-like algorithm, the definition of the stress tensor is rewritten in terms of a pointwise pro-
jection. A pseudo-time relaxation term is added in order to obtain a geometric convergence of
the fixed-point iterations used for the computation of the plastic part of the stress tensor. The
coupling between pressure and velocity field is treated with a fractional time-stepping scheme.
The interface between the two phases is handled with a level set formulation. Numerical sim-
ulations of Rayleigh-Taylor instabilities are performed and presented. The first order rate of
convergence with respect to the time step is recovered both in the case of Newtonian and Bing-
ham flows. Comparisons with published results in the case of Newtonian flows validate the
parallel implementation of the bi-projection scheme.

1. Introduction

Mixture of fluids with different rheology and different physical parameters commonly occurs
in geophysical phenomena and environmental problems. For instance, pyroclastic flows are mix-
tures of granular matter and gas generated by volcanic eruptions in the case of plume or dome
collapses. They are a major source of volcanic hazards responsible of considerable damages, in-
juries and even deaths of human beings in populations leaving nearby volcanos. Pyroclastic flows
may sweep along volcano’s hills over long distances resulting in areas of several square kilometers
covered by a deep layer of granular materials as in the partial dome collapse of Soufrière Hills
Volcano in 1997 (see [16]). Another possible scenario is the entrance of a pyroclastic flow into
water generating a tsunami which can also be responsible of disasters and may have a deathly
impact (see [29, 21]).

The rheology of granular flows is not well understood. Nevertheless, granular flows share
characteristic behaviours with flows of viscoplastic medium. Viscoplastic fluids flow ony if the
stress exceeds a thresholds otherwise they do not deform and behave like solids. Granular
material flows like a fluid over long runout distance but, unlike fluids, they stop in finite time.
A model with a rheology similar to the Bingham rheology but with a yield stress depending
on the pressure has been applied to the numerical study of the collapse of granular columns
(see [14]). The aim of this paper is to propose a new time discretization scheme on a simpler
model retaining the complexity of the mixture of two fluids of viscoplastic medium with different
physical parameters, namely density, viscosity and yield stress.
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In the Bingham rheology, the stress tensor becomes proportional to the strain rate if its
strength exceeds the yield stress otherwise it is not prescribed. This model reproduces the pecu-
liar behavior of viscoplastic medium which behaves as a solid when the stress is below the yield
stress and flows like a fluid otherwise. The main difficulty both for theoretical and numerical
studies of viscoplastic flows relies on the non-differentiable definition of the rheology. From a
numerical point of view, the most appealing method due to its simplicity is the regularization
method: a small parameter is introduced so that the stress tensor becomes everywhere propor-
tional to the strain rate with a spatially variable viscosity which remains finite (see [3, 20] for
instance). Regularization methods encounter difficulties in accurately computing the rigid zones
separating yielded and unyielded regions (see [8] for detailed study and analysis). The other
classical approach relies on the variational formulation of the Navier-Stokes equations leading
to an optimization (saddle-point) problem which can be solved with Uzawa-like or augmented
Lagrangian algorithms (see [23] for a review). Both methods accurately compute contours of the
plug regions but they are quite expansive in terms of number of iterations required to achieve
convergence. In the implementation of the Uzawa-like algorithm, the plastic tensor is computed
with a pointwise projection operator. A possible way to increase the convergence rate of Picard’s
iterations used to solve the fixed-point problem coupling the plastic tensor and the velocity field
is to introduce a pseudo-time relaxation term. This has been investigated in [6] in the context
of projection schemes for the time semi-discretization of the Navier-Stokes equations (see [12])
for incompressible and isothermal Bingham flows in the case of homogeneous flows, i.e. with
constant density, and recently extended in [4] to the case of flows with spatially variable physical
parameters, namely density, viscosity and yield stress. In [4], a bi-projection scheme has been
proposed and analyzed. More precisely, it has been proven to be stable and first-order accurate
if the relaxation parameter is properly chosen, i.e. if it equals the time step.

The purpose of the paper is to implement the bi-projection scheme analyzed in [4] in the
context of the numerical study of two-phase immiscible, icompressible and isothermal flows of
viscoplastic medium. A level set formulation is used to track the interface of the fluids. In this
approach (see [26, 25]), the interface is the set of points where the level set function vanishes
and the latter is transported by the velocity field satisfying the Navier-Stokes equations over the
whole domain. For obvious reasons, it is desirable to transport a smooth function rather than a
discontinuous one. The level set function is therefore initialized and maintained, with the help
of a redistancing procedure, as the normal signed distance function from the interface (see [19]).
The reinitialization step consists in solving a Hamilton-Jacobi equation with an artificial time:
the stationary solution of which being a distance function (see [25, 22]). It has been observed
in [22] that, during iterations of the reinitialization procedure the zeros off the level set function
have the tendency to move towards the closest grid point and a subcell fix method has been
proposed to remedy this numerical artifact. In [17], the effect of the temporal discretization of
the Hamilton-Jacobi coupled with the subcell fix algorithm was studied. These methods have
been implemented in the present study.

The paper is organized as follows. In the next section, the mathematical model for the
numerical study of two-phase immiscible, icompressible and isothermal flows of viscoplastic
medium is introduced. As in [6], the non-differentiable definition of the plastic part of the
stress tensor is reformulated with a pointwise projection operator. A non-dimensional form of
the equations is proposed. In Section 3, the bi-projection scheme derived from the first-order
scheme recently introduced and analyzed in [4] is described. The convergence rate of the fixed-
point procedure used to solve the coupling between the velocity field and the plastic tensor is
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recalled. In Section 4, some details on numerical implementation and spatial discretization are
given. Finally, in Section 5, numerical results aiming to assess the accuracy and efficiency of the
bi-projection scheme are presented and discussed. The rate of convergence of the time scheme is
shown to be first-order for the velocity, the density and the pressure. Numerical experiments of
a Rayleigh-Taylor instability finally demonstrate the performance of the bi-projection scheme.

2. A mathematical model for two-phase incompressible Bingham flows

2.1. The level set formulation. In a domain Ω ∈ R2, we consider two immiscible, incom-
pressible and isothermal flows of viscoplastic media separated by an interface Γ(t) moving with
time t > 0. The physical parameters of each phase, i.e. the density, viscosity and yield stress,
are respectively denoted by ρi, µi and αi for i = 1, 2. We assume that ρ2 ≥ ρ1. The level set
formulation (see [26, 5, 25]) aims to write a system of equations governing both phases and sat-
isfied on the whole domain Ω by one set of global unknowns, namely the velocity field u(x, t),
the pressure p(x, t) and the density ρ(x, t). In this framework, the interface Γ(t) corresponds to
the set of points where the level set function φ vanishes, i.e. Γ(t) = {x ∈ Ω; φ(x, t) = 0}. The
level set function is a smooth function of x transported by the flow field. The signed distance
function from the interface is commonly used (see [18] and the reference therein). In this context,
the level set formulation for two immiscible, incompressible and isothermal flows of viscoplastic
media writes

∂φ

∂t
+ div (uφ) = 0 in Ω,(1)

ρ(φ)

(
∂u

∂t
+ div (u⊗ u)

)
+ ∇p = −ρ(φ)ge2 + div τ (φ) in Ω,(2)

div u = 0 in Ω,(3)

where g is the gravitational constant and e2 = (0, 1). Equations (1)-(3) are supplemented
by initial and boundary conditions. Note that the surface tension forces are not taken into
account. For Bingham type flows, the deviatoric stress tensor is related to the strain rate tensor
Du = 1

2

(
∇u+t∇u

)
by

τ (φ) = 2µ(φ)Du+ α(φ)Σ

with

(4)

Σ = Du
‖Du‖ if Du 6= 0,

Σ ∈ Λ if Du = 0,

where Λ ≡
{
λ ∈ R2×2; ‖λ‖ ≤ 1 a.e. in Ω, tr(λ) = 0, tλ = λ

}
and, for any tensor λ ∈ R2×2, ‖λ‖ =(

1
2

∑
i,j λ

2
ij

) 1
2

is its Froebenius norm.

The physical parameters being constant in each phase, we define

(5) ρ(φ) = ρ1H(φ) + ρ2(1−H(φ)),
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where H(φ) is the Heaviside function given by

H(φ) =


1 if φ < 0,
1
2 if φ = 0,

0 if φ > 0,

and similarly for the viscosity µ(φ) and the yield stress α(φ).

2.2. The projection formulation for the Bingham rheology. We now introduce a pro-
jection formulation for the plastic part Σ of the stress tensor which will be used for the con-
struction of the time discretization. For this purpose, let us introduce the projection operator
PΛ : R2×2 −→ Λ. If λ ∈ R2×2 is a symmetric traceless tensor, then its projection onto Λ is
explicit. Indeed, we have, a.e. in Ω,

PΛ(λ) =

λ if ‖λ‖ ≤ 1,

λ/‖λ‖ if ‖λ‖ > 1.

Note that if λ ∈ R2×2 is not traceless then we have PΛ(λ) = PΛ

(
λ − 1

2tr(λ)Id
)
. With the help

of these definitions, it can be easily shown (see [6, 4]) that the following result holds.
Proposition 1. For any positive number `, definition (4) is equivalent to the relation

Σ = PΛ

(
Σ + `Du

)
.

With the help of Proposition 1, the mathematical model (1)-(4) can be rewritten as

∂φ

∂t
+ div(uφ) = 0,(6)

ρ(φ)

(
∂u

∂t
+ div(u⊗ u)

)
− div(2µ(φ)Du) + ∇p = −ρ(φ)ge2 + div(α(φ)Σ),(7)

Σ = PΛ

(
Σ + `Du

)
, ` > 0,(8)

divu = 0.(9)

2.3. A non-dimensional form of the mathematical model. In order to write the sys-
tem (6)-(9) in dimensionless form, we introduce a characteristic length L and we use the physi-
cal parameters of the heavier fluid as reference quantities, namely ρ2, µ2 and α2. As reference

velocity
√
gL is used so that the corresponding reference time is

√
L
g and the reference pressure

is ρ2gL. By scaling all variables with respect to these reference quantities, the mathematical
model in dimensionless form reads

∂φ

∂t
+ div(uφ) = 0,(10)

ρ(φ)

(
∂u

∂t
+ div(u⊗ u)

)
− div

(2µ(φ)

Re
Du

)
+ ∇p = −ρ(φ)e2 +

Bi

Re
div(α(φ)Σ),(11)

Σ = PΛ

(
Σ + `Du

)
, ` > 0,(12)

divu = 0,(13)

where the dimensionless Reynolds and Bingham numbers are respectively defined as

Re =
ρ2

√
gL3

µ2
and Bi =

α2

√
L

µ2
√
g
.
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The dimensionless density is derived from (5), that is

(14) ρ(φ) =
ρ1

ρ2
H(φ) + (1−H(φ)),

and similarly for the viscosity and the yield stress.

3. The first-order bi-projection scheme

Let δt > 0 a time step. We define a discrete time sequence {tn;n ≥ 0} by tn = nδt. The time
semi-discretization of Equations (10)-(13) presented hereafter defines sequences {φn,un,undiv, p

n,
Σn; n > 0} which are approximation of the time continuous solutions, i.e. φn ≈ φ(tn). Both
un and undiv are approximations of the velocity field u(tn). However, undiv is a divergence-free

velocity field while un is not. These sequences are initialized : ρ0 and u0 are given, Σ0 = 0, u0
div

and p0 are computed from u0 so that div(u0
div) = 0, we finally set p−1 = p0.

Let us assume that (φn,un,undiv, p
n,Σn) are known. The first-order bi-projection scheme

discretizing (10)-(13) is a fractional time-stepping method derived from [4] and inspired from [10,
11]. It consists in the following successive steps.

(1) The discrete level set function φn+1 is computed from the transport equation (10) dis-
cretized with an explicit RK3 TVD time scheme [24, 9] using undiv as transport velocity,
i.e. we solve the following equations

(15)



φn,1−φn
δt + div

(
undivφ

n
)

= 0,

φn,2 = 3
4φ

n + 1
4φ

n,1 − δt
4 div

(
undivφ

n,1
)
,

φn,3−φn,2

δt + div
(
undivφ

n,2
)

= 0,

φn+1 = 1
3φ

n + 2
3φ

n,3.

(2) The physical parameters are computed from φn+1 using (14), that is we set

ρn+1 = ρ(φn+1), µn+1 = µ(φn+1), αn+1 = α(φn+1).

(3) Let θ ∈ [0, 1) a given numerical parameter. The velocity field un+1 and the plastic tensor
Σn+1 are solutions of

(16)


ρn+1

(
un+1−un

δt

)
− div

(
2µn+1

Re Du
n+1
)

+ ρn+1 div(undiv ⊗ un)

+∇(2pn − pn−1) = −ρn+1e2 + Bi
Re div(αn+1Σn+1),

Σn+1 = PΛ

(
Σn+1 + `αn+1Dun+1 + θ(Σn −Σn+1)

)
.

(4) The pressure increment pn+1 − pn is solution of the Poisson equation

(17)

∆(pn+1 − pn) =
ρ1

δt
div(un+1),

∂n(pn+1 − pn)|∂Ω = 0.

(5) The divergence-free velocity field un+1
div is obtained by stating

(18) un+1
div = un+1 − δt

ρ1
∇(pn+1 − pn).

The fact that div un+1
div = 0 is a direct consequence of (17) and (18).
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In order to implement the computation of (un+1,Σn+1) solutions of the implicit equation (16)
we solve, as in [6], the associated fixed-point problem through Picard’s iterations. Indeed, let
us set Σn,0 = Σn and assume that, for k ≥ 0, Σn,k ∈ Λ is known, we compute un,k+1 by solving
the linear diffusion equation

(19)
ρn+1

(un,k+1 − un

δt

)
− div

(2µn+1

Re
Dun,k+1

)
+ ρn+1 div(undiv ⊗ un)

+∇(2pn − pn−1) = −ρn+1e2 +
Bi

Re
div(αn+1Σn,k).

This is followed by an explicit and pointwise (a.e. in Ω) Bingham projection providing the
plastic part of the stress tensor Σn,k+1, namely

(20) Σn,k+1 = PΛ

(
Σn,k + `αn+1Dun,k+1 + θ(Σn −Σn,k)

)
.

By iterating over k through equations (19) and (20), the sequence (un,k,Σn,k) converges geo-
metrically to the solution of (16). Indeed we have proved in [4], the following result :

Theorem 1. If 8θ + rBimax(α1,α2)2

min(µ1,µ2) ≤ 8, then, for all n ≥ 0 the sequence (un,k,Σn,k)k tends to

(un+1,Σn+1) when k tends to infinity. Moreover the convergence is geometric with common
ratio 1− θ.

Note that in the case θ = 0, the sequence (un,k,Σn,k)k still tends to (un+1,Σn+1) (see [7])
but the convergence is known to be very slow (see [6]).

4. Numerical implementation

Let d > 0 and Ω =
(
−d

2 ,
d
2

)
×
(
2d, 2d

)
the computational domain. We define a Cartesian

uniform mesh (xi, yj) and we denote by h = d
nx

= 4d
ny

the mesh size, where nx and ny are the

number of mesh cells in each spatial direction. Together with the mesh points, we associate the
midpoints

xi+ 1
2

=
1

2
(xi + xi+1) and yj+ 1

2
=

1

2
(yj + yj+1).

Let a computational cell Kij = (xi, xi+1) × (yj , yj+1). As in the classical MAC scheme for the
incompressible Navier-Stokes equations (see [13]) the discrete velocity unknowns uij = (uij , vij)
are located at the midpoint of the cell edges, that is uij ≈ u(xi, yj+1/2) and vij ≈ v(xi+1/2, yj).
The discrete pressure pij and level set function φij are placed at the center of the mesh cell Kij ,
namely pij ≈ p(xi+1/2, yj+1/2) and similarly for φij . The components of the tensor Σ are also
discretized at the center of the mesh cell. This choice is arbitrary but allows to update all
tensor components, through the local projection (20), at the same mesh locations. Figure 1
summarizes the staggered arrangement of the unknowns. Centered second-order finite volume
schemes are applied to discretize the spatial partial derivatives operator in Equations (15)-(18).
The control volumes are: Kij for the level set function (15) and the pressure increment (17),
Ki,j+1/2 = (xi−1/2, xi+1/2) × (yj , yj+1) for the horizontal component of the velocity uij and
Ki+1/2,j = (xi, xi+1) × (yj−1/2, yj+1/2) for the vertical component of the velocity vij which
correspond to Equations (16) and (18). The Bingham projection (20) is enforced at points
(xi+1/2, yj+1/2). Details on the discretization of the plastic contribution in the momentum
equation and on the discrete contribution, with ghost points, of the boundary conditions are
provided in [6].
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sφij
pij Σij

--
ui+1,juij

6

vi,j+1

6

vij

(xi+1, yj+1)

(xi+1, yj)

(xi, yj+1)

(xi, yj)

Figure 1. Location of the discrete unknowns in the mesh cell Kij = (xi, xi+1)× (yj , yj+1).

The level set equations (15) are discretized with a finite volume WENO scheme of order
5 (see [24, 15]). Even if it is initialized as the signed distance from the interface, the level set
function computed with the fully discrete transport equation will not remain a distance function.
As it is suggested in [26], a redistancing algorithm has to be applied periodically in time. That
is, knowing φn+1, the following Hamilton-Jacobi equation is solved

(21)

{
∂Φ
∂τ + sgn(φn+1)

(
‖∇Φ‖ − 1

)
= 0,

Φ(τ = 0) = φn+1,

where τ is a fictitious time and

sgn(φn+1) =


−1 if φ < 0,

0 if φ = 0,

1 if φ > 0.

Equation (21) is discretized as in [17] with a second-order TVD Runge-Kutta method as time
marching scheme and second-order ENO finite-differences are applied for the spatial resolution.
Stationary solutions Φs of (21) are distance functions, i.e. ‖∇Φs‖ = 1, and share their interface
{x ∈ Ω; Φs(x) = 0} with φn+1. This property is not preserve with a standard second-order
ENO spatial discretization. Indeed, displacement of the interface has been observed during the
fictitious time iterations of the reinitialization procedure. In [17], a subcell resolution near the
interface modifying the ENO scheme has been proposed. The purpose of the subcell resolu-
tion is to fix the position of the interface, the zeros of the level set function φn+1, during the
reinitialization iterations.

As in [22], the Heaviside function used to evaluate the density, the viscosity and the yield
stress in terms of the level set function in (14) is replaced by the following regularized Heaviside
function

Hε(φ) =


0 if φ < −ε,
1
2

(
1 + φ

ε −
1
π sin(πφε )

)
if − ε ≤ φ ≤ ε,

1 if φ > ε.
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Figure 2. Error for the velocity, pressure and density in L2(Ω)−norm. The
slope of the solid black line is 1 corresponding to an error in O(δt).

Regularization of the viscosity coefficient across the interface is required in order to ensure the
continuity of the viscous stress. Note that other regularization formulae could be used (see [27]).
In the spatial discretization of the viscous terms present in the discrete momentum equation,
the viscosity coefficient has to be evaluated both at the center of the mesh cells Kij and at the
mesh nodes (xi, yj). For the latter, second-order spatial interpolation is applied.

The implementation has been done in the F90/MPI code written for one phase Bingham
flows [6]. The PETSc library [1, 2] is used to solve linear systems and to manage data on
structured grids. The communications between the MPI processes are explicitly written with
the help the MPI library.

5. Numerical results

In order to both estimate the convergence rate of the numerical scheme with respect to
the temporal discretization and illustrate the performance of the method, we have performed
simulations of the development of a Rayleigh-Taylor instability in the viscous regime. This
problem consists of a heavy fluid lying above a lighter one in a rectangular domain Ω =
(−d/2, d/2) × (−2d, 2d) under the action of a vertical downward gravitational field of inten-
sity g. The density ratio is related to the Atwood number,

At = (ρ2 − ρ1)/(ρ2 + ρ1),

according to Tryggvarson’s definition [28] and the initial position of the interface is

y(x) = −0.1d cos(2πx/d).

In the rest of the paper, the density ratio is 3, so that At = 0.5, and Re = 3000. We assume
that symmetry of the initial condition is maintained during the whole time evolution, so that
the computational domain can be restricted to (0, d/2)×(−2d, 2d). No-slip condition is enforced
on the bottom and top walls and symmetry is imposed on the two vertical ones.
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Figure 3. Re = 3000; Bi = 0, α1 = α2 = 0; density ratio 3. The interface
is shown at times 1, 1.5, 1.75, 2, 2.25 and 2.5. The heavier fluid (ρ2, µ2, α2)
corresponds to the red zone.

5.1. Time convergence. We first estimate the convergence rate of the numerical scheme with
respect to the temporal discretization. We have performed numerical simulations with Bi = 1.
The heavier fluid is a viscoplastic medium, that is to say α2 = 1, and the lighter one is Newtonian,
i.e. α1 = 0. Values for r and θ are such that the hypothesis of Thereom 1 are satisfied and θ = δt.
With these parameters and starting from rest, a numerical simulation has been performed up
to the non-dimensional time t = 1.8 on a grid with 256 × 2048 mesh points and a time step
δt = 5 × 10−5. Let us denote by uref, pref and ρref the corresponding (discrete) velocity field,
pressure and density. Note that the flow is not stationary at time t = 1.8. Indeed, the amplitude
of the wave is of the order of 2.5d.
In order to estimate the numerical error due to the time discretization, we have plotted on
Figure 2 the L2-norm of the difference between uref, pref, ρref and uδt, pδt, ρδt computed on the
same mesh with various increasing time steps δt = 3.125 × 10−4, 6.25 × 10−4, . . . , 5 × 10−3.
In order to highlight the convergence rate, logarithmic scales are used. For this particular flow
configuration, we recover the expected first order time accuracy for the bi-projection scheme
proved in [4].

5.2. Numerical simulations of Rayleigh-Taylor instabilities. We first compute the devel-
opment of a Rayleigh Taylor instability in the (test) case of Newtonian flows reported in [10], so
that Bi = 0. Note that in our dimensionless model, we choose ρ2 as reference density so that the
Reynolds number is 3000 which corresponds to Re = 1000 in [10]. As in [10], finite differences
are used for the time discretization but the front tracking method and the spatial discretization
are different. The time evolution of the interface is shown in Figure 3 at times 1, 1.5, 1.75, 2,
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Figure 4. Re = 3000; Bi = 10, α1 = 0, α2 = 1; density ratio 3. The interface
is shown at times 1, 1.5, 1.75, 2, 2.25 and 2.5. The heavier viscoplastic fluid
(ρ2, µ2, α2) corresponds to the red zone.

and 2.5 in the time scale of Tryggvason, which is related to ours by tTryg = t
√
At. By comparing

the positions of the falling and rising bubbles as the time evolves, a good agreement with the
results in the pioneering work of [28] and the more recent ones in [10] is obtained. Differences
are visible in the fine structures especially at the two last times but a similar behavior in the
vortex structures can be observed. The numerical methods used to compute the interface are
completely different: a level set formulation is used here while a stabilization with a nonlinear
viscosity is added in the mass conservation equation in [10]. Therefore, we may not expect to
obtain exactly the same (meaning with a pointwise comparison) fine turbulent like structures of
the interface motion.
We next compute a more challenging case, for the bi-projection scheme, where the heavier fluid
is a Bingham medium (α2 = 1) while the lighter fluid is modeled with a Newtonian flow (α1 = 0).
We first choose Bi = 10, and we report the time evolution of the interface at the same times
as in the previous test case (see Figure 4). At this Bingham number, we first observe that
the influence of this parameter on the positions of the falling and rising bubbles is not visible.
Differences between Figures 3 and 4 appear in the shape of the falling structure in the early
stage of the dynamics and also in the fine vortex structures developing during the fall of heavier
viscoplastic medium. Note that at tTryg = 1, the head of the falling bubble has a different shape
with an almost flat part.

We finally solve the same problem but for a much larger Bingham number Bi = 100. In order
to highlight the impact of the Bingham number on the flow, at each time, we have simultaneously
plotted on Figure 5 the position of the interface (on the left) and the deformation rate ‖Du‖
(on the right) in the viscoplastic phase. The values of ‖Du‖ shown are in the range [10−15, 102].
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Figure 5. Re = 3000; Bi = 100, α1 = 0, α2 = 1; density ratio 3. Interface (left)
and deformation rate ‖Du‖ in the viscoplasitc phase (right) are shown at times
1.5, 2, 2.5, 2.75, 3 and 3.25. The heavier fluid (ρ2, µ2, α2) corresponds to the red
zone.

There is almost no raising of the lighter fluid into the heavier one at this Bingham number.
The heavier viscoplastic medium falls very slowly and the shape of the falling bubble looks like
a finger at times tTryg = 3 and 3.25, a solid block almost rectangular sliding along the vertical
symmetric axis. This is assessed by the large rigid zone growing with time and filling most of
this finger. Unlike in the previous cases, there are no fine structures developing here. The plastic
zones (black regions on Figure 5) are located just behind the interface in the domain occupied
by the viscoplastic medium. At even larger Bingham number, we may expect that the heavier
fluid will not flow.

6. Concluding remarks

We have proposed in this paper a first-order bi-projection scheme for the numerical simulation
of two-phase immiscible, incompressible and isothermal flows of viscoplastic media. In order to
track the interface between fluids a level set formulation is used. As in the Uzawa-like algorithm,
the definition of the stress tensor is rewritten in terms of a pointwise projection and a pseudo-
time relaxation term is added in order to achieve a geometric convergence of the fixed-point
(Picard) iterations used for the computation of the plastic part of the stress tensor. A fractional
time-stepping scheme is applied in order to handle the coupling between pressure and velocity
field in the momentum equations. The interface between the two phases is tracked with a level
set formulation and a redistancing algorithm is employed in order to ensure that the level set
function remains a distance function, namely the normal signed distance from the interface.
The spatial discretization is achieved with a second-order cell-centered finite volume schemes
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on a staggered mesh. The staggered location of the velocity unknowns allows to compute a
free-divergence velocity field, up to the computer accuracy, which is used as transport velocity
in the mass conservation equation. Numerical simulations of Rayleigh-Taylor instabilities are
performed and presented. The first order rate of convergence with respect to the time step is
recovered both in the case of Newtonian and Bingham flows. Comparisons with published results
in the case of Newtonian flows validate the parallel implementation of the bi-projection scheme.
Numerical simulations of a Bingham flow at Bi = 10 and 100 are reported and discussed. From
the best of our knowledge, these results are the first ones obtained for this problem. At even
larger Bingham number, we may expect that the heavier fluid will not flow. Investigating in more
details the dynamics and behavior of Rayleigh-Taylor instabilities when the Bingham number is
increased could be the scope of further works.
Acknowledgements. This work is supported by the French Government Laboratory of Excellence
initiative noANR-10-LABX-0006, by the French National Research Agency (ANR) RAVEX
project, and by the French National Joint Research Program TelluS of INSU and INSMI CNRS
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