
HAL Id: hal-02137968
https://hal.science/hal-02137968v2

Preprint submitted on 15 Oct 2019 (v2), last revised 13 Mar 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emulating round-to-nearest-ties-to-zero ”augmented”
floating-point operations using

round-to-nearest-ties-to-even arithmetic
Sylvie Boldo, Christoph Q. Lauter, Jean-Michel Muller

To cite this version:
Sylvie Boldo, Christoph Q. Lauter, Jean-Michel Muller. Emulating round-to-nearest-ties-to-zero
”augmented” floating-point operations using round-to-nearest-ties-to-even arithmetic. 2019. �hal-
02137968v2�

https://hal.science/hal-02137968v2
https://hal.archives-ouvertes.fr

Emulating Round-to-Nearest-Ties-to-Zero
“Augmented” Floating-Point Operations Using

Round-to-Nearest-Ties-to-Even Arithmetic
Sylvie Boldo*, Christoph Lauter†, Jean-Michel Muller‡

* Inria, LRI, CNRS & Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
† University of Alaska Anchorage, USA

‡ Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 Lyon, France

Abstract—The 2019 version of the IEEE 754 Standard for
Floating-Point Arithmetic recommends that new “augmented”
operations should be provided for the binary formats. These
operations use a new “rounding direction”: round to nearest
ties-to-zero. We show how they can be implemented using the
currently available operations, using round-to-nearest ties-to-
even.

Keywords. Floating-point arithmetic, Numerical repro-
ducibility, Rounding error analysis, Error-free transforms,
Rounding mode.

I. INTRODUCTION AND NOTATION

The new IEEE 754-2019 Standard for Floating-Point Arith-
metic [1] supersedes the 2008 version. It recommends that
new “augmented” operations should be provided for the binary
formats [14]. These operations are called augmentedAddi-
tion, augmentedSubtraction, and augmentedMultiplication.
They use a new “rounding direction”: round to nearest ties-
to-zero. The reason behind this recommendation is that these
operations would significantly help to implement reproducible
summation and dot product, using an algorithm due to Dem-
mel, Ahrens, and NGuyen [5]. Obtaining very fast repro-
ducible summation with that algorithm will certainly require a
direct hardware implementation of these operations. However,
having these operations available on common processors will
certainly take time. The purpose of this paper is to show
that, in the meantime, one can emulate these operations with
conventional floating-point operations (with the usual round
to nearest “ties to even” rounding direction), with reasonable
efficiency.

In the following, we assume radix-2, precision-𝑝 floating-
point (FP) arithmetic [12]. The minimum floating-point ex-
ponent is 𝑒min, so that 2𝑒min is the smallest positive normal
number and 2𝑒min−𝑝+1 is the smallest positive floating-point
number. The maximum floating-point exponent is 𝑒max. The
largest positive floating-point number is Ω = (2 − 2−𝑝+1) ·
2𝑒max . We will assume

3𝑝 ≤ 𝑒max, (1)

which is satisfied by all formats of the IEEE 754 Standard.
The usual round to nearest, ties-to-even function (which is
the default in the IEEE-754 Standard) will be noted RN𝑒. We
recall its definition [1]:

RN𝑒(𝑡) (where 𝑡 is a real number) is the floating-
point number nearest to 𝑡. If the two nearest floating-
point numbers bracketing 𝑡 are equally near, RN𝑒(𝑡)
is the one whose least significant bit is zero. If |𝑡| ≥
Ω+ 2𝑒max−𝑝 then RN𝑒(𝑡) =∞, with the same sign
as 𝑡.

We will also assume that an FMA (fused multiply-add)
instruction is available. This is the case on all recent floating-
point units.

As said above, the new recommended operations use a new
“rounding direction”: round to nearest ties-to-zero. It corre-
sponds to the rounding function RN0 defined as follows [1]:

RN0(𝑡) (where 𝑡 is a real number) is the floating-
point number nearest 𝑡. If the two nearest floating-
point numbers bracketing 𝑡 are equally near, RN0(𝑡)
is the one with smaller magnitude. If |𝑡| > Ω +
2𝑒max−𝑝 then RN0(𝑡) =∞, with the same sign as 𝑡.

This is illustrated in Fig. 1. As one can infer from the defini-
tions, RN𝑒(𝑡) and RN0(𝑡) can differ in only two circumstances
(called halfway cases in the following): when 𝑡 is halfway
between two consecutive floating-point numbers, and when
𝑡 = ±(Ω + 2𝑒max−𝑝).

0 RN0(𝑥)

𝑥𝑦

RN0(𝑦)

Fig. 1. Round to nearest ties-to-zero (assuming we are in the positive range).
Number 𝑥 is rounded to the (unique) FP number nearest to 𝑥. Number 𝑦 is
a halway case: it is exactly halfway between two consecutive FP numbers: it
is rounded to the one that has the smallest magnitude.

The augmented operations are required to behave as fol-
lows [1], [14]:

∙ augmentedAddition(𝑥, 𝑦) delivers (𝑎0, 𝑏0) such that
𝑎0 = RN0(𝑥 + 𝑦) and, when 𝑎0 /∈ {±∞,NaN},
𝑏0 = (𝑥+𝑦)−𝑎0. When 𝑏0 = 0, it is required to have the
same sign as 𝑎0. One easily shows that 𝑏0 is a floating-
point number. For special rules when 𝑎0 ∈ {±∞,NaN},
see [14];

∙ augmentedSubtraction(𝑥, 𝑦) is exactly the same as
augmentedAddition(𝑥,−𝑦), so we will not discuss that
operation further;

∙ augmentedMultiplication(𝑥, 𝑦) delivers (𝑎0, 𝑏0) such
that 𝑎0 = RN0(𝑥 · 𝑦) and, where 𝑎0 /∈ {±∞,NaN},
𝑏0 = RN0((𝑥 · 𝑦) − 𝑎0). When 𝑏0 = 0, it is required
to have the same sign as 𝑎0. Note that in some corner
cases (an example is given in Section IV-A), 𝑏0 may
differ from (𝑥 · 𝑦) − 𝑎0 (in other words, (𝑥 · 𝑦) − 𝑎0
is not always a floating-point number). Again, rules for
handling infinities, NaNs and the signs of zeroes are given
in [1], [14].

Because of the different rounding function, these augmented
operations differ from the well-known Fast2Sum, 2Sum, and
Fast2Mult algorithms (Algorithms 1, 2 and 3 below). As said
above, the goal of this paper is to show that one can implement
these augmented operations just by using rounded-to-nearest-
even floating-point operations and with reasonable efficiency
on a system compliant with IEEE 754-2008,

Let 𝑡 be the exact sum 𝑥+ 𝑦 (if we consider implementing
augmentedAddition) or the exact product 𝑥 · 𝑦 (if we consider
implementing augmentedMultiplication). To implement the
augmented operations, in the general case (i.e., the sum or
product does not overflow, and in the case of augmentedMul-
tiplication, the floating-point exponents 𝑒𝑥 and 𝑒𝑦 of 𝑥 and 𝑦
satisfy 𝑒𝑥 + 𝑒𝑦 ≥ 𝑒min + 𝑝 − 1), we first use the classical
Fast2Sum, 2Sum, or Fast2Mult algorithms to generate two
floating-point numbers 𝑎𝑒 and 𝑏𝑒 such that 𝑎𝑒 = RN𝑒(𝑡) and
𝑏𝑒 = 𝑡 − 𝑎𝑒. We explain how augmentedAddition(𝑥, 𝑦) and
augmentedMultiplication(𝑥, 𝑦) can be obtained from 𝑎𝑒 and 𝑏𝑒
in Sections III and IV, respectively, using a “recomposition”
algorithm presented in Section II.

In the following, we need to use a definition inspired from
Harrison’s definition [6] of function ulp (“unit in the last
place”). If 𝑥 is a floating-point number different from −Ω,
first define pred(𝑥) as the floating-point predecessor of 𝑥, i.e.,
the largest floating-point number < 𝑥. We define ulp𝐻(𝑥) as
follows.

Definition 1 (Harrison’s ulp). If 𝑥 is a floating-point number,
then ulp𝐻(𝑥) is

|𝑥| − pred (|𝑥|) .

Notation ulp𝐻 is to avoid confusion with the usual definition
of function ulp. The usual ulp and function ulp𝐻 differ at
powers of 2, except in the subnormal domain. For instance,
ulp(1) = 2−𝑝+1, whereas ulp𝐻(1) = 2−𝑝. One easily checks
that if |𝑡| is not a power of 2, then ulp(𝑡) = ulp𝐻(𝑡), and if
|𝑡| = 2𝑘, then ulp(𝑡) = 2𝑘−𝑝+1 = 2ulp𝐻(𝑡), except in the
subnormal range where ulp(𝑡) = ulp𝐻(𝑡) = 2𝑒min−𝑝+1.

The reason for choosing function ulp𝐻 instead of function
ulp is twofold:

∙ if 𝑡 > 0 is a real number, each time RN0(𝑡) differs from
RN𝑒(𝑡), RN0(𝑡) will be the floating-point predecessor
of RN𝑒(𝑡), because RN0(𝑡) ̸= RN𝑒(𝑡) implies that 𝑡
is a halfway case: it is exactly halfway between two

consecutive floating-point numbers, and in that case,
RN0(𝑡) is the one of these two FP numbers which is
closest to zero and RN𝑒(𝑡) is the other one. Hence, in
these cases, to obtain RN0(𝑡) we will have to subtract
from RN𝑒(𝑡) a number which is exactly ulp𝐻(RN𝑒(𝑡))
(for negative 𝑡, for symmetry reasons, we will have to
add ulp𝐻(RN𝑒(𝑡)) to RN𝑒(𝑡)); and

∙ there is a very simple algorithm for computing ulp𝐻(𝑡)
in the range where we need it (Algorithm 4 below).

Let us now briefly recall the classical Algorithms Fast2Sum,
2Sum, and Fast2Mult.

ALGORITHM 1: Fast2Sum(𝑥, 𝑦). The Fast2Sum
algorithm [4].

𝑎𝑒 ← RN𝑒(𝑥+ 𝑦)
𝑦′ ← RN𝑒(𝑎𝑒 − 𝑥)
𝑏𝑒 ← RN𝑒(𝑦 − 𝑦′)

If 𝑥 = 0 or 𝑦 = 0, or if the floating-point exponents 𝑒𝑥 and
𝑒𝑦 satisfy 𝑒𝑥 ≥ 𝑒𝑦 , then the two variables 𝑎𝑒 and 𝑏𝑒 returned
by Algorithm 1 (Fast2Sum) satisfy 𝑎𝑒+𝑏𝑒 = 𝑥+𝑦. Hence, 𝑏𝑒
is the error of the floating-point addition 𝑎𝑒 ← RN𝑒(𝑥 + 𝑦).
Another property that will be useful in Section IV-C is that
𝑦′ = 𝑎𝑒 − 𝑥 (i.e., there is no rounding error at line 2 of
the algorithm, see for instance [12] for a proof). In practice,
condition “𝑒𝑥 ≥ 𝑒𝑦” may be hard to check. However, if |𝑥| ≥
|𝑦| then that condition is satisfied. Algorithm 1 is immune to
spurious overflow: it was proved in [2] that if the addition
RN𝑒(𝑥 + 𝑦) does not overflow then the other two operations
cannot overflow.

ALGORITHM 2: 2Sum(𝑥, 𝑦). The 2Sum algo-
rithm [11], [10].

𝑎𝑒 ← RN𝑒(𝑥+ 𝑦)
𝑥′ ← RN𝑒(𝑎𝑒 − 𝑦)
𝑦′ ← RN𝑒(𝑎𝑒 − 𝑥′)
𝛿𝑥 ← RN𝑒(𝑥− 𝑥′)
𝛿𝑦 ← RN𝑒(𝑦 − 𝑦′)
𝑏𝑒 ← RN𝑒(𝛿𝑥 + 𝛿𝑦)

Algorithm 2 (2Sum) gives the same results as Algorithm 1,
but without any requirement on the exponents of 𝑥 and 𝑦. It
is almost immune to spurious overflow: if |𝑥| ≠ Ω and the
addition RN𝑒(𝑥 + 𝑦) does not overflow then the other five
operations cannot overflow [2].

Let 𝑥 and 𝑦 be two floating-point numbers, with exponents
𝑒𝑥 and 𝑒𝑦 , such that 𝑒𝑥 + 𝑒𝑦 ≥ 𝑒min + 𝑝 − 1. Define 𝑎𝑒 =
RN𝑒(𝑥 · 𝑦). The number 𝑏𝑒 = 𝑥 · 𝑦 − 𝑎𝑒 is a floating-point
number (see [13] for a proof). An immediate consequence is
that Algorithm 3 (Fast2Mult) delivers these numbers 𝑎𝑒 and 𝑏𝑒.
Checking if 𝑒𝑥+𝑒𝑦 ≥ 𝑒min+𝑝−1 may be difficult, however, a
sufficient condition for that is |RN𝑒(𝑥·𝑦)| ≥ (1−2−𝑝)·2𝑒min+𝑝.

We will also use the following results, due to Hauser [7]
and Sterbenz [16] (the proofs are straightforward, see [12]).

ALGORITHM 3: Fast2Mult(𝑥, 𝑦). The Fast2Mult al-
gorithm (see for instance [9], [13], [12]). It requires the
availability of a fused multiply-add (FMA) instruction
for computing RN𝑒(𝑥 · 𝑦 − 𝑎𝑒).

𝑎𝑒 ← RN𝑒(𝑥 · 𝑦)
𝑏𝑒 ← RN𝑒(𝑥 · 𝑦 − 𝑎𝑒)

Lemma 1 (Hauser). If 𝑥 and 𝑦 are floating-point numbers,
and if the number RN𝑒(𝑥+ 𝑦) is subnormal, then 𝑥+ 𝑦 is a
floating-point number, which implies RN𝑒(𝑥+ 𝑦) = 𝑥+ 𝑦.

Lemma 2 (Sterbenz). If 𝑥 and 𝑦 are floating-point numbers
that satisfy 𝑥/2 ≤ 𝑦 ≤ 2𝑥, then 𝑥 − 𝑦 is a floating-point
number, which implies RN𝑒(𝑥− 𝑦) = 𝑥− 𝑦.

As said above, when RN0(𝑡) and RN𝑒(𝑡) differ, RN0(𝑡) is
obtained by subtracting sign(𝑡) · ulp𝐻(RN𝑒(𝑡)) from RN𝑒(𝑡).
Therefore, we need to be able to compute sign(𝑎) ·ulp𝐻(𝑎). If
|𝑎| > 2𝑒min , this can be done using Algorithm 4 below, which
is a variant of an algorithm introduced by Rump [15].

ALGORITHM 4: Computing sign(𝑎) · ulp𝐻(𝑎) for
|𝑎| > 2𝑒min . Uses the FP constant 𝜓 = 1− 2−𝑝.

𝑧 ← RN𝑒(𝜓𝑎)
𝛿 ← RN𝑒(𝑎− 𝑧)
return 𝛿

The fact that Algorithm 4 returns sign(𝑎) · ulp𝐻(𝑎) when
|𝑎| > 2𝑒min is a direct consequence of [15, Lemma 3.6]. See
also [8]. Note that when 𝑎 > 2𝑒min , 𝑧 equals pred(𝑎). If 𝑎 is
subnormal or zero (i.e., |𝑎| < 2𝑒min), then Algorithm 4 returns
0. Interestingly enough, Algorithm 4 almost always returns
the same result if we change the tie-breaking rule: the only
exception is |𝑎| = 2𝑒min , for which 𝛿 = 0 if the rounding
function is RN𝑒, and 𝛿 = 2𝑒min−𝑝+1 if the rounding function
is RN0. Another remark is that the fact that the radix is 2 is
important here (a counterexample in radix 10 is 𝑝 = 3 and 𝑎 =
101). This means that our work cannot be straightforwardly
generalized to decimal floating-point arithmetic.

II. RECOMPOSITION

In this section, we start from two floating-point numbers
𝑎𝑒 and 𝑏𝑒, that satisfy 𝑎𝑒 = RN𝑒(𝑡), with 𝑡 = 𝑎𝑒 + 𝑏𝑒,
and we assume |𝑎𝑒| > 2𝑒min . These numbers may have been
preliminarily generated by the 2Sum, Fast2Sum or Fast2Mult
algorithms. We want to obtain two floating-point numbers 𝑎0
and 𝑏0 such that 𝑎0 = RN0(𝑡) and 𝑎0 + 𝑏0 = 𝑡.

One easily notes that 𝑎𝑒 ̸= RN0(𝑡) only when 𝑏𝑒 =
− 1

2 sign(𝑎𝑒) · ulp𝐻(𝑎𝑒). In that case,

RN0(𝑡) = 𝑎𝑒 − sign(𝑎𝑒)ulp𝐻(𝑎𝑒),

and
𝑡− RN0(𝑡) = −𝑏𝑒.

𝑎𝑒

ulp𝐻(𝑎𝑒)

If 𝑎𝑒 + 𝑏𝑒 lies there, then
𝑎0 = 𝑎𝑒 and 𝑏0 = 𝑏𝑒

If 𝑎𝑒 + 𝑏𝑒 is exactly there
then 𝑎0 = 𝑎𝑒 − ulp𝐻(𝑎𝑒)

and 𝑏0 = −𝑏𝑒.

Fig. 2. IIlustration of the transformation to be performed in the case 𝑎𝑒+𝑏𝑒 >
0 (the case 𝑎𝑒+𝑏𝑒 < 0 is symmetrical). The thick vertical lines represent the
floating-point numbers. The numbers 𝑎𝑒 and 𝑏𝑒 may have been previously
obtained using 2Sum, Fast2Sum, or Fast2Mult.

ALGORITHM 5: Recomp(𝑎𝑒, 𝑏𝑒). From two FP
numbers 𝑎𝑒 and 𝑏𝑒 such that 𝑎𝑒 = RN𝑒(𝑎𝑒 + 𝑏𝑒)
and |𝑎𝑒| > 2𝑒min , computes 𝑎0 and 𝑏0 such that
𝑎0 + 𝑏0 = 𝑎𝑒 + 𝑏𝑒 and 𝑎0 = RN0(𝑎𝑒 + 𝑏𝑒). Uses
the FP constant 𝜓 = 1− 2−𝑝.

𝑧 ← RN𝑒(𝜓 · 𝑎𝑒)
𝛿 ← RN𝑒(𝑧 − 𝑎𝑒)
if 2 · 𝑏𝑒 = 𝛿 then
𝑎0 ← 𝑧
𝑏0 ← −𝑏𝑒

else
𝑎0 ← 𝑎𝑒
𝑏0 ← 𝑏𝑒

end if
return (𝑎0, 𝑏0)

This is illustrated by Figure 2, and this leads to Algorithm 5
below.

In Algorithm 5, when 2·𝑏𝑒 = 𝛿, we must return 𝑎0 = 𝑎𝑒−𝛿.
Lemma 2 applied to the second line of the algorithm implies
𝛿 = 𝑧 − 𝑎𝑒. This explains why in that case the value of 𝑎0
returned by the algorithm is 𝑧.

Note that if |𝑎𝑒| ≤ 2𝑒min , Algorithm 5 always returns 𝑎0 =
𝑎𝑒 and 𝑏0 = 𝑏𝑒. This is not a problem for augmentedAddition
thanks to Lemma 1, as we are going to see in Section III. For
augmentedMultiplication this will require a special handling
(see Sections IV-C and IV-D).

In the next two sections, we examine how Algorithm 5
can be used to compute augmentedAddition(𝑥, 𝑦) and
augmentedMultiplication(𝑥, 𝑦).

III. USE OF ALGORITHM RECOMP FOR IMPLEMENTING
AUGMENTEDADDITION

From two input floating-point numbers 𝑥 and 𝑦, we wish
to compute RN0(𝑥 + 𝑦) and (𝑥 + 𝑦) − RN0(𝑥 + 𝑦). Let us
first give a simple algorithm (Algorithm 6, below) that returns
a correct result when no exception occurs (i.e, the returned
values are finite floating-point numbers).

ALGORITHM 6: AA-Simple(𝑥, 𝑦): computes
augmentedAddition(𝑥, 𝑦) when no exception occurs.

1: if |𝑦| > |𝑥| then
2: swap(𝑥, 𝑦)
3: end if
4: (𝑎𝑒, 𝑏𝑒)← Fast2Sum(𝑥, 𝑦)
5: (𝑎0, 𝑏0)← Recomp(𝑎𝑒, 𝑏𝑒)
6: return (𝑎0, 𝑏0)

Theorem 1. The values 𝑎0 and 𝑏0 returned by Algorithm 6
satisfy:

1) if 𝑎0 and 𝑏0 are finite numbers then (𝑎0, 𝑏0) =
augmentedAddition(𝑥, 𝑦);

2) when 𝑥 + 𝑦 = 0, 𝑎0 and 𝑏0 are equal to zero too (as
expected), but possibly with signs that differ from the ones
specified in the standard;

3) if |𝑥+𝑦| = Ω+2𝑒max−𝑝 = (2−2−𝑝)·2𝑒max then 𝑎0 = ±∞
and 𝑏0 is ±∞ (with a sign different from the one of 𝑎0),
whereas the correct values would have been 𝑎0 = ±Ω
and 𝑏0 = ±2𝑒max−𝑝 (with the appropriate signs);

4) if |𝑥+𝑦| > Ω+2𝑒max−𝑝 then 𝑎0 = ±∞ (with the appro-
priate sign) and 𝑏0 is either NaN or ±∞ (possibly with a
wrong sign), whereas the standard requires 𝑎0 = 𝑏0 =∞
(with the same sign as 𝑥+ 𝑦).

The first item in Theorem 1 is an immediate consequence of
the properties of the Fast2Sum and Recomp algorithms. More
precisely: we have 𝑎𝑒 = RN𝑒(𝑥 + 𝑦) and 𝑎𝑒 + 𝑏𝑒 = 𝑥 + 𝑦.
Hence,

∙ if |𝑎𝑒| > 2𝑒min then Recomp(𝑎𝑒, 𝑏𝑒) gives the expected
result;

∙ if |𝑎𝑒| ≤ 2𝑒min then from Lemma 1, we know that the
floating-point addition of 𝑥 and 𝑦 is exact, hence 𝑏𝑒 = 0.
We easily deduce that Recomp(𝑎𝑒, 𝑏𝑒) = (𝑎𝑒, 𝑏𝑒) which
is the expected result. In particular, if 𝑎𝑒 = 0 then we
obtain 𝑎0 = 𝑏0 = 0 (possibly with wrong signs, as
indicated in the second item in Theorem 1, see below
for an explanation).

Note that if we are certain that |𝑥| ≠ Ω (so that 2Sum(𝑥, 𝑦) can
be called without any risk of spurious overflow) we can replace
lines 1 to 4 of the algorithm by a simple call to 2Sum(𝑥, 𝑦).

Now, consider the second item in Theorem 1. Note that
Lemma 1 implies that 𝑥+𝑦 = 0 and RN𝑒(𝑥+𝑦) = 0 are equiv-
alent. In that case, the standard requires that 𝑎0 = RN0(𝑥+𝑦)
should be +0 except when 𝑥 = 𝑦 = −0 (and in that case,
𝑎0 should be −0), and that 𝑏0 should be equal to 𝑎0 [14].
However, the signs of the zero values delivered by Algorithm 6
may differ from these specifications:

∙ if (𝑥 = −𝑦 and |𝑥| ≠ 0) or (𝑥 = −0 and 𝑦 = +0) or
(𝑥 = +0 and 𝑦 = +0) then Algorithm 6 returns 𝑎0 = +0
and 𝑏0 = −0, whereas the desired result is 𝑎0 = 𝑏0 = +0;

∙ if 𝑥 = +0 and 𝑦 = −0 then Algorithm 6 returns the
desired result, namely 𝑎0 = 𝑏0 = +0 (note that if we

replace Fast2Sum by 2Sum in the algorithm, we obtain
𝑎0 = +0 and 𝑏0 = −0);

∙ if 𝑥 = −0 and 𝑦 = −0 then Algorithm 6 returns 𝑎0 = −0
and 𝑏0 = +0, whereas the desired result is 𝑎0 = 𝑏0 =
−0 (note that if we replace Fast2Sum by 2Sum in the
algorithm, we obtain 𝑎0 = 𝑏0 = −0).

Hence, if the signs of the zero variables matter in the target
application, one has to add to add the following lines to
Algorithm 6 after Line 5:

if 𝑏0 = 0 then
𝑏0 ← (+0)× 𝑎0

end if
The third item in Theorem 1 follows immediately by

applying Algorithm 6 to the corresponding input value.
Concerning the 4th item in Theorem 1, Table I gives the

values returned by Algorithm 6 when 𝑥 + 𝑦 > Ω + 2𝑒max−𝑝

(the case 𝑥+ 𝑦 < −Ω− 2𝑒max−𝑝 is symmetrical).

TABLE I
VALUES OBTAINED USING ALGORITHM 6 (POSSIBLY WITH A

REPLACEMENT OF FAST2SUM BY 2SUM) WHEN 𝑥+ 𝑦 > 2𝑒max (2− 2−𝑝)
(RESP. ALGORITHM 8 WHEN 𝑥 · 𝑦 > 2𝑒max (2− 2−𝑝)). THE CASE WHERE

𝑥+ 𝑦 (RESP. 𝑥 · 𝑦) IS NEGATIVE IS SYMMETRICAL.

(𝑎𝑒, 𝑏𝑒)
obtained
through
2Sum

(𝑎𝑒, 𝑏𝑒)
obtained
through

Fast2Sum

(𝑎𝑒, 𝑏𝑒)
obtained
through

Fast2Mult

Result
required
by the

standard
𝑎0 +∞ +∞ +∞ +∞
𝑏0 NaN −∞ −∞ +∞

If the considered applications only require augmentedAd-
dition to follow the specifications when no exception occurs,
Algorithm 6 (possibly with the above given additional lines if
the signs of zeros matter) is a good candidate. If we wish to
always follow the specifications, we suggest using Algorithm 7
below.

Theorem 2. The output (𝑎0, 𝑏0) of Algorithm 7 is equal to
augmentedAddition(𝑥, 𝑦).

We just give a sketch of the proof.

Proof.
∙ when 𝑏0 ̸= 0 at Line 6 of the algorithm and 𝑎𝑒 ̸= ±∞,

Algorithm 7 behaves exactly as Algorithm 6. A quick
look at Algorithm 1 shows that if 𝑎𝑒 = ±∞ then 𝑏0 =
±∞ too;

∙ we have just explained the case 𝑎0 = 0 before;
∙ when 𝑎𝑒 = ±∞, there are two possibilities (as discussed

in cases 3 and 4 of Theorem 1): either |𝑥 + 𝑦| = Ω +
2𝑒max−𝑝 = (2 − 2−𝑝) · 2𝑒max , in which case we must
return 𝑎0 = ±Ω and 𝑏0 = ±2𝑒max−𝑝 (with the appropriate
signs), or |𝑥+ 𝑦| > Ω+2𝑒max−𝑝, in which case we must
return 𝑎0 = 𝑏0 = ±∞ (with the appropriate sign, namely
the sign of 𝑎𝑒). This issue is dealt with at Lines 8 to
16 of Algorithm 7: we divide 𝑥 and 𝑦 by 2 so that if
|𝑥+ 𝑦| = Ω + 2𝑒max−𝑝, then 𝑥/2 + 𝑦/2 is computed by
Fast2Sum without overflow, which makes it possible to
compare it with ± (Ω + 2𝑒max−𝑝) /2.

ALGORITHM 7: AA-Full(𝑥, 𝑦): computes
augmentedAddition(𝑥, 𝑦) in all cases.

1: if |𝑦| > |𝑥| then
2: swap(𝑥, 𝑦)
3: end if
4: (𝑎𝑒, 𝑏𝑒)← Fast2Sum(𝑥, 𝑦)
5: (𝑎0, 𝑏0)← Recomp(𝑎𝑒, 𝑏𝑒)
6: if 𝑏0 = 0 then
7: 𝑏0 ← (+0)× 𝑎0
8: else if |𝑎𝑒| = +∞ then
9: (𝑎′𝑒, 𝑏

′
𝑒)← Fast2Sum(0.5𝑥, 0.5𝑦)

10: if (𝑎′𝑒 = 2𝑒max and 𝑏′𝑒 = −2𝑒max−𝑝−1) or
(𝑎′𝑒 = −2𝑒max and 𝑏′𝑒 = +2𝑒max−𝑝−1) then

11: 𝑎0 ← RN𝑒(𝑎
′
𝑒 · (2− 2−𝑝+1))

12: 𝑏0 ← −2𝑏′𝑒
13: else
14: 𝑎0 ← 𝑎𝑒 (infinity with right sign)
15: 𝑏0 ← 𝑎𝑒
16: end if
17: end if
18: return (𝑎0, 𝑏0)

IV. USE OF ALGORITHM RECOMP FOR IMPLEMENTING
AUGMENTEDMULTIPLICATION

A. General case

From two input floating-point numbers 𝑥 and 𝑦, we wish
to compute RN0(𝑥 · 𝑦) and 𝑥 · 𝑦 − RN0(𝑥 · 𝑦) (or, merely,
RN0[𝑥·𝑦−RN0(𝑥·𝑦)] when 𝑥·𝑦−RN0(𝑥·𝑦) is not a floating-
point number). As we did for augmentedAddition, let us first
present a simple algorithm. Unfortunately, it will be less gen-
eral than the simple addition algorithm: this is due to the fact
that when the absolute value of the product of two floating-
point numbers is less than or equal to 2𝑒min+𝑝, it may not be
exactly representable by the sum of two floating-point numbers
(an example is 𝑥 = 1 + 2−𝑝+1 and 𝑦 = 2𝑒min + 2𝑒min−𝑝+1:
their product 2𝑒min +2𝑒min−𝑝+2+2𝑒min−2𝑝+2 cannot be a sum
of two FP numbers, since such a sum is necessarily a multiple
of 2𝑒min−𝑝+1).

ALGORITHM 8: AM-Simple(𝑥, 𝑦): computes
augmentedMultiplication(𝑥, 𝑦) when 2𝑒min+𝑝 <
|RN𝑒(𝑥 · 𝑦)| < +∞.

1: (𝑎𝑒, 𝑏𝑒)← Fast2Mult(𝑥, 𝑦)
2: (𝑎0, 𝑏0)← Recomp(𝑎𝑒, 𝑏𝑒)
3: return (𝑎0, 𝑏0)

Theorem 3. If 2𝑒min+𝑝 < |RN𝑒(𝑥 · 𝑦)| < +∞ (i.e.,
2𝑒min+𝑝+2𝑒min+1 ≤ |RN𝑒(𝑥·𝑦)| ≤ Ω) then the output (𝑎0, 𝑏0)
of Algorithm 8 is equal to augmentedMultiplication(𝑥, 𝑦).

Proof. If 2𝑒min+𝑝+2𝑒min+1 ≤ |RN𝑒(𝑥 ·𝑦)| ≤ Ω then we know
that

∙ (𝑎𝑒, 𝑏𝑒) = Fast2Mult(𝑥, 𝑦) gives 𝑎𝑒 + 𝑏𝑒 = 𝑥 · 𝑦;
∙ |𝑎𝑒| > 2𝑒min ;

therefore Recomp(𝑎𝑒, 𝑏𝑒) returns the expected result.

The lower bound 2𝑒min+𝑝 + 2𝑒min+1 in Theorem 3 comes
from the fact that if |RN𝑒(𝑥 · 𝑦)| is below that value,
Fast2Mult(𝑥, 𝑦) may not deliver a correct result.

As for the addition algorithm, when 𝑏0 = 0, it may have the
wrong sign. Again, if the signs of the zero variables matter in
the target application, one has to add to add the following lines
to Algorithm 8 after Line 2:

if 𝑏0 = 0 then
𝑏0 ← (+0)× 𝑎0

end if
Let us now examine how the cases RN𝑒(𝑥 · 𝑦) = ±∞ and
|RN𝑒(𝑥 · 𝑦)| ≤ 2𝑒min+𝑝 can be addressed.

B. First special case: if RN𝑒(𝑥 · 𝑦) = ±∞
In this case, in a way very similar to what we did for

augmented addition,
∙ either |𝑥 · 𝑦| = Ω + 2𝑒max−𝑝 = (2 − 2−𝑝) · 2𝑒max , in

which case we must return 𝑎0 = ±Ω and 𝑏0 = ±2𝑒max−𝑝

(with the appropriate signs), whereas one easily checks
that Algorithm 8 delivers a wrong result;

∙ or |𝑥 · 𝑦| > Ω + 2𝑒max−𝑝, in which case we must return
𝑎0 = 𝑏0 = ±∞, whereas Table I shows that Algorithm 8
delivers a wrong result for 𝑏0.

The problem is addressed easily. It suffices to compute
(𝑎′𝑒, 𝑏

′
𝑒) = Fast2Mult(0.5 ·𝑥, 𝑦). If |𝑥 · 𝑦| = Ω+2𝑒max−𝑝, then

𝑥 · 𝑦/2 is computed by Fast2Mult without overflow, which
makes it possible to compare it with ± (Ω + 2𝑒max−𝑝) /2. If
it turns out that |𝑥 · 𝑦/2| ̸= (Ω + 2𝑒max−𝑝) /2 we must return
𝑎0 = 𝑏0 = RN𝑒(𝑥 · 𝑦).

The case |RN𝑒(𝑥 · 𝑦)| ≤ 2𝑒min+𝑝 is more complex. We will
separately examine the case |RN𝑒(𝑥·𝑦)| ≤ 2𝑒min+1−2𝑒min−𝑝+1

(for which 𝑏0 is always zero) and the case 2𝑒min+1 ≤ |RN𝑒(𝑥 ·
𝑦)| ≤ 2𝑒min+𝑝.

C. Second special case: if |RN𝑒(𝑥 ·𝑦)| ≤ 2𝑒min+1−2𝑒min−𝑝+1

In that case, |𝑥 · 𝑦 − RN0(𝑥 · 𝑦)| ≤ 2𝑒min−𝑝 and thus
RN0 (𝑥 · 𝑦 − RN0(𝑥 · 𝑦)) = 0, so we only have to focus on the
computation of RN0(𝑥·𝑦). We also assume that RN𝑒(𝑥·𝑦) ̸= 0
(otherwise, it suffices to return the pair (0, 0)). We therefore
have

2𝑒min−𝑝 < |𝑥 · 𝑦| < 2𝑒min+1 − 2𝑒min−𝑝. (2)

Let 𝑎𝑒 be RN𝑒(𝑥 · 𝑦), and let us successively compute (using
FMA instructions)

𝑡1 = RN𝑒(𝑥 · 𝑦 · 22𝑝)
𝑡2 = RN𝑒(𝑥 · 𝑦 · 22𝑝 − 𝑡1) = 𝑥 · 𝑦 · 22𝑝 − 𝑡1
𝑡3 = RN𝑒(𝑡1 − 𝑎𝑒 · 22𝑝).

One easily checks that (1) implies that 𝑡1 can be computed
without overflow. Let us show that 𝜃3 = 𝑡1 − 𝑎𝑒 · 22𝑝

is a floating-point number. This will imply 𝑡3 = 𝜃3 =
𝑡1 − 𝑎𝑒 · 22𝑝 (hence, 𝜃3 can be computed with an FMA,
or with a multiplication followed by a subtraction). Note
that (2) implies |22𝑝𝑥 · 𝑦| < 2𝑒min+2𝑝+1 − 2𝑒min+𝑝, so that
|𝑡1| ≤ 2𝑒min+2𝑝+1−2𝑒min+𝑝+1 and ulp(𝑡1) ≤ 2𝑒min+𝑝+1. Also,
we have |𝑥 · 𝑦 · 22𝑝| > 2𝑒min+𝑝, which implies |𝑡1| ≥ 2𝑒min+𝑝.

Finally, since 𝑎𝑒 is a multiple of 2𝑒min−𝑝+1, the number
22𝑝 ·𝑎𝑒 is a multiple of 2𝑒min+𝑝+1. Therefore, 𝜃3 is a multiple
of ulp(𝑡1).

Now, from 𝑥 · 𝑦 − 2𝑒min−𝑝 ≤ |𝑎𝑒| ≤ 𝑥 · 𝑦 + 2𝑒min−𝑝, we
deduce 𝑥 · 𝑦 · 22𝑝− 2𝑒min+𝑝 ≤ |𝑎𝑒| · 22𝑝 ≤ 𝑥 · 𝑦 · 22𝑝+2𝑒min+𝑝,
which implies

𝑡1−
1

2
ulp(𝑡1)−2𝑒min+𝑝 ≤ |𝑎𝑒| ·22𝑝 ≤ 𝑡1+

1

2
ulp(𝑡1)+2𝑒min+𝑝,

so that⃒⃒
𝑡1 − 𝑎𝑒 · 22𝑝

⃒⃒
≤ 1

2
ulp(𝑡1) + 2𝑒min+𝑝 ≤ 1

2
ulp(𝑡1) + |𝑡1|.

Hence, 𝜃3 is a multiple of ulp(𝑡1) of magnitude less than
or equal to 1

2ulp(𝑡1)+ |𝑡1|. An immediate consequence is that
𝜃3 is a floating-point number, which implies 𝑡3 = 𝜃3.

Now, we wish to compute 𝑎0 = RN0(𝑥 · 𝑦). If 𝑥 · 𝑦 =
𝑎𝑒 − sign(𝑎𝑒) · 2𝑒min−𝑝 then 𝑎0 = 𝑎𝑒 − sign(𝑎𝑒) · 2𝑒min−𝑝+1

(computed without error), otherwise 𝑎0 = 𝑎𝑒. Hence we have
to decide whether 𝑥 · 𝑦 = 𝑎𝑒 − sign(𝑎𝑒) · 2𝑒min−𝑝. This is
equivalent to checking if 𝑡2 + 𝑡3 = −sign(𝑎𝑒) · 2𝑒min+𝑝. This
can be done as follows: first note that since 𝑡3 is a multiple of
ulp(𝑡1) and |𝑡2| ≤ 1

2ulp(𝑡1), either 𝑡3 = 0 or |𝑡3| > |𝑡2|. In any
case, it follows from the properties of Algorithm 1 (Fast2Sum)
that checking if

𝑡2 + 𝑡3 = −sign(𝑎𝑒) · 2𝑒min+𝑝

is equivalent to checking if

𝑧 := RN𝑒(𝑡2 + 𝑡3) = −sign(𝑎𝑒) · 2𝑒min+𝑝

and
RN𝑒(𝑧 − 𝑡3) = 𝑡2.

D. Last special case: if 2𝑒min+1 ≤ |RN𝑒(𝑥 · 𝑦)| ≤ 2𝑒min+𝑝

In that case, we know that 𝑥 ·𝑦−RN0(𝑥 ·𝑦) is of magnitude
less than or equal to 2𝑒min , but is not necessarily a floating-
point number. The standard requires that we return RN0(𝑥 ·𝑦)
and RN0(𝑥 · 𝑦 − RN0(𝑥 · 𝑦)).

First, we apply Algorithm 8 to the product (2𝑝𝑥) · 𝑦. One
easily checks that (1) implies that 2𝑝𝑥 and RN𝑒((2

𝑝𝑥) ·𝑦) can
be computed without overflow. This gives two values, say 𝑎′

and 𝑏′, such that 𝑎′ = RN0(2
𝑝𝑥 · 𝑦) and 𝑏′ = 2𝑝𝑥 · 𝑦 − 𝑎′.

We immediately deduce that 2−𝑝𝑎′ is the expected RN0(𝑥 ·𝑦).
Obtaining RN0(𝑥 · 𝑦− 2−𝑝𝑎′) = RN0(2

−𝑝𝑏′) is slightly more
tricky. We first compute 𝛽 = RN𝑒(2

−𝑝𝑏′). The number 𝛽 is
equal to the expected RN0(2

−𝑝𝑏′) unless

𝛽 − (2−𝑝𝑏′) = sign(𝛽) · 2𝑒min−𝑝 (3)

in which case, one should replace 𝛽 by 𝛽−sign(𝛽)·2𝑒min−𝑝+1.
Equation (3) is implied by

2𝑝𝛽 − 𝑏′ = sign(𝛽) · 2𝑒min ,

a condition which is easy to test since the subtraction is exact:
2𝑝𝛽− 𝑏′ is a multiple of 2𝑒min−𝑝+1, of magnitude less than or
equal to 2𝑒min , hence it is a floating-point number.

All this gives Algorithm 9 and Theorem 4, below.

ALGORITHM 9: AM-Full(𝑥, 𝑦): computes
augmentedMultiplication(𝑥, 𝑦) in all cases.

1: 𝑎𝑒 ← RN𝑒(𝑥 · 𝑦)
2: if |𝑎𝑒| = +∞ then
3: 𝑥′ ← 0.5 · 𝑥
4: (𝑎′𝑒, 𝑏

′
𝑒)← Fast2Mult (𝑥′, 𝑦)

5: if (𝑎′𝑒 = 2𝑒max and 𝑏′𝑒 = −2𝑒max−𝑝+1) or
(𝑎′𝑒 = −2𝑒max and 𝑏′𝑒 = +2𝑒max−𝑝+1) then

6: 𝑎0 ← RN𝑒(𝑎
′
𝑒 · (2− 2−𝑝+1))

7: 𝑏0 ← −2𝑏′𝑒
8: else
9: 𝑎0 ← 𝑎𝑒 (infinity with right sign)

10: 𝑏0 ← 𝑎𝑒
11: end if
12: else if |𝑎𝑒| ≤ 2𝑒min+𝑝 then
13: if 𝑎𝑒 = 0 then
14: 𝑎0 ← 𝑎𝑒
15: 𝑏0 ← 𝑎𝑒
16: else if |𝑎𝑒| ≤ 2𝑒min+1 − 2𝑒min−𝑝+1 then
17: 𝑏0 ← 0
18: (𝑡1, 𝑡2)← Fast2Mult

(︀
(𝑥 · 22𝑝), 𝑦

)︀
19: 𝑡3 ← RN𝑒(𝑡1 − 𝑎𝑒 · 22𝑝)
20: 𝑧 ← RN𝑒(𝑡2 + 𝑡3)
21: if (𝑧 = −sign(𝑎𝑒) · 2𝑒min+𝑝) and

(RN𝑒(𝑧 − 𝑡3) = 𝑡2) then
22: 𝑎0 ← 𝑎𝑒 − sign(𝑎𝑒) · 2𝑒min−𝑝+1

23: else
24: 𝑎0 ← 𝑎𝑒
25: end if
26: else
27: (𝑎′, 𝑏′)← AM-Simple(2𝑝𝑥, 𝑦)
28: 𝑎0 ← RN𝑒(2

−𝑝 · 𝑎′)
29: 𝛽 ← RN𝑒(2

−𝑝 · 𝑏′)
30: if RN𝑒(2

𝑝𝛽 − 𝑏′) = sign(𝛽) · 2𝑒min then
31: 𝑏0 ← 𝛽 − sign(𝛽) · 2𝑒min−𝑝+1

32: else
33: 𝑏0 ← 𝛽
34: end if
35: end if
36: else
37: 𝑏𝑒 ← RN𝑒(𝑥 · 𝑦 − 𝑎𝑒)
38: (𝑎0, 𝑏0)← Recomp(𝑎𝑒, 𝑏𝑒)
39: end if
40: return (𝑎0, 𝑏0)

Theorem 4. The output (𝑎0, 𝑏0) of Algorithm 9 is equal to
augmentedMultiplication(𝑥, 𝑦).

V. FORMAL PROOF

Arithmetic algorithms can be used in critical applications.
Their proof can be somehow complex, with many particular
cases to be considered. This makes them a good candidate for
formal proof. Using Coq and the Flocq library [3], we have
formally proven Theorem 1 and Theorem 4, with the following
important limitation (due to the nature of the formalization of
the FP numbers in Flocq): overflows, infinite numbers, and the
signs of zeroes are not considered.

VI. IMPLEMENTATION AND COMPARISON

We have implemented the algorithms presented in this paper
in binary64 (a.k.a. double precision) arithmetic, as well as
emulation algorithms based on integer arithmetic. We used
an x86_64 processor under GNU/Linux (Debian 4.9.144-
3), and the programs were compiled using GCC (Debian
6.3.0-18+deb9u1) 6.3.0 20170516, with the option
-O3 -march=native.

The statistical distribution of the number of cycles (using
106 samples, assuming uniform distribution of the significands
and the exponents, and no overflows but including subnormal
results) is given in Figures 3 (for our augmentedAddition
algorithm, Algorithm 7), 4 (for an integer-based emulation
of augmentedAddition), 5 (for our augmentedMultiplication
algorithm, Algorithm 9), and 6 (for an integer-based emulation
of augmentedMultiplication). The average timings are given
in the first half of Table II. The second half of Table II gives
average timings for halfway cases.

Concerning augmentedAddition, Algorithm 7 is slightly
better than the integer-based emulation in the general case, and
significantly better in the bad cases. Concerning augmented-
Multiplication, Algorithm 9 is significantly better, except on
very rare cases (at the extreme right of Figure 5).

0

5

10

15

20

25

0 20 40 60 80 100

Fig. 3. Statistical distribution of the number of cycles for our augmentedAd-
dition algorithm (Algorithm 7).

CONCLUSION

We have presented and implemented algorithms that allow
one to emulate the newly suggested “augmented” floating-
point operations using the classical, rounded-ties-to-even oper-
ations. The algorithms are very simple in the general case. Spe-
cial cases are slightly more involved but will remain infrequent

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Fig. 4. Statistical distribution of the number of cycles for an integer-based
emulation of augmentedAddition.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

Fig. 5. Statistical distribution of the number of cycles for our augmented-
Multiplication algorithm (Algorithm 9).

in most applications. These algorithms compare favorably
with an integer-based emulation of the augmented operations.
Furthermore, the availability of formal proofs (despite the
limitations presented in Section V) increases confidence in
them.

0

5

10

15

20

25

0 50 100 150 200 250 300

Fig. 6. Statistical distribution of the number of cycles for an integer-based
emulation of augmentedMultiplication.

TABLE II
AVERAGE TIMINGS IN CYCLES

Algorithm ♯ of cycles
Algorithm 7 (addition, all cases) 14.62
Integer-based emulation (addition, all cases) 15.67
Algorithm 9 (multiplication, all cases) 13.97
Integer-based emulation (multiplication, all cases) 78.23
Algorithm 7 (addition, halfway cases) 14.44
Integer-based emulation (addition, halfway cases) 70.46
Algorithm 9 (multiplication, halfway cases) 7.41
Integer-based emulation (multiplication, halfway cases) 60.72

ACKNOWLEDGEMENT

We thank Claude-Pierre Jeannerod for his very useful sug-
gestions.

REFERENCES

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pages 1–84, July 2019.

[2] Sylvie Boldo, Stef Graillat, and Jean-Michel Muller. On the robustness
of the 2Sum and Fast2Sum algorithms. ACM Transactions on Mathe-
matical Software, 44(1):4:1–4:14, July 2017.

[3] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and
Formal Proofs. ISTE Press – Elsevier, 2017.

[4] T. J. Dekker. A floating-point technique for extending the available
precision. Numerische Mathematik, 18(3):224–242, 1971.

[5] James Demmel, Peter Ahrens, and Hong Diep Nguyen. Efficient
reproducible floating point summation and BLAS. Technical Report
UCB/EECS-2016-121, EECS Department, University of California,
Berkeley, Jun 2016.

[6] John Harrison. A machine-checked theory of floating point arithmetic.
In 12th International Conference in Theorem Proving in Higher Order
Logics (TPHOLs), volume 1690 of Lecture Notes in Computer Science,
pages 113–130, Nice, France, September 1999. Springer-Verlag, Berlin.

[7] J. R. Hauser. Handling floating-point exceptions in numeric programs.
ACM Transactions on Programming Languages and Systems, 18(2):139–
174, 1996.

[8] C.-P. Jeannerod, J. Muller, and P. Zimmermann. On various ways to
split a floating-point number. In 25th IEEE Symposium on Computer
Arithmetic, Amherst, MA, USA, pages 53–60, June 2018.

[9] W. Kahan. Lecture notes on the status of IEEE-754. Available at http:
//www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF, 1997.

[10] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, Reading, MA, 3rd edition, 1998.

[11] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–
50, 1965.

[12] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre
Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond,
Nathalie Revol, and Serge Torres. Handbook of Floating-Point Arith-
metic. Birkhäuser Boston, 2018.

[13] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-
point matrix arithmetic provably accurate to the penultimate digit. ACM
Transactions on Mathematical Software, 29(1):27–48, 2003.

[14] E. Jason Riedy and James Demmel. Augmented arithmetic operations
proposed for IEEE-754 2018. In 25th IEEE Symposium on Computer
Arithmetic, Amherst, MA, USA, pages 45–52, June 2018.

[15] Siegfried M. Rump. Ultimately fast accurate summation. SIAM Journal
on Scientific Computing, 31(5):3466–3502, January 2009.

[16] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

