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Abstract—The IEEE 754 Standards Committee for Floating-
Point Arithmetic is recommending, in its draft standard, that
new “augmented” operations should be added in the next
release of the standard. These operations use a new “rounding
direction”: round to nearest ties-to-zero. We show how they can
be implemented using the currently available operations, using
rounded-to-nearest ties-to-even.
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I. INTRODUCTION AND NOTATION

The IEEE 754 Standards Committee for Floating-Point
Arithmetic is recommending1, in its draft standard, that new
“augmented” operations should be added in the next release of
the standard [14]. These operations are called augmentedAd-
dition, augmentedSubtraction, and augmentedMultiplica-
tion. They use a new “rounding direction”: round to nearest
ties-to-zero. The reason behind this recommendation is that
these operations would significantly help to implement re-
producible summation and dot product, using an algorithm
described in [4]. Obtaining very fast reproducible summation
with that algorithm will certainly require a direct hardware
implementation of these operations. However, having these
operations available on common processors will certainly take
time. The purpose of this paper is to show that, in the
meantime, one can emulate these operations with conventional
floating-point operations (with the usual round to nearest “ties
to even” rounding direction), with reasonable efficiency.

In the following, we assume radix-2, precision-𝑝 floating-
point (FP) arithmetic. The minimum floating-point exponent is
𝑒min, so that 2𝑒min is the smallest positive normal number and
2𝑒min−𝑝+1 is the smallest positive floating-point number. The
maximum floating-point exponent is 𝑒max. The largest positive
floating-point number is Ω = (2 − 2−𝑝+1) · 2𝑒max . The usual
round to nearest, ties-to-even function (which is the default
in the IEEE-754 Standard) will be noted RN𝑒. We recall its
definition [7]:

RN𝑒(𝑡) (where 𝑡 is a real number) is the floating-
point number nearest 𝑡. If 𝑡 is exactly halfway
between two consecutive floating-point numbers,

1Information can be found at http://754r.ucbtest.org.

RN𝑒(𝑡) is the one whose rightmost bit of the sig-
nificand is a zero. If |𝑡| ≥ Ω + 2𝑒max−𝑝 then
RN𝑒(𝑡) =∞, with the same sign as 𝑡.

We will also assume that an FMA (fused multiply-add)
instruction is available.

As said above, the new recommended operations use a
new “rounding direction”: round to nearest ties-to-zero. It
corresponds to the rounding function RN0 defined as follows:

RN0(𝑡) (where 𝑡 is a real number) is the floating-
point number nearest 𝑡. If 𝑡 is exactly halfway
between two consecutive floating-point numbers,
RN0(𝑡) is the one with smaller magnitude. If |𝑡| >
Ω+ 2𝑒max−𝑝 then RN0(𝑡) =∞, with the same sign
as 𝑡.

This is illustrated Fig. 1. As one can infer from the definitions,
RN𝑒(𝑡) and RN0(𝑡) can differ in only two circumstances: when
𝑡 is halfway between two consecutive floating-point numbers,
and when 𝑡 = ±(Ω + 2𝑒max−𝑝).

RN0(𝑥)

𝑥𝑦

RN0(𝑦)

Fig. 1. Round to nearest ties-to-zero (assuming we are in the positive range).
Number 𝑥 is rounded to the (unique) FP number nearest to 𝑥. Number 𝑦 is
exactly halfway between two consecutive FP numbers: it is rounded to the
one that has the smallest magnitude.

The augmented operations are required to behave as follows:
∙ augmentedAddition(𝑥, 𝑦) delivers (𝑎0, 𝑏0) such that
𝑎0 = RN0(𝑥 + 𝑦) and, where 𝑎0 /∈ {±∞,NaN},
𝑏0 = (𝑥+𝑦)−𝑎0 (with the same sign as 𝑎0 when both are
0). One easily shows that 𝑏0 is a floating-point number.
For special rules when 𝑎0 ∈ {±∞,NaN}, see [14];

∙ augmentedSubtraction(𝑥, 𝑦) is exactly the same as
augmentedAddition(𝑥,−𝑦), so we will not discuss that
operation further;

∙ augmentedMultiplication(𝑥, 𝑦) delivers (𝑎0, 𝑏0) such
that 𝑎0 = RN0(𝑥 · 𝑦) and, where 𝑎0 /∈ {±∞,NaN},
𝑏0 = RN0((𝑥 · 𝑦) − 𝑎0). Note that in some corner cases



(see below), 𝑏0 may differ from (𝑥 · 𝑦) − 𝑎0 (in other
words, (𝑥 ·𝑦)−𝑎0 is not always a floating-point number).
Again, rules for handling infinities, NaNs and the signs
of zeroes are given in [14].

Because of the different rounding function, these augmented
operations differ from the well-known Fast2Sum, 2Sum, and
Fast2Mult algorithms (Algorithms 1, 2 and 3 below). As said
above, the goal of this paper is to show that one can implement
these augmented operations on a system compliant with IEEE
754-2008, just by using rounded-to-nearest-even floating-point
operations.

Let 𝑡 be the exact sum 𝑥+ 𝑦 (if we consider implementing
augmentedAddition) or the exact product 𝑥𝑦 (if we consider
implementing augmentedMultiplication). To implement the
augmented operations, in the general case (i.e., the sum or
product does not overflow, and in the case of augmentedMul-
tiplication, the floating-point exponents 𝑒𝑥 and 𝑒𝑦 of 𝑥 and 𝑦
satisfy 𝑒𝑥 + 𝑒𝑦 ≥ 𝑒min + 𝑝 − 1), we first use the classical
Fast2Sum, 2Sum, or Fast2Mult algorithms to generate two
floating-point numbers 𝑎𝑒 and 𝑏𝑒 such that 𝑎𝑒 = RN𝑒(𝑡) and
𝑏𝑒 = 𝑡 − 𝑎𝑒. We explain how augmentedAddition(𝑥, 𝑦) and
augmentedMultiplication(𝑥, 𝑦) can be obtained from 𝑎𝑒 and
𝑏𝑒 in Sections III and IV, respectively.

In the following, we need to use a definition inspired from
Harrison’s definition [5] of function ulp (“unit in the last
place”). If 𝑥 is a floating-point number different from −Ω,
first define pred(𝑥) as the floating-point predecessor of 𝑥, i.e.,
the largest floating-point number < 𝑥. We define ulp𝐻(𝑥) as
follows

Definition 1 (Harrison’s ulp). If 𝑥 is a floating-point number,
then ulp𝐻(𝑥) is

|𝑥| − pred (|𝑥|) .

Notation ulp𝐻 is to avoid confusion with the usual definition
of function ulp. The usual ulp and function ulp𝐻 differ at
powers of 2, except in the subnormal domain. For instance,
ulp(1) = 2−𝑝+1, whereas ulp𝐻(1) = 2−𝑝. One easily checks
that if |𝑡| is not a power of 2, then ulp(𝑡) = ulp𝐻(𝑡), and if
|𝑡| = 2𝑘, then ulp(𝑡) = 2𝑘−𝑝+1 = 2ulp𝐻(𝑡), except in the
subnormal range where ulp(𝑡) = ulp𝐻(𝑡) = 2𝑒min−𝑝+1.

The reason for choosing function ulp𝐻 instead of function
ulp is twofold:

∙ if 𝑡 > 0 is a real number, each time RN0(𝑡) differs from
RN𝑒(𝑡), RN0(𝑡) will be the floating-point predecessor
of RN𝑒(𝑡). Hence, in these cases, to obtain RN0(𝑡) we
will have to subtract from RN𝑒(𝑡) a number which is
exactly ulp𝐻(RN𝑒(𝑡)) (for negative 𝑡, we will have to
add ulp𝐻(RN𝑒(𝑡))); and

∙ there is a very simple algorithm for computing ulp𝐻(𝑡)
in the range where we need it (Algorithm 4 below).

Let us now briefly present the classical Algorithms
Fast2Sum, 2Sum, and Fast2Mult.

If 𝑥 = 0 or 𝑦 = 0, or if the floating-point exponents 𝑒𝑥 and
𝑒𝑦 satisfy 𝑒𝑥 ≥ 𝑒𝑦 , then the two variables 𝑎𝑒 and 𝑏𝑒 returned
by Algorithm 1 (Fast2Sum) satisfy 𝑎𝑒+𝑏𝑒 = 𝑥+𝑦. Hence, 𝑏𝑒

ALGORITHM 1: – Fast2Sum(𝑥, 𝑦). The Fast2Sum
algorithm [3].

𝑎𝑒 ← RN𝑒(𝑥+ 𝑦)
𝑦′ ← RN𝑒(𝑎𝑒 − 𝑥)
𝑏𝑒 ← RN𝑒(𝑦 − 𝑦′)

is the error of the floating-point addition 𝑎𝑒 ← RN𝑒(𝑥 + 𝑦).
Another property that will be useful in Section IV-C is that
𝑦′ = 𝑎𝑒 − 𝑥 (i.e., there is no rounding error at line 2 of
the algorithm, see for instance [12] for a proof). In practice,
condition “𝑒𝑥 ≥ 𝑒𝑦” may be hard to check. However, if |𝑥| ≥
|𝑦| then that condition is satisfied. Algorithm 1 is immune
from spurious overflow: it was proved in [1] that if the addition
RN𝑒(𝑥 + 𝑦) does not overflow then the other two operations
cannot overflow.

ALGORITHM 2: 2Sum(𝑥, 𝑦). The 2Sum algo-
rithm [11], [10].

𝑎𝑒 ← RN𝑒(𝑥+ 𝑦)
𝑥′ ← RN𝑒(𝑎𝑒 − 𝑦)
𝑦′ ← RN𝑒(𝑎𝑒 − 𝑥′)
𝛿𝑥 ← RN𝑒(𝑥− 𝑥′)
𝛿𝑦 ← RN𝑒(𝑦 − 𝑦′)
𝑏𝑒 ← RN𝑒(𝛿𝑥 + 𝛿𝑦)

Algorithm 2 (2Sum) gives the same results as Algorithm 1,
but without any requirement on the exponents of 𝑥 and 𝑦. It
is almost immune from spurious overflow: if |𝑥| ≠ Ω and the
addition RN𝑒(𝑥 + 𝑦) does not overflow then the other five
operations cannot overflow [1].

Let 𝑥 and 𝑦 be two floating-point numbers, with exponents
𝑒𝑥 and 𝑒𝑦 , respectively, such that 𝑒𝑥+𝑒𝑦 ≥ 𝑒min+𝑝−1. Define
𝑎𝑒 = RN𝑒(𝑥𝑦). The number 𝑏𝑒 = 𝑥𝑦 − 𝑎𝑒 is a floating-point
number (see [13] for a proof). An immediate consequence is
that Algorithm 3 (Fast2Mult) delivers these numbers 𝑎𝑒 and 𝑏𝑒.
Checking if 𝑒𝑥+ 𝑒𝑦 ≥ 𝑒min+𝑝−1 may be difficult, however,
a sufficient condition for that is |RN𝑒(𝑥 · 𝑦)| > 2𝑒min+𝑝.

ALGORITHM 3: Fast2Mult(𝑥, 𝑦). The Fast2Mult al-
gorithm (see for instance [9], [13], [12]). It requires the
availability of a fused multiply-add (FMA) instruction
for computing RN𝑒(𝑥𝑦 − 𝑎𝑒).

𝑎𝑒 ← RN𝑒(𝑥 · 𝑦)
𝑏𝑒 ← RN𝑒(𝑥 · 𝑦 − 𝑎𝑒)

We will also use the following results, due to Hauser [6]
and Sterbenz [16] (the proofs are straightforward, see [12]).

Lemma 1 (Hauser). If 𝑥 and 𝑦 are floating-point numbers,
and if the number RN𝑒(𝑥+ 𝑦) is subnormal, then 𝑥+ 𝑦 is a
floating-point number, which implies RN𝑒(𝑥+ 𝑦) = 𝑥+ 𝑦.



Lemma 2 (Sterbenz). If 𝑥 and 𝑦 are floating-point numbers
that satisfy 𝑥/2 ≤ 𝑦 ≤ 2𝑥, then 𝑥 − 𝑦 is a floating-point
number, which implies RN𝑒(𝑥− 𝑦) = 𝑥− 𝑦.

As said above, when RN0(𝑡) and RN𝑒(𝑡) differ, RN0(𝑡) is
obtained by subtracting sign(𝑡) · ulp𝐻(RN𝑒(𝑡)) from RN𝑒(𝑡).
Therefore, we need to be able to compute function sign(𝑎) ·
ulp𝐻(𝑎). If |𝑎| > 2𝑒min , this can be done using Algorithm 4
below.

ALGORITHM 4: Computing sign(𝑎) · ulp𝐻(𝑎) for
|𝑎| > 2𝑒min . Uses the FP constant 𝜓 = 1− 2−𝑝.

𝑧 ← RN𝑒(𝜓𝑎)
𝛿 ← RN𝑒(𝑎− 𝑧)
return 𝛿

The fact that Algorithm 4 returns sign(𝑎) · ulp𝐻(𝑎) when
|𝑎| > 2𝑒min is a direct consequence of [15, Lemma 3.6]. See
also [8]. Note that when 𝑎 > 2𝑒min , 𝑧 equals pred(𝑎). If 𝑎
is subnormal (i.e., |𝑎| < 2𝑒min ), then Algorithm 4 returns 0.
Interestingly enough, Algorithm 4 returns the same result if
we change the tie-breaking rule. Another remark is that the
fact that the radix is 2 is important here (a counterexample in
radix 10 is 𝑝 = 3 and 𝑎 = 101). This means that our work
cannot be straightforwardly generalized to decimal floating-
point arithmetic.

II. RECOMPOSITION

In this section, we start from two floating-point numbers
𝑎𝑒 and 𝑏𝑒, that satisfy 𝑎𝑒 = RN𝑒(𝑡), with 𝑡 = 𝑎𝑒 + 𝑏𝑒,
and we assume |𝑎𝑒| > 2𝑒min . These numbers may have been
preliminarily generated by the 2Sum, Fast2Sum or Fast2Mult
algorithms. We want to deduce from them two floating-point
numbers 𝑎0 and 𝑏0 such that 𝑎0 = RN0(𝑡), and 𝑎0 + 𝑏0 = 𝑡.

𝑎𝑒

ulp𝐻(𝑎𝑒)

If 𝑎𝑒 + 𝑏𝑒 lies there, then
𝑎0 = 𝑎𝑒 and 𝑏0 = 𝑏𝑒

If 𝑎𝑒 + 𝑏𝑒 is exactly there
then 𝑎0 = 𝑎𝑒 − ulp𝐻(𝑎𝑒)

and 𝑏0 = −𝑏𝑒.

Fig. 2. IIlustration of the transformation to be performed in the case 𝑎𝑒+𝑏𝑒 >
0 (the case 𝑎𝑒+𝑏𝑒 < 0 is symmetrical). The thick vertical lines represent the
floating-point numbers. The numbers 𝑎𝑒 and 𝑏𝑒 may have been previously
obtained using 2Sum, Fast2Sum, or Fast2Mult.

One easily notes that 𝑎𝑒 ̸= RN0(𝑡) only when 𝑏𝑒 =
− 1

2 sign(𝑎𝑒) · ulp𝐻(𝑎𝑒). In that case,

RN0(𝑡) = 𝑎𝑒 − sign(𝑎𝑒)ulp𝐻(𝑎𝑒),

and
𝑡− RN0(𝑡) = −𝑏𝑒.

This is illustrated by Figure 2, and this leads to Algorithm 5
below.

ALGORITHM 5: Recomp(𝑎𝑒, 𝑏𝑒). From two FP
numbers 𝑎𝑒 and 𝑏𝑒 such that 𝑎𝑒 = RN𝑒(𝑎𝑒 + 𝑏𝑒)
and |𝑎𝑒| > 2𝑒min , computes 𝑎0 and 𝑏0 such that
𝑎0 + 𝑏0 = 𝑎𝑒 + 𝑏𝑒 and 𝑎0 = RN0(𝑎𝑒 + 𝑏𝑒). Uses
the FP constant 𝜓 = 1− 2−𝑝.

𝑧 ← RN𝑒(𝜓 · 𝑎𝑒)
𝛿 ← RN𝑒(𝑧 − 𝑎𝑒)
if 2 · 𝑏𝑒 = 𝛿 then
𝑎0 ← 𝑧
𝑏0 ← −𝑏𝑒

else
𝑎0 ← 𝑎𝑒
𝑏0 ← 𝑏𝑒

end if
return (𝑎0, 𝑏0)

Note that if |𝑎𝑒| ≤ 2𝑒min , Algorithm 5 always returns 𝑎0 =
𝑎𝑒 and 𝑏0 = 𝑏𝑒. This is not a problem for augmentedAddition
thanks to Lemma 1, as we are going to see in Section III. For
augmentedMultiplication this will require a special handling.

In the next sections, we examine how Algorithm 5
can be used to compute augmentedAddition(𝑥, 𝑦) and
augmentedMultiplication(𝑥, 𝑦).

III. USE OF ALGORITHM RECOMP FOR IMPLEMENTING
AUGMENTEDADDITION

From two input floating-point numbers 𝑥 and 𝑦, we wish to
compute RN0(𝑥+ 𝑦) and (𝑥+ 𝑦)− RN0(𝑥+ 𝑦). Let us first
give a simple algorithm, that returns a correct result when no
exception occurs.

ALGORITHM 6: AA-Simple(𝑥, 𝑦): computes
augmentedAddition(𝑥, 𝑦) when no exception occurs.

1: if |𝑦| > |𝑥| then
2: swap(𝑥, 𝑦)
3: end if
4: (𝑎𝑒, 𝑏𝑒)← Fast2Sum(𝑥, 𝑦)
5: (𝑎0, 𝑏0)← Recomp(𝑎𝑒, 𝑏𝑒)
6: return (𝑎0, 𝑏0)

We have,

Theorem 1. The values 𝑎0 and 𝑏0 returned by Algorithm 6
satisfy:

1) if 𝑎0 and 𝑏0 are finite numbers then (𝑎0, 𝑏0) =
augmentedAddition(𝑥, 𝑦);

2) when 𝑥 + 𝑦 = 0, 𝑎0 and 𝑏0 are equal to zero too (as
expected), but possibly with signs that differ from the ones
specified in the draft standard;

3) if |𝑥+𝑦| = Ω+2𝑒max−𝑝 = (2−2−𝑝)·2𝑒max then 𝑎0 = ±∞
and 𝑏0 is either NaN or ±∞, whereas the correct values



would have been 𝑎0 = ±Ω and 𝑏0 = ±2𝑒max−𝑝 (with the
appropriate signs);

4) if |𝑥 + 𝑦| > Ω + 2𝑒max−𝑝 then 𝑎0 = ±∞ (with the
appropriate sign) and 𝑏0 is either NaN or ±∞ (possibly
with a wrong sign), whereas the draft standard requires
𝑎0 = 𝑏0 =∞ (with the same sign as 𝑥+ 𝑦).

The first property listed in Theorem 1 is an immediate
consequence of the properties of the Fast2Sum and Recomp
algorithms. More precisely: we have 𝑎𝑒 = RN𝑒(𝑥 + 𝑦) and
𝑎𝑒 + 𝑏𝑒 = 𝑥+ 𝑦. Hence,

∙ if |𝑎𝑒| > 2𝑒min then Recomp(𝑎𝑒, 𝑏𝑒) gives the expected
result;

∙ if |𝑎𝑒| ≤ 2𝑒min then from Lemma 1, we know that the
floating-point addition of 𝑥 and 𝑦 is exact, hence 𝑏𝑒 = 0.
We easily deduce that Recomp(𝑎𝑒, 𝑏𝑒) = (𝑎𝑒, 𝑏𝑒) which
is the expected result. In particular, if 𝑎𝑒 = 0 then we
obtain 𝑎0 = 𝑏0 = 0 (possibly with wrong signs, as
claimed in the second property listed in Theorem 1, see
below for an explanation).

Note that if we are certain that |𝑥| ≠ Ω (so that 2Sum(𝑥, 𝑦) can
be called without any risk of spurious overflow) we can replace
lines 1 to 4 of the algorithm by a simple call to 2Sum(𝑥, 𝑦).

Now, consider the second property listed in Theorem 1. Note
that Lemma 1 implies that 𝑥 + 𝑦 = 0 and RN𝑒(𝑥 + 𝑦) = 0
are equivalent. In that case, the draft standard requires that
𝑎0 = RN0(𝑥 + 𝑦) should be +0 except when 𝑥 = 𝑦 = −0
(and in that case, 𝑎0 should be −0), and that 𝑏0 should be equal
to 𝑎0 [14]. However, the signs of the zero values delivered by
Algorithm 6 may differ from these specifications:

∙ if (𝑥 = −𝑦 and |𝑥| ≠ 0) or (𝑥 = −0 and 𝑦 = +0) or
(𝑥 = +0 and 𝑦 = +0) then Algorithm 6 returns 𝑎0 = +0
and 𝑏0 = −0 whereas the desired result is 𝑎0 = 𝑏0 = +0;

∙ if 𝑥 = +0 and 𝑦 = −0 then Algorithm 6 returns the
desired result, namely 𝑎0 = 𝑏0 = +0 (note that if we
replace Fast2Sum by 2Sum in the algorithm, we obtain
𝑎0 = +0 and 𝑏0 = −0);

∙ if 𝑥 = −0 and 𝑦 = −0 then Algorithm 6 returns 𝑎0 = −0
and 𝑏0 = +0, whereas the desired result is 𝑎0 = 𝑏0 =
−0 (note that if we replace Fast2Sum by 2Sum in the
algorithm, we obtain 𝑎0 = 𝑏0 = −0).

Hence, if the signs of the zero variables are important in the
target application, one has to add to add the following lines to
Algorithm 6 after Line 5:

if 𝑎0 = 0 then
𝑏0 ← 𝑎0

end if
Property 3 of Theorem 1 is immediate by applying Algo-

rithm 6 to the corresponding input value.
Concerning Property 4 of Theorem 1, Table I gives the

values returned by Algorithm 6 when 𝑥 + 𝑦 > Ω + 2𝑒max−𝑝

(the case 𝑥+ 𝑦 < −Ω− 2𝑒max−𝑝 is symmetrical).
If the considered applications only require augmentedAd-

dition to follow the specifications when no exception occurs,
Algorithm 6 (possibly with the above given additional lines if

TABLE I
VALUES OBTAINED USING ALGORITHM 6 (POSSIBLY WITH A

REPLACEMENT OF FAST2SUM BY 2SUM) WHEN 𝑥+ 𝑦 > 2𝑒max (2− 2−𝑝)
(RESP. ALGORITHM 8 WHEN 𝑥𝑦 > 2𝑒max (2− 2−𝑝)). THE CASE WHERE

𝑥+ 𝑦 (RESP. 𝑥𝑦) IS NEGATIVE IS SYMMETRICAL.

(𝑎𝑒, 𝑏𝑒)
obtained
through
2Sum

(𝑎𝑒, 𝑏𝑒)
obtained
through

Fast2Sum

(𝑎𝑒, 𝑏𝑒)
obtained
through

Fast2Mult

Result
required
by draft
standard

𝑎0 +∞ +∞ +∞ +∞
𝑏0 NaN −∞ −∞ +∞

the signs of zeros matter) is a good candidate. If we wish to
always follow the specifications, we suggest using Algorithm 7
below.

ALGORITHM 7: AA-Full(𝑥, 𝑦): computes
augmentedAddition(𝑥, 𝑦) in all cases.

1: if |𝑦| > |𝑥| then
2: swap(𝑥, 𝑦)
3: end if
4: (𝑎𝑒, 𝑏𝑒)← Fast2Sum(𝑥, 𝑦)
5: (𝑎0, 𝑏0)← Recomp(𝑎𝑒, 𝑏𝑒)
6: if 𝑎0 = 0 then
7: 𝑏0 ← 𝑎0
8: else if 𝑎𝑒 = ±∞ then
9: (𝑎′𝑒, 𝑏

′
𝑒)← Fast2Sum(0.5𝑥, 0.5𝑦)

10: if (𝑎′𝑒 = 2𝑒max and 𝑏′𝑒 = −2𝑒max−𝑝+1) or
(𝑎′𝑒 = −2𝑒max and 𝑏′𝑒 = +2𝑒max−𝑝+1) then

11: 𝑎0 ← RN𝑒(𝑎
′
𝑒 · (2− 2−𝑝+1))

12: 𝑏0 ← −2𝑏′𝑒
13: else
14: 𝑎0 ← 𝑎𝑒 (infinity with right sign)
15: 𝑏0 ← 𝑎𝑒
16: end if
17: end if
18: return (𝑎0, 𝑏0)

We have,

Theorem 2. The output (𝑎0, 𝑏0) of Algorithm 7 is equal to
augmentedAddition(𝑥, 𝑦).

We just give a sketch of the proof.

Proof.
∙ when 𝑎0 ̸= 0 at Line 6 of the algorithm and 𝑎𝑒 ̸= ±∞,

Algorithm 7 behaves exactly as Algorithm 6;
∙ we have just explained the case 𝑎0 = 0 before;
∙ when 𝑎𝑒 = ±∞, there are two possibilities (as discussed

in cases 3 and 4 of Theorem 1): either |𝑥 + 𝑦| = Ω +
2𝑒max−𝑝 = (2 − 2−𝑝) · 2𝑒max , in which case we must
return 𝑎0 = ±Ω and 𝑏0 = ±2𝑒max−𝑝 (with the appropriate
signs), or |𝑥+ 𝑦| > Ω+2𝑒max−𝑝, in which case we must
return 𝑎0 = 𝑏0 = ±∞ (with the appropriate sign, namely
the sign of 𝑎𝑒). This issue is dealt with in Lines 8 to
16 of Algorithm 7: we divide 𝑥 and 𝑦 by 2 so that if



|𝑥+ 𝑦| = Ω + 2𝑒max−𝑝, then 𝑥/2 + 𝑦/2 is computed by
Fast2Sum without overflow, which makes it possible to
compare it with ± (Ω + 2𝑒max−𝑝) /2.

IV. USE OF ALGORITHM RECOMP FOR IMPLEMENTING
AUGMENTEDMULTIPLICATION

A. General case

From two input floating-point numbers 𝑥 and 𝑦, we wish to
compute RN0(𝑥𝑦) and 𝑥𝑦 − RN0(𝑥𝑦) (or, merely, RN0[𝑥𝑦 −
RN0(𝑥𝑦)] when 𝑥𝑦−RN0(𝑥𝑦) is not a floating-point number).
As we did for augmentedAddition, let us first present a simple
algorithm. Unfortunately, it will be less general than the simple
addition algorithm: this is due to the fact that when the product
of two floating-point numbers is less than or equal to 2𝑒min+𝑝,
it may not be exactly representable by the sum of two floating-
point numbers

ALGORITHM 8: AM-Simple(𝑥, 𝑦): computes
augmentedMultiplication(𝑥, 𝑦) when 2𝑒min+𝑝 <
|RN𝑒(𝑥𝑦)| < +∞.

1: (𝑎𝑒, 𝑏𝑒)← Fast2Mult(𝑥, 𝑦)
2: (𝑎0, 𝑏0)← Recomp(𝑎𝑒, 𝑏𝑒)
3: return (𝑎0, 𝑏0)

We have,

Theorem 3. If 2𝑒min+𝑝 < |RN𝑒(𝑥𝑦)| < +∞ (i.e., 2𝑒min+𝑝 +
2𝑒min+1 ≤ |RN𝑒(𝑥𝑦)| ≤ Ω) then AM-Simple(𝑥, 𝑦) =
augmentedMultiplication(𝑥, 𝑦).

Proof. If 2𝑒min+𝑝 + 2𝑒min+1 ≤ |RN𝑒(𝑥𝑦)| ≤ Ω then we know
that

∙ (𝑎𝑒, 𝑏𝑒) = Fast2Mult(𝑥, 𝑦) gives 𝑎𝑒 + 𝑏𝑒 = 𝑥𝑦;
∙ |𝑎𝑒| > 2𝑒min ;

therefore Recomp(𝑎𝑒, 𝑏𝑒) returns the expected result.

The lower limit 2𝑒min+𝑝+2𝑒min+1 in Theorem 3 comes from
the fact that if |RN𝑒(𝑥𝑦)| is below that value, Fast2Mult(𝑥, 𝑦)
may not deliver a correct result.

Let us now examine how the cases RN𝑒(𝑥𝑦) = ±∞ and
|RN𝑒(𝑥𝑦)| ≤ 2𝑒min+𝑝 can be addressed.

B. First special case: if RN𝑒(𝑥𝑦) = ±∞
In this case, in a way very similar to what we did for

augmented addition,
∙ either |𝑥𝑦| = Ω+ 2𝑒max−𝑝 = (2− 2−𝑝) · 2𝑒max , in which

case we must return 𝑎0 = ±Ω and 𝑏0 = ±2𝑒max−𝑝

(with the appropriate signs) whereas one easily checks
that Algorithm 8 delivers a wrong result;

∙ or |𝑥𝑦| > Ω + 2𝑒max−𝑝, in which case we must return
𝑎0 = 𝑏0 = ±∞, whereas Table I shows that Algorithm 8
delivers a wrong result for 𝑏0.

The problem is addressed easily (and very similarly to what
we did for augmented addition). It suffices to compute
(𝑎′𝑒, 𝑏

′
𝑒) = Fast2Mult(0.5 · 𝑥, 𝑦). If |𝑥𝑦| = Ω + 2𝑒max−𝑝,

then 𝑥𝑦/2 is computed by Fast2Mult without overflow, which
makes it possible to compare it with ± (Ω + 2𝑒max−𝑝) /2. If
it turns out that |𝑥𝑦/2| ̸= (Ω + 2𝑒max−𝑝) /2 we must return
𝑎0 = 𝑏0 = RN𝑒(𝑥𝑦).

The case |RN𝑒(𝑥𝑦)| ≤ 2𝑒min+𝑝 is more complex. We will
separately examine the case |RN𝑒(𝑥𝑦)| ≤ 2𝑒min+1−2𝑒min−𝑝+1

(for which 𝑏0 is always zero) and the case 2𝑒min+1 ≤
|RN𝑒(𝑥𝑦)| ≤ 2𝑒min+𝑝.

C. Second special case: if |RN𝑒(𝑥𝑦)| ≤ 2𝑒min+1 − 2𝑒min−𝑝+1

In that case, the floating-point number nearest 𝑥𝑦−RN0(𝑥𝑦)
is zero, so we only have to focus on the computation of
RN0(𝑥𝑦). We also assume that RN𝑒(𝑥𝑦) ̸= 0 (otherwise, it
suffices to return RN0(𝑥𝑦) = 0). We therefore have

2𝑒min−𝑝 < |𝑥𝑦| < 2𝑒min+1 − 2𝑒min−𝑝. (1)

Let 𝑎𝑒 be RN𝑒(𝑥𝑦), and let us successively compute (using
FMA instructions)

𝑡1 = RN𝑒(𝑥𝑦 · 22𝑝)
𝑡2 = RN𝑒(𝑥𝑦 · 22𝑝 − 𝑡1) = 𝑥𝑦 · 22𝑝 − 𝑡1
𝑡3 = RN𝑒(𝑡1 − 𝑎𝑒 · 22𝑝).

Let us show that 𝜃3 = 𝑡1−𝑎𝑒 · 22𝑝 is a floating-point number.
This will imply 𝑡3 = 𝜃3 = 𝑡1 − 𝑎𝑒 · 22𝑝 (hence, 𝜃3 can be
computed with an FMA, or with a multiplication followed by
a subtraction). Note that (1) implies |22𝑝𝑥𝑦| < 2𝑒min+2𝑝+1 −
2𝑒min+𝑝, so that |𝑡1| ≤ 2𝑒min+2𝑝+1− 2𝑒min+𝑝+1 and ulp(𝑡1) ≤
2𝑒min+𝑝+1. Also, we have |𝑥𝑦 · 22𝑝| > 2𝑒min+𝑝, which implies
|𝑡1| ≥ 2𝑒min+𝑝.

Finally, since 𝑎𝑒 is a multiple of 2𝑒min−𝑝+1, the number
22𝑝 ·𝑎𝑒 is a multiple of 2𝑒min+𝑝+1. Therefore, 𝜃3 is a multiple
of ulp(𝑡1).

Now, from 𝑥𝑦−2𝑒min−𝑝 ≤ |𝑎𝑒| ≤ 𝑥𝑦+2𝑒min−𝑝, we deduce
𝑥𝑦 · 22𝑝 − 2𝑒min+𝑝 ≤ |𝑎𝑒| · 22𝑝 ≤ 𝑥𝑦 · 22𝑝 + 2𝑒min+𝑝, which
implies

𝑡1−
1

2
ulp(𝑡1)−2𝑒min+𝑝 ≤ |𝑎𝑒| ·22𝑝 ≤ 𝑡1+

1

2
ulp(𝑡1)+2𝑒min+𝑝,

so that⃒⃒
𝑡1 − 𝑎𝑒 · 22𝑝

⃒⃒
≤ 1

2
ulp(𝑡1) + 2𝑒min+𝑝 ≤ 1

2
ulp(𝑡1) + |𝑡1|.

Hence, 𝜃3 is a multiple of ulp(𝑡1) of magnitude less than
or equal to 1

2ulp(𝑡1)+ |𝑡1|. An immediate consequence is that
𝜃3 is a floating-point number, which implies 𝑡3 = 𝜃3.

Now, we wish to compute 𝑎0 = RN0(𝑥𝑦). If 𝑥𝑦 =
𝑎𝑒 − sign(𝑎𝑒) · 2𝑒min−𝑝 then 𝑎0 = 𝑎𝑒 − sign(𝑎𝑒) · 2𝑒min−𝑝+1

(computed without error), otherwise 𝑎0 = 𝑎𝑒. Hence we have
to check if 𝑥𝑦 = 𝑎𝑒− sign(𝑎𝑒) · 2𝑒min−𝑝. This is equivalent to
checking if 𝑡2 + 𝑡3 = −sign(𝑎𝑒) · 2𝑒min+𝑝. This can be done
as follows: first note that since 𝑡3 is a multiple of ulp(𝑡1) and
|𝑡2| ≤ 1

2ulp(𝑡1), either 𝑡3 = 0 or |𝑡3| > |𝑡2|. In any case, if
follows from the properties of Algorithm 1 (Fast2Sum) that
checking if

𝑡2 + 𝑡3 = −sign(𝑎𝑒) · 2𝑒min+𝑝

is equivalent to checking if

𝑧 := RN𝑒(𝑡2+𝑡3) = −sign(𝑎𝑒)·2𝑒min+𝑝 and RN𝑒(𝑧−𝑡3) = 𝑡2.



D. Last special case: if 2𝑒min+1 ≤ |RN𝑒(𝑥𝑦)| ≤ 2𝑒min+𝑝

In that case, we know that 𝑥𝑦 − RN0(𝑥𝑦) is of magnitude
less than or equal to 2𝑒min , but is not necessarily a floating-
point number. The draft standard requires that we return
RN0(𝑥𝑦) and RN0(𝑥𝑦 − RN0(𝑥𝑦)).

First, we apply Algorithm 8 to the product (2𝑝𝑥) · 𝑦. This
gives two values, say 𝑎′ and 𝑏′, such that 𝑎′ = RN0(2

𝑝𝑥𝑦) and
𝑏′ = 2𝑝𝑥𝑦− 𝑎′. We immediately deduce that 2−𝑝𝑎′ is the ex-
pected RN0(𝑥𝑦). Obtaining RN0(𝑥𝑦 − 2−𝑝𝑎′) = RN0(2

−𝑝𝑏′)
is slightly more tricky. We first compute 𝛽 = RN𝑒(2

−𝑝𝑏′).
The number 𝛽 is equal to the expected RN0(2

−𝑝𝑏′) unless

𝛽 − (2−𝑝𝑏′) = sign(𝛽) · 2𝑒min−𝑝 (2)

in which case, one should replace 𝛽 by 𝛽−sign(𝛽)·2𝑒min−𝑝+1.
Equation (2) is equivalent to

2𝑝𝛽 − 𝑏′ = sign(𝛽) · 2𝑒min ,

which is easily testable since the subtraction is exact: 2𝑝𝛽−𝑏′
is a multiple of 2𝑒min−𝑝+1, of magnitude less than or equal to
2𝑒min , hence it is a floating-point number.

All this gives Algorithm 9 and Theorem 4, below.

Theorem 4. Algorithm 9 always returns augmented-
Multiplication(𝑥, 𝑦).

CONCLUSION

We have presented algorithms that allow one to implement
the newly suggested “augmented” floating-point operations
using the classical, rounded-ties-to-even, operations. The al-
gorithms are very simple in the general case. Special cases
are slightly more involved but will remain unfrequent in most
applications. Note that formal proofs of the general case using
Coq and the Flocq library [2] are under development.
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