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Boundary controllability of the Korteweg-de Vries equation
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Abstract

Controllability of coupled systems is a complex issue depending on the coupling condi-

tions and the equations themselves. Roughly speaking, the main challenge is controlling a

system with less inputs than equations. In this paper this is successfully done for a system

of Korteweg-de Vries equations posed on an oriented tree shaped network. The couplings

and the controls appear only on boundary conditions.

Subject Classification [2010]: 93B05, 35Q53, 35R02

1 Introduction and main result

Partial differential equations (PDE) appear in many contexts to model different phenomena.

Most of time, these equations are coupled and their study gets much more difficult than when

a single equation appear. The control of such systems is not the exception and thus it is very

important to understand how we can get controllable systems by using the properties of the

single equations and the couplings.

The most known PDE are parabolic and hyperbolic equations. Thus, it is very natural to find

many works concerning the controllability of coupled systems involving them. If we restrict

our attention to boundary controllability, which is the main issue of this paper, we can mention

among a huge literature, [1, 5, 16] for parabolic equations and [3, 13, 18] for hyperbolic equations.
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In this context, a network is a particular kind of coupled systems in which different PDE are

posed on different domains (edges of the network) with coupled boundary conditions (acting on

the nodes of the network). Depending on the topology of the structure edges-nodes we define

star-shaped, tree-shaped or just general networks. For this particular kind of coupled systems

we already find some boundary controllability results. In fact, we can mention [7] for parabolic

systems and [4, 14, 15, 17, 20, 24] for hyperbolic systems.

In this work, we are interested in the controllability of oriented networks for the Korteweg-de

Vries (KdV) equation. In the literature there is already a good understanding of the control of

the single KdV equation. When we deal with the KdV equation with homogeneous Dirichlet

conditions and right Neumann condition on a bounded domain, the length L of the interval where

the equation is set plays a role in the ability of controlling the solution of the equation ([9, 12, 22]).

Indeed, it is well-known that if L = 2π, there exists a stationary solution (y(x, t) = 1− cosx) of

the linearized system around 0 which has constant energy. More generally, defining the set of

critical lengths

N =

{
2π

√
k2 + kl + l2

3
, k, l ∈ N∗

}
,

one can recall that the linearized equation around 0 is exactly controllable with only one right

Neumann control if and only if L /∈ N (see [22]) and the local exact controllability result holds for

the nonlinear KdV equation (using a fixed point argument) if L /∈ N . Further results show that

the nonlinear KdV equation is in fact locally exactly controllable for all critical lengths contrary

to the linear KdV equation (see [8, 10, 12]). See also [9] and [23] for a complete bibliographical

review.

As we have a rather complete understanding of the boundary controllability of this equation,

we deal here with the KdV equation posed on a network. Recently, we find two papers dealing

with the controllability of the KdV equation on a network. In both, the topology considered is

a star-shaped network, having in this way one central node and several external nodes. These

two papers giving a positive answer to the controllability of the nonlinear KdV equation on

network are [2] with N + 1 boundary controls for N edges (the main topic of that work is the

stabilization) and [11] with N boundary controls for N edges.

Generally speaking, the main differences between papers [2] and [11] and the present work are:

the sense of the propagation of the water wave on the first edge; the transmission conditions at

the central node; and the fact that we improve the previous results having one control less here.

More precisely, in this paper we consider a tree-shaped network R of (N + 1) edges ei (where

N ∈ N∗), of lengths li > 0, i ∈ {1, .., N + 1}, connected at one vertex that we assume to be 0

for all the edges. We assume that the first edge e1 is parametrized on the interval I1 := (−l1, 0)

and the N other edges ei are parametrized on the interval Ii := (0, li) (see Figure 1).

On each edge we pose a nonlinear Korteweg-de Vries (KdV) equation. On the first edge (i = 1)
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Figure 1: A tree-shaped network with 3 edges (N = 2)

we put no control and on the other edges (i = 2, · · · , N + 1) we consider Neumann boundary

controls. Thus, we can write the system

(yi,t + yi,x + yi,xxx + yiyi,x)(x, t) = 0, ∀i ∈ {1, · · · , N + 1} , x ∈ Ii, t > 0,

y1(−l1, t) = 0, t > 0,

yi(li, t) = 0,

yi,x(li, t) = hi(t),

y1(0, t) = αiyi(0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

y1,x(0, t) =

N+1∑
i=2

βiyi,x(0, t), t > 0,

y1,xx(0, t) =

N+1∑
i=2

1

αi
yi,xx(0, t), t > 0,

yi(x, 0) = yi0(x), ∀i ∈ {1, · · · , N + 1} , x ∈ Ii,

(1.1)

where yi(x, t) is the amplitude of the water wave on the edge ei at position x ∈ Ii at time t,

hi = hi(t) is the control on the edge ei (i ∈ {2, · · · , N + 1}) belonging to L2(0, T ) and αi and βi

(i ∈ {2, · · · , N + 1}) are positive constants. The initial data yi0 are supposed to be L2 functions

of the space variable.

It is worth to mention that the transmission conditions at the central node 0 are inspired by the

recent papers [19] and [6].

Let us introduce some notations. First, for any function f : R → R we set

fi = f |ei the restriction of f to the edge ei.
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In the sequel, we shall use the following notations :

L2(R) =
{
f : R → R, fi ∈ L2(Ii), ∀i ∈ {1, ..., N + 1}

}
,

H1
0 (R) =

{
f : R → R, fi ∈ H1(Ii), ∀i ∈ {1, ..., N + 1} ,

f1(−l1) = fi(li) = 0, f1(0) = αifi(0),∀i ∈ {2, ..., N + 1}} .

For shortness, for f ∈ L1(R) =
{
f : R → R, fi ∈ L1(Ii), ∀i ∈ {1, ..., N + 1}

}
we often write,

∫
R
fdx =

∫ 0

−l1
f1(x)dx+

N+1∑
i=2

∫ li

0

fi(x)dx.

Then the inner products and the norms of the Hilbert spaces L2(R) and H1
0 (R) are defined by

‖f‖2L2(R) =

∫
R
|f |2 dx and 〈f, g〉L2(R) =

∫
R
f(x)g(x)dx,

‖f‖2H1
0 (R) =

∫
R
|fx|2 dx and 〈f, g〉H1

0 (R) =

∫
R
fx(x)gx(x)dx.

The main goal of this paper is to study the controllability of the nonlinear KdV equation on

the tree shaped network of N + 1 edges with N controls. The controllability problem can be

stated as following. For any T > 0, li > 0, y0 ∈ L2(R) and yT ∈ L2(R), is it possible to find N

Neumann boundary controls hi ∈ L2(0, T ) such that the solution y to (1.1) on the tree shaped

network of N + 1 edges satisfies y(·, 0) = y0 and y(·, T ) = yT ?

The main result of this paper gives a positive answer if the time of control is large enough and

the lengths of the edges are small enough.

Theorem 1. Let li > 0 satisfying

L := max
i=1,··· ,N+1

li <
√

3π

(
min(1, αi

Nβi
)

max(1, αi

Nβi
)

)1/2
1√√√√2π2

(
1−

N+1∑
i=2

1

α2
i

)
+ 1

(1.2)

and assume that
N+1∑
i=2

1

α2
i

≤ 1 and

N+1∑
i=2

β2
i = 1. (1.3)

There exists a positive constant Tmin such that the system (1.1) is locally exactly controllable in

any time T > Tmin. More precisely, there exists r > 0 sufficiently small such that for any states

y0 ∈ L2(R) and yT ∈ L2(R) with

‖y0‖L2(R) < r and ‖yT ‖L2(R) < r,

there exist N Neumann boundary controls hi ∈ L2(0, T ) such that the solution y to (1.1) on the

tree shaped network of N + 1 edges satisfies y(·, 0) = y0 and y(·, T ) = yT for T > Tmin.
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In order to prove Theorem 1 we prove first the exact controllability result of the KdV equation

linearized around 0. Our proof is based on an observability inequality for the linear backward

adjoint system obtained by a multiplier approach. We recall that the KdV equation linearized

around 0 writes

yi,t(x, t) + yi,x(x, t) + yi,xxx(x, t) = 0, ∀i ∈ {1, · · · , N + 1} , x ∈ Ii, t > 0,

y1(−l1, t) = 0, t > 0,

yi(li, t) = 0,

yi,x(li, t) = hi(t),

y1(0, t) = αiyi(0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

y1,x(0, t) =

N+1∑
i=2

βiyi,x(0, t), t > 0,

y1,xx(0, t) =

N+1∑
i=2

1

αi
yi,xx(0, t), t > 0,

y(x, 0) = y0(x), x ∈ R.

(1.4)

We then get the local exact controllability result of the nonlinear KdV equation applying a fixed

point argument. The drawback of this method is that we do not obtain sharp conditions on the

lengths li and on the time of control Tmin. However, we get an explicit constant of observability.

The paper is organized as follows. Section 2 is devoted to the necessary preliminary step dealing

with the well-posedness and regularity of the solutions of the linear and nonlinear KdV equation.

Section 3 will develop the proof of the local controllability result stated in Theorem 1 with a

first step concerning the linearized KdV equation and a second step dealing with the original

nonlinear system.

2 Well-posedness and regularity results

In this section, we follow [22] (see also [2, 9, 11]). We first study the homogeneous linear system

(without control), then the linear KdV equation with regular initial data and controls, and by

density and the multiplier method, with less regularity on the data. Secondly, we consider the

case of the linear system with a source term in order to pass to the nonlinear KdV equation by

a fixed point argument.

2.1 Study of the linear equation

We begin by proving the well-posedness of the linear KdV equation (1.4) with hi = 0 for any

i ∈ {2, · · · , N + 1}. We consider the operator A defined by

A : y = (y1, · · · , yN+1) ∈ D(A) ⊂ L2(R) 7→ −yx − yxxx ∈ L2(R),
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with domain

D(A) =
{
y ∈

(
N+1∏
i=1

H3(Ii)

)
∩ V

∣∣∣∣∣ y1,xx(0) =

N+1∑
i=2

1

αi
yi,xx(0)

}
,

where

V =
{
y ∈

N+1∏
i=1

H2(Ii) | y1(−l1) = yi(li) = yi,x(li) = 0 (i ∈ {2, · · · , N + 1}) ,

y1(0) = αiyi(0) (i ∈ {2, · · · , N + 1}), y1,x(0) =

N+1∑
i=2

βiyi,x(0)
}
.

Then we can rewrite the homogeneous linear KdV equation (1.4) with hi = 0 for any i ∈
{2, · · · , N + 1} as  yt(t) = Ay(t), t > 0,

y(0) = y0 ∈ L2(R).
(2.5)

It is not difficult to show that the adjoint of A, denoted by A∗, is defined by

A∗ : z = (z1, · · · , zN+1) ∈ D(A∗) ⊂ L2(R) 7→ zx + zxxx ∈ L2(R),

with domain

D(A∗) =
{
z ∈

(
N+1∏
i=2

H3(Ii)

)
∩ Ṽ

∣∣∣∣∣ z1,xx(0) =

N+1∑
i=2

1

αi
zi,xx(0) +

(
N+1∑
i=2

1

α2
i

− 1

)
z1(0)

}
,

where

Ṽ =
{
z ∈

N+1∏
i=2

H2(Ii) | z1(−l1) = zi(li) = z1,x(−l1) = 0 ,

z1(0) = αizi(0), z1,x(0) =
1

βi
zi,x(0), i ∈ {2, · · · , N + 1}

}
.

Proposition 1. Assuming that

N+1∑
i=2

1

α2
i

≤ 1 and

N+1∑
i=2

β2
i ≤ 1, (2.6)

the operators A and A∗ are dissipative.

Proof. We first prove that the operator A is dissipative. Let y = (y1, · · · , yN+1) ∈ D(A). Then

we have with Cauchy-Schwarz inequality

〈Ay, y〉L2(R) = −
∫
R

(yx + yxxx)y dx

=
1

2

(
N+1∑
i=2

1

α2
i

− 1

)
y21(0)− y1(0)

(
y1,xx(0)−

N+1∑
i=2

1

αi
yi,xx(0)

)
− 1

2
y21,x(−l1)

+
1

2

(
N+1∑
i=2

βiyi,x(0)

)2

− 1

2

N+1∑
i=2

y2i,x(0)

≤ 1

2

(
N+1∑
i=2

1

α2
i

− 1

)
y21(0)− 1

2
y21,x(−l1) +

1

2

(
N+1∑
i=2

β2
i − 1

)
N+1∑
i=2

y2i,x(0).
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If we take αi and βi such that (2.6) holds, then 〈Ay, y〉L2(R) ≤ 0, which means that the operator

A is dissipative.

We now prove that the adjoint operator A∗ is also dissipative. Let z = (z1, · · · , zN+1) ∈ D(A∗).

Then we have

〈A∗z, z〉L2(R) =

∫
R

(zx + zxxx)z dx

=
1

2

(
1−

N+1∑
i=2

1

α2
i

)
z21(0) + z1(0)

(
z1,xx(0)−

N+1∑
i=2

1

αi
zi,xx(0)

)
− 1

2

N+1∑
i=2

z2i,x(li)

+
1

2

(
N+1∑
i=2

β2
i − 1

)
z21,x(0)

=
1

2

(
N+1∑
i=2

1

α2
i

− 1

)
z21(0)− 1

2

N+1∑
i=2

z2i,x(li) +
1

2

(
N+1∑
i=2

β2
i − 1

)
z21,x(0).

If we take αi and βi such that (2.6) holds, then 〈A∗z, z〉L2(R) ≤ 0, which means that the operator

A∗ is dissipative.

Consequently, A generates a strongly continuous semigroup of contractions on L2(R) (see [21])

and for any y0 ∈ L2(R) there exists a unique mild solution y ∈ C([0, T ], L2(R)) of (2.5).

Moreover, if y0 ∈ D(A), then the solution of (2.5) is classical and satisfies y ∈ C([0, T ],D(A))∩
C1([0, T ], L2(R)). We denote by {S(t), t ≥ 0} the semigroup of contractions associated with A.

We now prove the well-posedness result for the linear equation (1.4) with regular initial data

and controls. More precisely, we assume that the N boundary controls hi belong to C2
0 ([0, T ])

for any i ∈ {2, · · · , N + 1} where C2
0 ([0, T ]) =

{
h ∈ C2([0, T ]), h(0) = 0

}
.

Proposition 2. Assume that (2.6) holds. Let y0 ∈ D(A) and hi ∈ C2
0 ([0, T ]) for any i ∈

{2, · · · , N + 1}. Then there exists a unique solution y ∈ C([0, T ],D(A)) ∩ C1([0, T ], L2(R)) of

(1.4).

Proof. Let y0 ∈ D(A) and hi ∈ C2
0 ([0, T ]) for any i ∈ {2, · · · , N + 1}. We first take N + 1

functions φi ∈ C2([0, T ], C∞(Ii)) (i ∈ {1, · · · , N + 1}) satisfying

φ1(−l1, t) = 0, t > 0,

φi(li, t) = 0,

φi,x(li, t) = hi(t),

φ1(0, t) = αiφi(0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

φ1,x(0, t) =

N+1∑
i=2

βiφi,x(0, t), t > 0,

φ1,xx(0, t) =

N+1∑
i=2

1

αi
φi,xx(0, t), t > 0.
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This choice is possible by taking, for instance, for all i ∈ {2, · · · , N + 1}, the functions

φi(x, t) = −x(li−x)
li

hi(t).

Moreover, we can define the function φ1(x, t) = a(t)x3 + b(t)x2 + c(t)x with

c(t) = −
N+1∑
i=2

βihi(t), b(t) =

N+1∑
i=2

1

αili
hi(t), and a(t) =

b(t)l1 − c(t)
l21

.

We now define z = y − φ, which satisfies

zt(x, t) = (−zx − zxxx + g)(x, t), x ∈ R, t > 0,

z1(−l1, t) = 0, t > 0,

zi(li, t) = 0,

zi,x(li, t) = 0,

z1(0, t) = αizi(0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

z1,x(0, t) =

N+1∑
i=2

βizi,x(0, t), t > 0,

z1,xx(0, t) =

N+1∑
i=2

1

αi
zi,xx(0, t), t > 0,

z(x, 0) = y0(x), x ∈ R,

(2.7)

where g(x, t) = −φt(x, t) − φx(x, t) − φxxx(x, t) ∈ C1([0, T ], L2(R)). We deduce from cla-

ssical results on semigroup theory (see [21]) and from the fact that A generates a strongly

continuous semigroup of contractions on L2(R) that there exists a unique classical solution

z ∈ C([0, T ],D(A)) ∩ C1([0, T ], L2(R)) of (2.7). Consequently, there exists a unique solution

y ∈ C([0, T ],D(A)) ∩ C1([0, T ], L2(R)) of (1.4).

We now study the same system but with less regularity on the data, using a density argument

and the multiplier method.

Proposition 3. Assume that (2.6) holds. Let y0 ∈ L2(R) and hi ∈ L2(0, T ) for any i ∈
{2, · · · , N + 1}. Then, there exists a unique mild solution y ∈ C([0, T ], L2(R))∩L2(0, T,H1

0 (R))

of (1.4). Moreover y1,x(−l1, ·) ∈ L2(0, T ) and there exists C > 0 such that the following esti-

mates hold:

‖y‖2C([0,T ],L2(R)) + ‖y‖2L2(0,T,H1
0 (R)) ≤ C

(
‖y0‖2L2(R) +

N+1∑
i=2

‖hi‖2L2(0,T )

)
, (2.8)

‖y1,x(−l1, ·)‖2L2(0,T ) ≤ ‖y0‖
2
L2(R) +

N+1∑
i=2

‖hi‖2L2(0,T ) . (2.9)

Proof. We first assume that y0 ∈ D(A) and hi ∈ C2
0 ([0, T ]) for any i ∈ {2, · · · , N + 1}. By

Proposition 2, there exists a unique solution y ∈ C([0, T ],D(A)) ∩ C1([0, T ], L2(R)) of (1.4).
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Let s ∈ [0, T ] and q ∈ C∞(R× [0, s]). By multiplying yt + yx + yxxx = 0 by qy and integrating

by parts on R× [0, s], we get after some computations,∫
R
q(x, s)y2(x, s)dx−

∫
R
q(x, 0)y2(x, 0)dx−

∫ s

0

∫
R

(qt+ qx+ qxxx)y2dxdt+ 3

∫ s

0

∫
R
qxy

2
xdxdt

=

N+1∑
i=2

∫ s

0

qi(li, t)h
2
i (t)dt−

∫ s

0

q1(−l1, t)y21,x(−l1, t)dt−
∫ s

0

q1(0, t)y21(0, t)dt+

N+1∑
i=2

∫ s

0

qi(0, t)y
2
i (0, t)dt

−
∫ s

0

q1,xx(0, t)y21(0, t)dt+

N+1∑
i=2

∫ s

0

qi,xx(0, t)y2i (0, t)dt+ 2

∫ s

0

q1,x(0, t)y1(0, t)y1,x(0, t)dt

− 2

N+1∑
i=2

∫ s

0

qi,x(0, t)yi(0, t)yi,x(0, t)dt+

∫ s

0

q1(0, t)y21,x(0, t)dt−
N+1∑
i=2

∫ s

0

qi(0, t)y
2
i,x(0, t)dt

− 2

∫ s

0

q1(0, t)y1(0, t)y1,xx(0, t)dt+ 2

N+1∑
i=2

∫ s

0

qi(0, t)yi(0, t)yi,xx(0, t)dt. (2.10)

• Taking now q(x, t) = 1 in (2.10), we obtain

∫
R
y2(x, s)dx−

∫
R
y20(x)dx =

N+1∑
i=2

∫ s

0

h2i (t)dt−
∫ s

0

y21,x(−l1, t)dt−
∫ s

0

y21(0, t)dt+

N+1∑
i=2

∫ s

0

y2i (0, t)dt

+

∫ s

0

y21,x(0, t)dt−
N+1∑
i=2

∫ s

0

y2i,x(0, t)dt−2

∫ s

0

y1(0, t)y1,xx(0, t)dt+2

N+1∑
i=2

∫ s

0

yi(0, t)yi,xx(0, t)dt.

Using the boundary condition of (1.4) at the internal node 0, we have

∫
R
y2(x, s)dx+

∫ s

0

y21,x(−l1, t)dt =

∫
R
y20(x)dx+

N+1∑
i=2

∫ s

0

h2i (t)dt

+

(
N+1∑
i=2

1

α2
i

− 1

)∫ s

0

y21(0, t)dt+

∫ s

0

(
N+1∑
i=2

βiyi,x(0, t)

)2

dt−
N+1∑
i=2

∫ s

0

y2i,x(0, t)dt,

which implies

∫
R
y2(x, s)dx+

∫ s

0

y21,x(−l1, t)dt ≤
∫
R
y20(x)dx+

N+1∑
i=2

∫ s

0

h2i (t)dt

+

(
N+1∑
i=2

1

α2
i

− 1

)∫ s

0

y21(0, t)dt+

(
N+1∑
i=2

β2
i − 1

)
N+1∑
i=2

∫ s

0

y2i,x(0, t)dt.

Using (2.6), we obtain

max
s∈[0,T ]

∫
R
y2(x, s)dx ≤

∫
R
y20(x)dx+

N+1∑
i=2

∫ T

0

h2i (t)dt (2.11)

and ∫ T

0

y21,x(−l1, t)dt ≤
∫
R
y20(x)dx+

N+1∑
i=2

∫ T

0

h2i (t)dt. (2.12)
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Note that (2.11) and (2.12) mean that y ∈ C([0, T ], L2(R)) and yx(−l1, ·) ∈ L2(0, T ) (it is a hid-

den regularity property) provided that y0 ∈ L2(R) and hi ∈ L2(0, T ) for any i ∈ {2, · · · , N + 1}.
Moreover, (2.11) implies that∫ T

0

∫
R
y2(x, t)dxdt ≤ T

(∫
R
y20(x)dx+

N+1∑
i=2

∫ T

0

h2i (t)dt

)
. (2.13)

• Picking s = T , q1(x, t) = x and qi(x, t) = αiβix, for i = 2, . . . N + 1 in (2.10), we obtain

∫
R
q(x, T )y2(x, T )dx−

∫
R
q(x, 0)y20(x)dx−

∫ T

0

∫
R
qxy

2dxdt+ 3

∫ T

0

∫
R
qxy

2
xdxdt

=
N+1∑
i=2

αiβili

∫ T

0

h2i (t)dt+ l1

∫ T

0

y21,x(−l1, t)dt+ 2

∫ T

0

y1(0, t)y1,x(0, t)dt

− 2

N+1∑
i=2

∫ T

0

αiβiyi(0, t)yi,x(0, t)dt.

Using again the boundary condition of (1.4) at the central node 0, we have

3

∫ T

0

∫
R
qxy

2
xdxdt =

∫
R
q(x, 0)y20(x)dx−

∫
R
q(x, T )y2(x, T )dx+

∫ T

0

∫
R
qxy

2dxdt

+

N+1∑
i=2

∫ T

0

αiβilih
2
i (t)dt+

∫ T

0

l1y
2
1,x(−l1, t)dt. (2.14)

We then deduce from (2.12), (2.13) and (2.14) that

∫ T

0

∫
R
y2xdxdt ≤

(T + 3L) max
i=2,...,N+1

(1, αiβi)

3 min
i=2,...,N+1

(1, αiβi)

(∫
R
y20(x)dx+

N+1∑
i=2

∫ T

0

h2i (t)dt

)
, (2.15)

which means that y ∈ L2(0, T,H1
0 (R)) provided that y0 ∈ L2(R) and hi ∈ L2(0, T ) for any

i ∈ {2, · · · , N + 1}.

Consequently, by density of D(A) in L2(R) and of C2
0 ([0, T ]) in L2(0, T ) and using (2.11) and

(2.15), we can extend the notion of solution for less regular data y0 ∈ L2(R) and hi ∈ L2(0, T )

for any i ∈ {2, · · · , N + 1} and we obtain a mild solution in the space C([0, T ], L2(R)) ∩
L2(0, T,H1

0 (R)) and the estimates (2.8) and (2.9).
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2.2 KdV linear equation with a source term

In order to prove the well-posedness result for the nonlinear KdV equation (1.1), we use a

well-posedness and regularity result for the linear KdV equation with a source term:

yi,t(x, t) + yi,x(x, t) + yi,xxx(x, t) = fi(x, t), ∀i ∈ {1, · · · , N + 1} , x ∈ Ii, t > 0,

y1(−l1, t) = 0, t > 0,

yi(li, t) = 0,

yi,x(li, t) = hi(t),

y1(0, t) = αiyi(0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

y1,x(0, t) =

N+1∑
i=2

βiyi,x(0, t), t > 0,

y1,xx(0, t) =

N+1∑
i=2

1

αi
yi,xx(0, t), t > 0,

y(x, 0) = y0(x), x ∈ R,

(2.16)

where f = (f1, f2, · · · , fN+1) ∈ L1(0, T, L2(R)), y0 ∈ L2(R) and hi ∈ L2(0, T ) for any i ∈
{2, · · · , N + 1}.

Proposition 4. Assume that (2.6) holds. Let y0 ∈ L2(R), f = (f1, · · · , fN+1) ∈ L1(0, T, L2(R))

and hi ∈ L2(0, T ) for any i ∈ {2, · · · , N + 1}. Then, there exists a unique mild solution

y ∈ C([0, T ], L2(R)) ∩ L2(0, T,H1
0 (R)) of (2.16). Moreover, there exists C > 0 such that

the following estimate holds:

‖y‖2C([0,T ],L2(R)) + ‖y‖2L2(0,T,H1
0 (R)) ≤ C

(
‖y0‖2L2(R) + ‖f‖2L1(0,T,L2(R)) +

N+1∑
i=2

‖hi‖2L2(0,T )

)
.

(2.17)

Proof. Using Proposition 3, it suffices to consider the case y0 = 0 and hi = 0 for any i ∈
{2, · · · , N + 1}. Since A generates a strongly continuous semigroup of contractions on L2(R),

if f ∈ L1(0, T, L2(R)), there exists a unique mild solution y ∈ C([0, T ], L2(R)) (see [21]) and

there exists C > 0 such that

‖y‖2C([0,T ],L2(R)) ≤ C ‖f‖
2
L1(0,T,L2(R)) .

It remains to prove that y ∈ L2(0, T,H1
0 (R)) and that

‖y‖2L2(0,T,H1
0 (R)) ≤ C ‖f‖

2
L1(0,T,L2(R)) .

To prove this we follow exactly the steps of the proof of Proposition 3 paying attention to the

fact that the right hand side terms are not homogeneous anymore but involve the source f .
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2.3 Well-posedness result of the nonlinear equation

We endow the space B = C([0, T ], L2(R)) ∩ L2(0, T,H1
0 (R)) with the norm

‖y‖B = max
t∈[0,T ]

‖y(., t)‖L2(R) +

(∫ T

0

‖y(., t)‖2H1
0 (R) dt

)1/2

.

To prove the well-posedness result of the nonlinear system (1.1), we follow [12] (see also [9]).

The first step is to show that the nonlinear term yyx can be considered as a source term of the

linear equation (2.16).

Proposition 5. Let T > 0, l > 0 and y ∈ L2(0, T,H1(0, l)) := L2(H1). Then, yyx ∈
L1(0, T, L2(0, l)) and the map

y ∈ L2(H1) 7→ yyx ∈ L1(0, T, L2(0, l))

is continuous. In particular, there exists K > 0 such that, for any y, ỹ ∈ L2(H1), we have∫ T

0

‖yyx − ỹỹx‖L2(0,l) ≤ K
(
‖y‖L2(H1) + ‖ỹ‖L2(H1)

)
‖y − ỹ‖L2(H1) .

Proof. The proof can be found in [22] or [9].

Let y0 ∈ L2(R) and hi ∈ L2(0, T ) (for any i ∈ {2, · · · , N + 1}) such that

‖y0‖L2(R) +

N+1∑
i=2

‖hi‖L2(0,T ) ≤ r

where r > 0 is chosen small enough later. Given y ∈ B, we consider the map Φ : B → B defined

by Φ(y) = ỹ where ỹ is the solution of

ỹt(x, t) + ỹx(x, t) + ỹxxx(x, t) = −y(x, t)yx(x, t), x ∈ R, t > 0,

ỹ1(−l1, t) = 0, t > 0,

ỹi(li, t) = 0,

ỹi,x(li, t) = hi(t),

ỹ1(0, t) = αiỹi(0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

ỹ1,x(0, t) =

N+1∑
i=2

βiỹi,x(0, t), t > 0,

ỹ1,xx(0, t) =

N+1∑
i=2

1

αi
ỹi,xx(0, t), t > 0,

ỹ(x, 0) = y0(x), x ∈ R.

Clearly y ∈ B is a solution of (1.1) if and only if y is a fixed point of the map Φ. From (2.17)

and Proposition 5, we get

‖Φ(y)‖B = ‖ỹ‖B ≤ C

(
‖y0‖L2(R) +

N+1∑
i=2

‖hi‖L2(0,T )+

∫ T

0

‖yyx(t)‖L2(R)dt

)

≤ C

(
‖y0‖L2(R) +

N+1∑
i=2

‖hi‖L2(0,T ) + ‖y‖2B

)
.
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Moreover, for the same reasons, we have

‖Φ(y1)− Φ(y2)‖B ≤ C

∫ T

0

‖−y1y1,x + y2y2,x‖L2(R) dt

≤ C (‖y1‖B + ‖y2‖B) ‖y1 − y2‖B .

We consider Φ restricted to the closed ball B(0, R) = {y ∈ B, ‖y‖B ≤ R} with R > 0 to be

chosen later. Then ‖Φ(y)‖B ≤ C
(
r +R2

)
and ‖Φ(y1)− Φ(y2)‖B ≤ 2CR ‖y1 − y2‖B so that if

we take R and r satisfying

R <
1

2C
and r <

R

2C
,

then ‖Φ(y)‖B < R and ‖Φ(y1)−Φ(y2)‖B ≤ 2CR‖y1− y2‖B, with 2CR < 1. Then Φ(B(0, R)) ⊂
B(0, R) and ‖Φ(y1) − Φ(y2)‖B ≤ C̃‖y1 − y2‖B, with C̃ < 1. Consequently, we can apply the

Banach fixed point theorem and the map Φ has a unique fixed point. We have then shown the

following proposition.

Proposition 6. Let T > 0, li > 0 and assume that (2.6) holds. Then, there exist r > 0 and

C > 0 such that for every y0 ∈ L2(R) and hi ∈ L2(0, T ) (for any i ∈ {2, · · · , N + 1}) verifying

‖y0‖L2(R) +

N+1∑
i=2

‖hi‖L2(0,T ) ≤ r,

there exists a unique y ∈ B solution of system (1.1) which satisfies

‖y‖B ≤ C

(
‖y0‖L2(R) +

N+1∑
i=2

‖hi‖L2(0,T )

)
.

3 Controllability results

We first prove the exact controllability result of the linear system (1.4) by using a duality

argument and the multiplier method in order to prove the observability inequality. Then, we

obtain the local exact controllability result of the nonlinear system (1.1) by a fixed point theorem.

3.1 Linear system

Due to the linearity of the system (1.4), we can consider the case of a null initial data, i.e. by

taking y0 = 0 on R. It can be easily seen that the exact controllability of (1.4) is equivalent to

the surjectivity of the operator

Λ : (h2, · · · , hN+1) ∈ L2(0, T )N 7→ (y1(·, T ), y2(·, T ), · · · , yN+1(·, T )) ∈ L2(R),

where y = (y1, y2, · · · , yN+1) is the solution of (1.4) when controls (h2, · · · , hN+1) are chosen.
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It is known that the surjectivity of this operator is equivalent to an observability inequality for

the adjoint operator of Λ, which is given by

Λ∗ : ϕT = (ϕT1 , ϕ
T
2 , · · · , ϕTN+1) ∈ L2(R) 7→ (ϕ2,x(l2, ·), · · · , ϕN+1,x(lN+1, ·)) ∈ L2(0, T )N ,

where ϕ = (ϕ1, ϕ2, · · · , ϕN+1) is the solution of the backward adjoint system

ϕt(x, t) + ϕx(x, t) + ϕxxx(x, t) = 0, x ∈ R, t > 0,

ϕ1(−l1, t) = 0, t > 0,

ϕ1,x(−l1, t) = 0, t > 0,

ϕi(li, t) = 0,

ϕ1(0, t) = αiϕi(0, t),

ϕ1,x(0, t) =
1

βi
ϕi,x(0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

N+1∑
i=2

1

αi
ϕi,xx(0, t) = ϕ1,xx(0, t) +

(
1−

N+1∑
i=2

1

α2
i

)
ϕ1(0, t), t > 0,

ϕ(x, T ) = ϕT (x), x ∈ R.

(3.18)

The first step is to prove an observability inequality for the backward adjoint system (3.18),

stated below and obtained by a multiplier method.

Theorem 2. Let li > 0 for any i ∈ {1, · · · , N + 1} satisfying (1.2) and assume that (1.3)

holds. There exists a positive constant Tmin such that if T > Tmin, then we have the following

observability inequality

‖ϕT ‖2R ≤ C
N+1∑
i=2

‖ϕi,x(li, t)‖2L2(0,T ) , ∀ϕT ∈ L2(R), (3.19)

where ϕ = (ϕ1, ϕ2, · · · , ϕN+1) is the solution of (3.18) with final condition ϕT = (ϕT1 , ϕ
T
2 , · · · , ϕTN+1) ∈

L2(R) and C is a positive constant.

Proof. Let s ∈ [0, T ] and q ∈ C∞(R × [s, T ]). By multiplying ϕt + ϕx + ϕxxx = 0 by qϕ and

integrating by parts on R× [s, T ], we get after some computations∫
R
q(x, T )ϕ2(x, T )dx−

∫
R
q(x, s)ϕ2(x, s)dx =

∫ T

s

∫
R

(qt+qx+qxxx)ϕ2dxdt−3

∫ T

s

∫
R
qxϕ

2
xdxdt

−
∫ T

s

q1(0, t)ϕ2
1(0, t)dt+

N+1∑
i=2

∫ T

s

qi(0, t)ϕ
2
i (0, t)dt− 2

∫ T

s

q1(0, t)ϕ1(0, t)ϕ1,xx(0, t)dt

+ 2

N+1∑
i=2

∫ T

s

qi(0, t)ϕi(0, t)ϕi,xx(0, t)dt+ 2

∫ T

s

q1,x(0, t)ϕ1(0, t)ϕ1,x(0, t)dt

− 2

N+1∑
i=2

∫ T

s

qi,x(0, t)ϕi(0, t)ϕi,x(0, t)dt−
∫ T

s

q1,xx(0, t)ϕ2
1(0, t)dt+

N+1∑
i=2

∫ T

s

qi,xx(0, t)ϕ2
i (0, t)dt

+

∫ T

s

q1(0, t)ϕ2
1,x(0, t)dt+

N+1∑
i=2

∫ T

s

qi(li, t)ϕ
2
i,x(li, t)dt−

N+1∑
i=2

∫ T

s

qi(0, t)ϕ
2
i,x(0, t)dt. (3.20)
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• Let us first choose q(x, t) = t and s = 0 in (3.20). Then we obtain

T

∫
R
ϕ2(x, T )dx =

∫ T

0

∫
R
ϕ2dxdt−

∫ T

0

tϕ2
1(0, t)dt+

N+1∑
i=2

∫ T

0

tϕ2
i (0, t)dt−2

∫ T

0

tϕ1(0, t)ϕ1,xx(0, t)dt

+2

N+1∑
i=2

∫ T

0

tϕi(0, t)ϕi,xx(0, t)dt+

∫ T

0

tϕ2
1,x(0, t)dt+

N+1∑
i=2

∫ T

0

tϕ2
i,x(li, t)dt−

N+1∑
i=2

∫ T

0

tϕ2
i,x(0, t)dt,

and using the boundary condition of (3.18) at the internal node 0, we have

T

∫
R
ϕ2(x, T )dx =

∫ T

0

∫
R
ϕ2dxdt+

N+1∑
i=2

∫ T

0

tϕ2
i,x(li, t)dt

+

(
1−

N+1∑
i=2

1

α2
i

)∫ T

0

tϕ2
1(0, t)dt+

(
1−

N+1∑
i=2

β2
i

)∫ T

0

tϕ2
1,x(0, t)dt. (3.21)

By using Poincaré inequality and the estimation of the trace of the function, we have,∫ T

0

∫
R
ϕ2dxdt ≤ L2

π2

∫ T

0

∫
R
ϕ2
xdxdt and

∫ T

0

ϕ2
1(0, t)dt ≤ L

∫ T

0

∫
R
ϕ2
xdxdt.

As we can not estimate the trace of ϕx(0, t), we need to use the strong hypothesis in (1.3), i.e.
N+1∑
i=2

β2
i = 1.

Then, from (3.21) we get

T

∫
R
ϕ2(x, T )dx ≤

(
L2

π2
+

(
1−

N+1∑
i=2

1

α2
i

)
TL

)∫ T

0

∫
R
ϕ2
xdxdt + T

N+1∑
i=2

∫ T

0

ϕ2
i,x(li, t)dt.

(3.22)

• Taking now q(x, t) = 1 and s = 0 in (3.20), we obtain

∫
R
ϕ2(x, T )dx−

∫
R
ϕ2(x, 0)dx = −

∫ T

0

ϕ2
1(0, t)dt+

N+1∑
i=2

∫ T

0

ϕ2
i (0, t)dt−2

∫ T

0

ϕ1(0, t)ϕ1,xx(0, t)dt

+ 2

N+1∑
i=2

∫ T

0

ϕi(0, t)ϕi,xx(0, t)dt+

∫ T

0

ϕ2
1,x(0, t)dt+

N+1∑
i=2

∫ T

0

ϕ2
i,x(li, t)dt−

N+1∑
i=2

∫ T

0

ϕ2
i,x(0, t)dt.

Using again the boundary condition of (3.18) at the internal node 0, we have

N+1∑
i=2

∫ T

0

ϕ2
i,x(li, t)dt =

∫
R
ϕ2(x, T )dx−

∫
R
ϕ2(x, 0)dx

+

(
N+1∑
i=2

1

α2
i

− 1

)∫ T

0

ϕ2
1(0, t)dt+

(
N+1∑
i=2

β2
i − 1

)∫ T

0

ϕ2
1,x(0, t)dt,

which implies by (1.3) that

N+1∑
i=2

∫ T

0

ϕ2
i,x(li, t)dt+

∫
R
ϕ2(x, 0)dx ≤

∫
R
ϕ2
T (x)dx. (3.23)
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• Picking s = 0, q1(x, t) = x and qi(x, t) = αi

Nβi
x in (3.20), we obtain∫

R
q(x, T )ϕ2(x, T )dx−

∫
R
q(x, 0)ϕ2(x, 0)dx =

∫ T

0

∫
R
qxϕ

2dxdt− 3

∫ T

0

∫
R
qxϕ

2
xdxdt

+ 2

∫ T

0

ϕ1(0, t)ϕ1,x(0, t)dt− 2

N+1∑
i=2

∫ T

0

αi
Nβi

ϕi(0, t)ϕi,x(0, t)dt+

N+1∑
i=2

∫ T

0

αili
Nβi

ϕ2
i,x(li, t)dt.

Using again the boundary condition of (3.18) at the internal node 0, we have

3

∫ T

0

∫
R
qxϕ

2
xdxdt =

∫
R
q(x, 0)ϕ2(x, 0)dx−

∫
R
q(x, T )ϕ2(x, T )dx+

∫ T

0

∫
R
qxϕ

2dxdt

+

N+1∑
i=2

∫ T

0

αili
Nβi

ϕ2
i,x(li, t)dt. (3.24)

Then, from (3.24) we get, with Poincaré inequality and the fact that the operator A∗ is dissipa-

tive,(
3 min

(
1,

αi
Nβi

)
−max

(
1,

αi
Nβi

)
L2

π2

)∫ T

0

∫
R
ϕ2
xdxdt ≤ 2 max

(
1,

αi
Nβi

)
L

∫
R
ϕ2(x, T )dx

+ max

(
1,

αi
Nβi

)
L

N+1∑
i=2

∫ T

0

ϕ2
i,x(li, t)dt. (3.25)

Gathering (3.22) and (3.25), we have(
T − 2

δT
Γ

)∫
R
ϕ2
T (x)dx ≤

(
T +

δT
Γ

)N+1∑
i=2

∫ T

0

ϕ2
i,x(li, t)dt, (3.26)

where we used the notation

δT =

(
L2

π2
+

(
1−

N+1∑
i=2

1

α2
i

)
TL

)
Lmax

(
1,

αi
Nβi

)
and

Γ = 3 min
(

1,
αi
Nβi

)
− L2

π2
max

(
1,

αi
Nβi

)
.

Note that Γ > 0 under the condition

L <
√

3π

(
min(1, αi

Nβi
)

max(1, αi

Nβi
)

)1/2

which is weaker than the hypothesis (1.2).

In order to have the observability inequality (3.19) from (3.26), we have to impose

T >
2δT
Γ
,

that leads us to

T >
2 max

(
1, αi

Nβi

)
L3

π2
[
Γ− 2 max

(
1, αi

Nβi

)
L2

(
1−

N+1∑
i=2

1

α2
i

)] . (3.27)
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This condition on time T makes also appear other condition on L:

Γ− 2 max
(

1,
αi
Nβi

)
L2

(
1−

N+1∑
i=2

1

α2
i

)
> 0,

which is equivalent to

L <
√

3π

(
min(1, αi

Nβi
)

max(1, αi

Nβi
)

)1/2
1√√√√2π2

(
1−

N+1∑
i=2

1

α2
i

)
+ 1

that is exactly hypothesis (1.2). This finishes the proof of Theorem 2 where the existence of

time Tmin is given by condition (3.27) and the observability constant is

C =
TΓ + δT
TΓ− 2δT

.

Remark 1. From previous proof we can deduce that if we have the condition

N+1∑
i=2

1

α2
i

= 1, then

we have to ask

L <
√

3π

(
min(1, αi

Nβi
)

max(1, αi

Nβi
)

)1/2

.

Moreover, if αi =
√
N and βi = 1√

N
, then we have to ask L <

√
3π.

Once the observability inequality is established as in Theorem 2, then the exact controllability

result of the linear system (1.4) is obtained by duality and the Hilbert Uniqueness Method

(HUM). Thus, the following is true.

Theorem 3. Let li > 0 satisfying (1.2) and assume that (1.3) holds. There exists a positive

constant Tmin such that the linear system (1.4) is exactly controllable in time T > Tmin. More

precisely, for any states y0 ∈ L2(R) and yT ∈ L2(R), there exist N Neumann boundary controls

hi ∈ L2(0, T ) such that the solution y to (1.4) on the tree-shaped network of N+1 edges satisfies

y(·, 0) = y0 and y(·, T ) = yT .

3.2 Nonlinear system

We now prove the main result of this paper, i.e., Theorem 1. We do it by a fixed point argument,

following for instance [9].

Proof of Theorem 1. Let y0 ∈ L2(R) and yT ∈ L2(R) such that

‖y0‖L2(R) < r and ‖yT ‖L2(R) < r,
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with r > 0 chosen later. We consider the map

Ψ : z ∈ B 7→ y1 + y2 + y3,

where y1, y2, y3 are the solutions of

y1t (x, t) + y1x(x, t) + y1xxx(x, t) = 0, x ∈ R, t > 0,

y11(−l1, t) = 0, t > 0,

y1i (li, t) = 0,

y1i,x(li, t) = 0,

y11(0, t) = αiy
1
i (0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

y11,x(0, t) =
N+1∑
i=2

βiy
1
i,x(0, t), t > 0,

y11,xx(0, t) =

N+1∑
i=2

1

αi
y1i,xx(0, t), t > 0,

y1(x, 0) = y0(x), x ∈ R,

(3.28)



y2t (x, t) + y2x(x, t) + y2xxx(x, t) = −z(x, t)zx(x, t), x ∈ R, t > 0,

y21(−l1, t) = 0, t > 0,

y2i (li, t) = 0,

y2i,x(li, t) = 0,

y21(0, t) = αiy
2
i (0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

y21,x(0, t) =

N+1∑
i=2

βiy
2
i,x(0, t), t > 0,

y21,xx(0, t) =

N+1∑
i=2

1

αi
y2i,xx(0, t), t > 0,

y2(x, 0) = 0, x ∈ R,

(3.29)

and 

y3t (x, t) + y3x(x, t) + y3xxx(x, t) = 0, x ∈ R, t > 0,

y31(−l1, t) = 0, t > 0,

y3i (li, t) = 0,

y3i,x(li, t) = hi(t),

y31(0, t) = αiy
3
i (0, t),

 ∀i ∈ {2, · · · , N + 1} , t > 0,

y31,x(0, t) =

N+1∑
i=2

βiy
3
i,x(0, t), t > 0,

y31,xx(0, t) =

N+1∑
i=2

1

αi
y3i,xx(0, t), t > 0,

y3(x, 0) = 0, x ∈ R.

(3.30)

We see that y1 is the solution of the homogeneous linear equation (1.4) (without control, without

source term but with non null initial data), y2 is the solution of the linear equation (1.4) with

null initial data, right hand side f = −zzx and without control, and y3 is the solution of the
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linear equation (1.4) with null initial data, without source term and with N controls hi. We

take the N controls hi ∈ L2(0, T ) (i ∈ {2, · · · , N + 1}) such that

y3(·, T ) = yT − y1(·, T )− y2(·, T ).

These controls exist thanks to Theorem 3, assuming (1.2) and (1.3). Note also that the control

operator yT 7→ (h2, · · · , hN+1) mapping the final state to the control driving the linear system

to that state is continuous.

We will prove that the map Ψ has a fixed point, using the Banach fixed point theorem. To do

that, we consider Ψ restricted to the closed ball B(0, R) = {y ∈ B, ‖y‖B ≤ R} with R > 0 to be

chosen later. To apply the Banach fixed point theorem, it suffices to show that Ψ(B(0, R)) ⊂
B(0, R) and for any z, z̃ ∈ B, ‖Ψ(z)−Ψ(z̃)‖B ≤ C ‖z − z̃‖B with C < 1. First, using (2.17),

Proposition 5 and the continuity of the control operator, we have

‖Ψ(z)‖B ≤
∥∥y1∥∥B +

∥∥y2∥∥B +
∥∥y3∥∥B

≤ C

(
‖y0‖L2(R)+

∫ T

0

‖zzx(t)‖L2(R)dt+

N+1∑
i=2

‖hi‖L2(0,T )

)
≤ C1 ‖y0‖L2(R) + C2 ‖yT ‖L2(R) + C3 ‖z‖2B
≤ (C1 + C2)r + C3R

2,

and we get the first condition (C1 + C2)r + C3R
2 ≤ R. Second, we have, using the same

arguments,

‖Ψ(z)−Ψ(z̃)‖B ≤
∥∥y2 − ỹ2∥∥B +

∥∥y3 − ỹ3∥∥B
≤ C

(∫ T

0

‖zzx(t)− z̃z̃x(t)‖L2(R)dt+

N+1∑
i=2

∥∥∥hi − h̃i∥∥∥
L2(0,T )

)
≤ CK (‖z‖B + ‖z̃‖B) ‖z − z̃‖B + C4

∥∥y2(·, T )− ỹ2(·, T )
∥∥
L2(R)

≤ CK (‖z‖B + ‖z̃‖B) ‖z − z̃‖B + C4

∥∥y2 − ỹ2∥∥B
≤ C5 (‖z‖B + ‖z̃‖B) ‖z − z̃‖B
≤ 2C5R ‖z − z̃‖B ,

that impose the second condition 2C5R < 1. These conditions are satisfied for instance if we

choose r and R such that

R < min

{
1

2C5
,

1

2C3

}
, r <

R

2(C1 + C2)
,

that ends the proof of Theorem 1.

References

[1] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa,
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[14] R. Dáger and E. Zuazua, Wave propagation, observation and control in 1-d flexible
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[16] E. Fernández-Cara, M. González-Burgos, and L. de Teresa, Boundary control-

lability of parabolic coupled equations, J. Funct. Anal., 259 (2010), pp. 1720–1758.

[17] G. R. Leugering and E. J. P. G. Schmidt, On exact controllability of networks of

nonlinear elastic strings in 3-dimensional space, Chin. Ann. Math. Ser. B, 33 (2012), pp. 33–

60.

[18] T. Li, Controllability and observability for quasilinear hyperbolic systems, vol. 3 of AIMS Se-

ries on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Spring-

field, MO; Higher Education Press, Beijing, 2010.

[19] D. Mugnolo, D. Noja, and C. Seifert, Airy-type evolution equations on star graphs,

Anal. PDE, 11 (2018), pp. 1625–1652.

[20] S. Nicaise, Control and stabilization of 2× 2 hyperbolic systems on graphs, Math. Control

Relat. Fields, 7 (2017), pp. 53–72.

[21] A. Pazy, Semigroups of linear operators and applications to partial differential equations,

vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.

[22] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded

domain, ESAIM Control Optim. Calc. Var., 2 (1997), pp. 33–55.

[23] L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation:

recent progresses, J. Syst. Sci. Complex., 22 (2009), pp. 647–682.

[24] E. J. P. G. Schmidt, On the modelling and exact controllability of networks of vibrating

strings, SIAM J. Control Optim., 30 (1992), pp. 229–245.

21


