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ABSTRACT

In comparison with standard HMM (Hidden Markov Model)
with forced alignment, this paper discusses two automatic
segmentation algorithms from different points of view: the
probabilities of insertion and omission, and the accuracy.
The first algorithm, hereafter named the refined HMM algo-
rithm, aims at refining the segmentation performed by stan-
dard HMM via a GMM (Gaussian Mixture Model) of each
boundary. The second is the Brandt’s GLR (Generalized
Likelihood Ratio) method. Its goal is to detect signal dis-
continuities. Provided that the sequence of speech units is
known, the experimental results presented in this paper sug-
gest in combining the refined HMM algorithm with Brandt’s
GLR method and other algorithms adapted to the detection
of boundaries between known acoustic classes.

1. INTRODUCTION

The objective of this paper is the segmentation of large
acoustic databases for application to corpus-based speech
synthesis. Segmenting spontaneous and continuous speech
signals is still an issue. Because the sequence of speech units
is known, automatic segmentation is usually performed by
HMM’s with forced alignment. This procedure shows rea-
sonable results. However, in order to guarantee a good qual-
ity of a synthetic voice, the outcome of the segmentation
stage must still be verified manually, which is a difficult task.
Thus, it is still important to design a segmentation algorithm
capable of providing segmentation marks close to handmade
ones with the smallest possible number of errors.

With respect to the foregoing, the purpose of this paper is
to analyze and compare the accuracies of three segmentation
algorithms on a large French corpus. The first one is the stan-
dard HMM with forced alignment as described above. The
second one is the refined HMM, originally proposed in [7]
for segmenting a Chinese corpus. These two methods lead
to a number of segmentation marks that corresponds to the
number of phonemes in the input speech unit sequence. Thus
they do not yield omissions nor insertions. The third algo-
rithm is Brandt’s GLR method ([2]) which aims at detecting
discontinuities of speech signals without any further knowl-
edge upon the phonetic sequence. As this algorithm is lin-
guistically unconstrained, it makes insertions and omissions.

From this comparison, we derive an approach aimed at
improving the accuracy of the refined HMM so as to tend to
some reasonable performance objective introduced below.

The paper is organized as follows. In the next two sec-
tions, we briefly present the refined HMM and Brandt’s GLR
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method. After introducing how performance measurements
are computed, section 4 presents and discusses experimental
results. On the basis of these results, we suggest in section 5
an approach for improving the refined HMM.

Figure 1: Example of a super vector for a particular boundary

2. THE REFINED HMM ALGORITHM

The main idea of this method is to train a GMM model for
each HMM boundary with super vectors that are extracted
using frames around the boundaries ([7, 5]). This method is
carried out in three steps:
1. Achieve an HMM segmentation with forced alignment.

Thus, the number of segmentation marks equals that of
the handmade segmentation.

2. For a small database that is manually segmented, create
a super vector for each boundary of this database. This
vector is obtained by putting together acoustic vectors for
frames near the boundary. In Fig. 1, we illustrate a super
vector with(2N+1) frames.
Each boundaryB depends on the phonemeX to the left
of it and on the phonemeY to its right. We denote this
boundary byX−B+Y as proposed in [8] (see Fig. 2).
If we model each possible pseudo triphone by a GMM,
the models are badly trained. This is because the num-
ber of labeled data is limited in practice. Therefore, a
classification and regression tree (CART) is used in or-
der to cluster pseudo-triphones into a reduced number of
classes; this cart is a recursive binary tree where each
node corresponds to a phonemic or linguistic question.
Then a GMM is trained for each leaf node on the CART.

3. Given a labeled sentence and its segmentation, try to re-
fine each boundary of every segment. In this respect, for
each frame in a certain vicinity of a given HMM bound-
ary, compute the likelihood that this frame contains the
actual boundary. The likelihood that the true boundary
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Figure 2: Examples of pseudo-triphones

lies within a given frame is then computed as follows.
We form a super vector centered on the current frame.
Since this super vector is assumed to represent a pseudo-
triphone, we determine the corresponding leaf node in
the CART. We then compute the likelihood of the GMM
model associated with this leaf node. Finally, the optimal
boundary is then assumed to be in the frame that has the
maximum likelihood.

3. BRANDT’S GLR METHOD

The aim of this method is to detect discontinuities in speech
signals. Speech signals are assumed to be sequences of ho-
mogeneous units. Each unit or windoww is a finite sequence
w = (yn) of samples that are assumed to obey an AR model:
yn = ∑p

i=1aiyn−i + en. In this equation,p is the model or-
der, which is assumed to be constant for all units anden
is a zero mean white gaussian noise with variance equal to
σ2. Such a unit is thus characterized by the parameter vector
Θ = (a1, . . . ,ap,σ). Let w0 be some window ofn samples
andΘ0 the corresponding parameter vector. Brandt attempts
in [2] to decide whetherw0 should be split in two subseg-
mentsw1 andw2 or not. In fact, a possible splitting derives
from the detection of some jump between the parameter vec-
tors Θ1 and Θ2 of w1 and w2 respectively. Brandt’s GLR
method decides that such a jump has occurred by compar-
ing: Dn(r) = nlogσ̂0− rlogσ̂1− (n− r)logσ̂2 to a predefined
thresholdλ . Note thatDn is merely the GLR. In the equa-
tion above,r is the size of the time interval covered byw1,
whereasσ̂1 andσ̂2 are the noise standard deviation estimates
of the models characterized respectively by the parameter
vectorsΘ1 and Θ2. Thus, the change instant corresponds
to arg(maxr(Dn(r))≥ λ ).

A direct implementation of this method is computation-
ally expensive. Thus, we use the sub-optimal version recom-
mended in [7]. In particular, the length ofw2 is fixed to a
predefined valueL. For further details, the reader can refer
to [2, 3].

4. EXPERIMENTAL RESULTS AND DISCUSSION

Our purpose is to analyze the behavior of the algorithms pre-
sented above. We do so by computing performance measure-
ments on the basis of experiments. We start by describing
the criteria used to evaluate the performance of each algo-
rithm. These performance criteria are the probabilities of in-
sertion and omission and the accuracy. On the basis of [7],
we then adjust the refined HMM parameters for application
to a French corpus. For this tuning, only the accuracy is
needed because the refined HMM yields no insertions and
no omissions. For Brandt’s GLR method, we compute the
probabilities of insertion and omission. The last subsection
compares the accuracies of the refined HMM, the standard
HMM and Brandt’s GLR method.

4.1 Probabilities of insertion and omission, accuracies

The quantities described in this section allow us to measure
the performance of any segmentation algorithm. We pro-
pose the subsequent definitions especially in order to take
into account insertions and omissions of algorithms such as
Brandt’s GLR method.

We start by briefly describing how to locate insertions
and omissions of a segmentation algorithm so as to compute
the probabilities of insertion and omission of this same algo-
rithm.

LetU = {U1,U2, . . . ,Un} andV = {V1,V2, . . . ,Vp} be the
time instants of the segmentation marks obtained respec-
tively by an automatic algorithm and by a manual procedure
(hereon referred to as the reference segmentation). For each
U j , a correspondence is done with the reference segmenta-
tion by determining the time instantVk j which is closest to
U j . This way, a sequenceVU = {Vk1, . . . ,Vkn} is built in order
to compare both segmentation.

The reader can easily verify the following facts: the
omissions are the marksV̀ , ` ∈ {1, . . . , p}, that are not in
the listVU ; if VU containsm times the same mark, the num-
ber of insertionsni equalsm−1. In the latter case, ifV̀ is the
mark containedm times in the listVU , the nearest mark toV̀
in U is considered as a non-insertion and, thence, them−1
other marks are regarded as insertions.

We define the ratiosPi = ni
p+ni

andPo = no
n+no

. The for-
mer can be regarded as the probability of insertion of the
segmentation algorithm, whereas the latter can be consid-
ered as the probability of omission of this algorithm. Note
thatn+no = p+ni .

The accuracy of any given segmentation is computed as
follows. First, locate the insertions as described above and
remove them from the listU . For each markU j of the re-
sulting list of non-insertions, consider the closest reference
markVk j . If the distance|Vk j −U j | is less than or equal to
a given tolerance valueε, the mark segmentationU j is said
to be correct. Otherwise, it is called an error. The accuracy
is then defined as the ratio in percentage of the number of
correct marks top+ni :

accuracy=
100

p+ni

n

∑
j=1

I[0,ε](|Vk j −U j |)

where I[0,ε](x) equals 1 ifx ∈ [0,ε] and 0 otherwise. The
accuracy depends on the number of insertions, the number of
omissions andε. Therefore, an accurate segmentation must
make a good compromise between these three parameters.

For instance, a segmentation with many insertions will
clearly be characterized by aPi close to 1 and an accuracy
close to 0; similarly, in the case of many omissions,Po is
close to 1 and the accuracy remains small; in contrast with
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Table 1: HMM segmentation accuracies
ε 5 10 20 30

accuracy 33.54 59.77 85.24 92.83

the foregoing, an accurate segmentation is such thatPo andPi
are small and the accuracy is close to 1. Further mathematical
details regarding these criteria will be given in a forthcoming
work.

4.2 Application of the refined HMM algorithm to a
French corpus

As mentioned in [7], the method “makes no inherent assump-
tions for the language or speaker type”. So, our purpose is to
validate the parameter values exhibited in [7] when we apply
the method to a French corpus containing 7350 sentences.
We also adjust some parameters in addition to the reference.
We proceed by using HTK toolkits [8]. Note that the notion
of accuracy used in [7] is a particular case of that employed
in this present paper to measure the performance of segmen-
tation algorithms.

The training parameters of this algorithm are: the train-
ing size, the number of frames(2N+1), the frame stepe, the
frame size (set to 20 ms), the number of GMM components
(equal to 1, see [7] for details), the acoustic vector dimension
Nc (set to 39 : 12 MFCCs+ energy+ 13 first order deviations+
13 secondary deviations), the stopping criteria of the CART.
These are the minimum number of leaf node instances, de-
noted byMTI, and the valueT of the log likelihood to ex-
ceed, in order to consider a question as an actual node of
the CART. For every HMM mark of the database, the refined
HMM boundary is searched within a 60 ms interval centered
on this mark with a search step fixed to 5 ms. The accuracies
presented below are calculated forε equal to 5,10,20 and 30
ms. They must be compared to those obtained by standard
HMM and given in table 1.

In table 2, we point out a suitable pair(T,MTI) that
yields a good level of accuracy when the tolerance varies.
The results of table 2 are obtained by following [7] and thus
fixing the pair(N,e) to (2,30) and the training size to 300.
We observe thatT hardly influences the accuracy. We fixT
to 100. The results also show that the smaller theMTI, the
better the accuracy.

Table 3 illustrates the contribution of the training
database size. We again fix the pair(N,e) to (2,30). The pair
(T,MTI) is set to(100,10) according to the foregoing. On
the basis of these results, we choose a size of 300 sentences
in order to limit the number of manually labeled boundaries.
This value is close to that obtained for a Chinese corpus in [7]

With table 4, we verify that(N,e) = (2,30) still remains
a suitable choice for dealing with our French corpus. In fact,
this choice seems to be a reasonable trade-off between the
following two facts. On the one hand, the total duration cor-
responding to the super vector must be long enough to in-
volve as much information as possible concerning the tran-
sition between the two phonemes around the boundary. On
the other hand, if this duration is too long, the super vector
will take into account information not directly linked to the
boundary itself.

Summarizing, the refined HMM algorithm performs well
when applied to a French corpus (6% accuracy gain when the
tolerance is 10 ms) withMTI = 10,N = 2, e= 30 ms and a
training size equal to 300.

Table 2: Accuracy vs(T,MTI)
T ε MTI = 10 MTI = 20 MTI = 40 MTI = 100

5 38.49 38.08 37.48 35.13
20 10 64.55 64.29 62.94 60.13

20 87.91 87.74 87.05 85.16
30 94.46 94.44 93.93 93.45
5 38.55 38.12 37.48 35.13

100 10 64.63 64.28 62.94 60.13
20 87.98 87.73 87.04 85.16
30 94.50 94.46 93.93 93.45
5 38.38 37.90 37.49 35.13

350 10 64.32 64.01 62.94 60.13
20 87.93 87.51 87.11 85.16
30 94.35 94.42 93.93 93.45

Table 3: Accuracy vs training set size
Training size ε = 5 ε = 10 ε = 20 ε = 30

200 38.27 63.97 87.63 94.31
300 38.55 64.63 87.98 94.49
600 41.26 67.10 88.78 95.03
800 41.42 67.76 88.87 95.15

4.3 Insertions and omissions with Brandt’s GLR
method

For Brandt’s GLR method, the model orderp and the win-
dow lengthL are chosen equal to 16 and 20 ms respectively.
The thresholdλ is set to 30 as in [3].

We found that the probabilities of insertion and omis-
sion are equal to 0.6 and 0.1 respectively. This high inser-
tion probability is explained by the oscillatory behavior of
the GLR function. Note that the insertion probability is di-
vided by two when the Brandt’GLR method is merged with
a silence/speech detection [1]. Indeed, many insertions are
located in silences (see Figure 3).

4.4 Comparing the accuracies of the refined HMM and
Brandt’s GLR methods

The results presented in this section are obtained by averag-
ing the accuracies using a cross-validation procedure where
each test set contains 1200 sentences. For the refined HMM,
the training set contains 300 sentences for each test. Figure 4
depicts the results obtained with the three methods. Note
that for Brandt’s GLR method three curves are plotted. The
“Brandt’s GLR” curve represents the accuracies of this al-
gorithm taking into account its insertions and omissions; the
“Brandt’s GLR and speech/silence detection” curve displays
the accuracies when Brandt’s GLR method is merged with
the speech/silence detection algorithm already used in [1];
the “ideal Brandt’s GLR” curve is obtained by computing
accuracies after removing the insertions and omissions via
the procedure of subsection 4.1.

According to the results illustrated by these curves, we
can make the following remarks: the refined HMM is more
accurate than the standard HMM segmentation; the Brandt’s
GLR method is not accurate because of its large number

Table 4: Accuracies for different values of(N,e)
e N ε = 5 ε = 10 ε = 20 ε = 30
0 0 33.95 58.70 83.70 92.27
10 2 39.01 64.42 86.13 93.41
30 2 38.55 64.63 87.98 94.49
30 3 37.16 63.83 88.06 94.583
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Figure 3: Brandt’s GLR segmentation

of insertions even when this number of insertions is signifi-
cantly reduced; the accuracy of the “ideal” Brandt segmenta-
tion is itself significantly better than that of the refined HMM.
Therefore, the marks produced by Brandt’s GLR method that
are not insertions are more accurate than those of the refined
HMM.

5. SUGGESTIONS FOR IMPROVING THE
REFINED HMM

As mentioned above, Brandt’s GLR method is not accu-
rate with respect to the accuracy measure given in this pa-
per. It is however worth noticing that our assessment is too
strict regarding Brandt’s GLR method because the defini-
tion of accuracy does not take into account the distribution
of segmentation marks. In fact, insertions of Brandt’s GLR
method remain located in silence regions and in the vicinity
of handmade marks. It also turns out that high values of the
GLR correspond to actual discontinuities of speech signals.
Hence, we suggest to improve the accuracy of the refined
HMM by proceeding as follows.

Given a segmentation mark performed by the refined
HMM algorithm, compute the GLR of this initial mark.
If the GLR exceeds some threshold (to define), keep this
mark. Otherwise, consider that neither the refined HMM nor
Brandt’s GLR method are reliable. Therefore, choose a seg-
mentation algorithm adapted to the acoustic classes of the
segments to identify. These classes are known thanks to the
sequence of speech units we have. Basic examples of such
algorithms are speech/silence detection and voiced/unvoiced
detection. More sophisticated techniques are described in the
literature on the topic (see for instance [6]).

Since Brandt’s algorithm segmentation marks that are not
insertions are accurate, it can easily be thought up that a
reasonable performance objective for the approach described
above is to achieve accuracies better than those of the refined
HMM and closer to those of the “ideal” Brandt segmentation.

6. CONCLUSION

This paper analyzed the performance measurements of two
automatic segmentation algorithms: the refined HMM algo-
rithm and Brandt’s GLR method. To carry out our assess-
ment, we used three performance criteria, namely, the prob-
ability of insertion, the probability of omission and the accu-
racy. From the experimental results, we derived an approach
for improving the refined HMM segmentation algorithm as
well as a reasonable performance target (the accuracy of the
“ideal” Brandt’s GLR method). With respect to the contents
of this paper, the purpose of our forthcoming work will be
twofold. On the one hand, we will complete our analysis con-
cerning the performance criteria. In particular, we will study
how the distribution of marks can be taken into account or
merged with the criteria employed in this paper. On the other
hand, we will detail, implement and test the method proposed

Figure 4: Segmentation accuracy for 900 sentences

in the foregoing section. Our intention is to approach the ac-
curacy of the “ideal” Brandt segmentation.
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