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PARTIAL REGULARITY FOR THE CRACK SET MINIMIZING THE

TWO-DIMENSIONAL GRIFFITH ENERGY

JEAN-FRANÇOIS BABADJIAN, FLAVIANA IURLANO, AND ANTOINE LEMENANT

Abstract. In this paper we prove a C1,α regularity result for minimizers of the planar Griffith functional
arising from a variational model of brittle fracture. We prove that any isolated connected component of
the crack, the singular set of a minimizer, is locally a C1,α curve outside a set of zero Hausdorff measure.
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1. Introduction

Following the original Griffith theory of brittle fracture [26], the variational approach introduced in [23]
rests on the competition between a bulk energy, the elastic energy stored in the material, and a dissipation
energy which is propositional to the area (the length in 2D) of the crack. In a planar elasticity setting,
the Griffith energy is defined by

G(u,K) :=

∫

Ω\K
Ae(u) : e(u) dx+ H1(K),

where Ω ⊂ R2, which is bounded and open, stands for the reference configuration of a linearized elastic
body, and A is a suitable elasticity tensor. Here, e(u) = (∇u+∇uT )/2 is the elastic strain, the symmetric
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gradient of the displacement u : Ω \ K → R2 which is defined outside the crack K ⊂ Ω. This energy
functional falls within the framework of free discontinuity problems, and it is defined on pairs function/set

(u,K) ∈ A(Ω) := {K ⊂ Ω is closed and u ∈ LD(Ω′ \K)},
where Ω′ ⊃ Ω is a bounded open set (see (2.1) for a precise definition of the space LD of functions of
Lebesgue deformation).

Minimizers of the Griffith energy have attracted a lot of attention in the last years. Although very
close to its scalar analogue, which is known as the Mumford-Shah functional, the existence of a global
minimizer (u,K) ∈ A(Ω) (with a prescribed Dirichlet boundary condition) was proved only very recently
in [12, 11, 10, 14, 25] (see Section 2 for details). It was also established in the meantime that the crack
set K is H1-rectifiable and Ahlfors regular.

The main result of this paper is the following partial regularity property for the crack K.

Theorem 1.1. Let Ω ⊂ R2 be a bounded and simply connected open set with C1 boundary, let ψ ∈
W 1,∞(R2;R2) be a boundary data, and let A be a fourth order elasticity tensor of the form

Aξ = λ(trξ)I + 2µξ for all ξ ∈ M
2×2
sym ,

where µ > 0 and λ+ µ > 0. Let (u,K) ∈ A(Ω) be a solution to the minimization problem

inf
{

G(v,K ′) : (v,K ′) ∈ A(Ω), v = ψ a.e. in Ω′ \ Ω
}

.

Then for every isolated connected component Γ of K ∩ Ω there exist α ∈ (0, 1) and an exceptional relatively
closed set Z ⊂ Γ such that H1(Z) = 0 and Γ \ Z is locally a C1,α curve.

Comments about the main result. The strategy of our approach is inspired by the regularity theory
for minimizers of the classical Mumford-Shah functional. However, the presence of the symmetric gradient
in the bulk energy term prevents the standard theory from being applied directly. We will explain later
the main differences with the classical theory, and how we overcome some of the difficulties in this paper.
Before that, let us first list few remarks about the main result.

Firstly, it would be desirable to obtain the analogue of Bonnet’s result [7] for the Griffith energy, i.e. to
prove that each isolated connected components of K is a finite union of curves and to classify the blow-up
limits of minimizers. However, this seems difficult since the proof of [7] relies on the monotonicity formula
for the Dirichlet energy, which is not known in the case of the elastic energy.

Secondly, we emphasize that our proof strongly uses the two-dimensional setting and that it cannot be
easily generalized in higher dimensions. We will describe below the main ideas of the proof, highlighting
where the 2D assumption is crucial.

Thirdly, the C1,α regularity can be used as a first step in order to get higher regularity of both u and
the crack K. Indeed, once we know that K is locally the graph of a C1,α function, one can write the
Euler equation (which is a priori not well justified without any regularity of K, even in a week sense),
and then apply the result in [28]. Assuming that u is moreover bounded, we obtain that K is analytic
(see [28, Corollary 4.11] together with the comment just after [28, Remark 4.12]).

Fourthly, since any connected component of K is automatically uniformly rectifiable (because it is
compact, connected, and Ahlfors regular [18, Theorem 31.5]), it is tempting to think that the exceptional
negligible set Z of Theorem 1.1 could be taken such that dimH(Z) < 1. For the classical Mumford-Shah
problem this is true and it can be proved using the uniform rectifiability of K. Indeed, this property
permits to apply the so-called ε-regularity Theorem in many balls, and not only almost everywhere, as
it comes using Carleson measure estimates (see for instance [35]). For the Griffith energy, we establish
an analogous ε-regularity theorem on any isolated connected piece, which requires a separating property
on the initialized ball. Up to our knowledge, such as separating property is not quantitatively controlled
by the uniform rectifiability, as it is the case for the flatness and the normalized energy (see [31, Section
3.2.3]).

Yet, let us stress that it is not known in general how to control the connected components of the
singular set of a minimizer. Even in the scalar case, this question is a big issue related to the Mumford-
Shah conjecture. Of course the number of connected components with positive H1-measure has to be at
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most countable, but it seems difficult to exclude the possibility of uncountably many negligible connected
components that accumulate to form a set with positive H1-measure. We could also imagine many
small connected components of positive measure that accumulate near a given bigger component. The
assumption to consider an isolated connected component in our main theorem rules out these pathological
situations. The precise role of this hypothesis will be explained later.

Finally, our main result is stated on an isolated connected component of a general minimizer. An
alternative could be to minimize the Griffith energy under a connectedness constraint, or under a uniform
bound on the number of the connected components. Existence and Ahlfors regularity of a minimizer in
this class are much easier to obtain, due to Blashke and Go la̧b Theorems, and our result in this case
would imply that the singular set is C1,α regular H1-almost everywhere. Indeed, a careful inspection to
our proof reveals that all the competitors that we use preserve the topology of K, thus they can still be
used under connectedness constraints on the singular set, leading to the same estimates. Moreover, it is
quite probable that most of the results contained in this paper could be applied to almost minimizers
instead of minimizers (i.e. pairs that minimize the Griffith energy in all balls of radius r with its own
boundary datum, up to an error excess controlled by some Cr1+α term). For sake of simplicity we decided
to treat in this paper minimizers of the global functional only.

Comments about the proof. The Griffith energy is similar to the classical Mumford-Shah energy for
some aspects, but it actually necessitates the introduction of new ideas and new techniques. For the
classical Mumford-Shah problem, there are two main approaches. The first one, in dimension 2, see [7]
(or [17], written a bit differently in the monograph [18]), is of pure variational nature. It was extended in
higher dimensions in [30] with a more complicated geometrical stopping time argument. Alternatively,
there is a PDE approach [5, 3] (see also [4]), valid in any dimension, which consists in working on the
Euler-Lagrange equation. However, none of the aforementioned approaches can be directly applied to
the Griffith energy.

More precisely, while trying to perform the regularity theory for the Griffith energy, one has to face
the following main obstacles:

(i) No Korn inequality. The well-known Korn inequality in elasticity theory enables one to control
the full gradient ∇u by the symmetric part of the gradient e(u). Unfortunately, it is not valid in the
cracked domain Ω \K, due to the possible lack of regularity of K (see [13, 24]). Therefore, one has to
keep working with the symmetric gradient in all the estimates.

(ii) No Euler-Lagrange equation. A consequence of the failure of the Korn inequality is the lack of
the Euler-Lagrange equation. Indeed, while computing the derivative of the Griffith energy with respect
to inner variations, i.e. by a perturbation of u of the type u ◦ Φt(x) where Φt = id + tΦ, some mixtures
of derivatives of u appear and these are not controlled by the symmetric gradient e(u). Therefore, the
so-called “tilt-estimate”, which is one of the key ingredients of the method in [5, 3] cannot be used.

(iii) No coarea formula. A fondamental tool in calculus of variations and in geometric measure theory
is the so-called coarea formula, which enables one to reconstruct the total variation of a scalar function
by integrating the perimeter of its level sets. In our setting, on the one hand the displacement u is a
vector field, and on the other hand even for each coordinate of u there would be no analogue of this
formula with e(u) replacing ∇u. In the approach of [18] or [30], the coarea formula is a crucial ingredient
which ensures that, provided the energy of u is very small in some ball, one can use a suitable level set
of u to “fill the holes” of K, with very small length. It permits to reduce to the case where the crack
K “separates” the ball in two connected components. This is essentially the reason why our regularity
result only holds on (isolated) connected components of K.

(iv) No monotonicity formula for the elastic energy. One of the main ingredients to control the energy
in [7] and [18] (in dimension 2), is the so-called monotonicity formula, which essentially says that a
suitable renormalization of the bulk energy localized in a ball of radius r is a nondecreasing function of
r. This is not known for the elastic energy, i.e. while replacing ∇u by e(u).

(v) No good extension techniques. To prove any kind of regularity result, one has to create convenient
competitors, and the main competitor in dimension 2 is obtained by replacing K in some ball B where
it is sufficiently flat, by a segment S which is nearly a diameter. While doing so, and in order to use the
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minimality of (u,K), one has to define a new function v which coincides with u outside B, which belongs
to LD(B \ S), and whose elastic energy is controlled by that of u. Denoting by C± both connected
components of ∂B \ S, the way this is achieved in the standard Mumford-Shah theory (see [18] or [32])
consists in introducing the harmonic extensions of u|C± to B using the Poisson kernel. This provides
two new functions u± ∈ H1(B), whose Dirichlet energies in the ball B are controlled by that of u on the
boundary ∂B \K. For the Griffith energy, the same argument cannot be used since there is no natural
“boundary” elastic energy on ∂B \K.

Let us now explain the novelty of the paper and how we obtain a regularity result, in spite of the
aforementioned problems. We do not have any hope to solve directly the general problem (i), which
would probably be a way to solve all the other ones. We follow mainly the two-dimensional approach of
[18], for which one has to face the main obstacles (iii)–(v) described above.

Due to the absence of the coarea formula, we cannot control the size of the holes in K at small scales,
when K is very flat, as done in [18]. This is a first reason why our theorem restricts to a connected
component of K only. There is a second reason related to the decay of the normalized energy by use
of a compactness argument (in the spirit of [29] or [5]) in absence of a monotonicity formula for the
energy. In this argument, one of our main tool is the so-called Airy function w associated to a minimizer
u, which can be constructed only in the two-dimensional case. This function has been already used
in [6] to prove compactness and Γ-convergence results related to the elastic energy, and it is defined
through the harmonic conjugate (see Proposition 5.2). The main property of w is that it is a scalar
biharmonic function in Ω\K, which satisfies |D2w| = |Ae(u)|. What is important is the fact that D2w is
a full gradient, while e(u) is only a symmetric gradient. The other interesting fact in terms of boundary
conditions, at least under connected assumptions, is the transformation of a Neumann type problem on
the displacement u into a Dirichlet problem on the Airy function w, which is usually easier to handle.

We then obtain that, provided K is sufficiently flat in some ball B(x0, r) and the normalized energy

ω(x0, r) :=
1

r

∫

B(x0,r)

Ae(u) : e(u) dx

is sufficiently small, we can control the decay of the energy r 7→ ω(x0, r) as r → 0 (see Proposition 3.3).
This first decay estimate is proved by contradiction, using a compactness and Γ-convergence argument on
the elastic energy. In this argument, it is crucial the starting point x0 to belong to an isolated connected
component of K.

The second part of the proof is a decay estimate on the flatness, namely the quantity

β(x0, r) :=
1

r
inf
L

max

{

sup
x∈K∩B(x0,r)

dist(x, L), sup
x∈L∩B(x0,r)

dist(x,K)

}

,

where the infimum is taken over all affine lines L passing through x, measuring how far is K from
a reference line in B(x0, r). This quantity is particularly useful since a decay estimate of the type
β(x0, r) ≤ Crα leads to a C1,α regularity result on K (see Lemma 6.4).

The excess of density, namely

H1(K ∩B(x0, r)) − 1

2r
,

controls the quantity β(x0, r)
2, as a consequence of the Pythagoras inequality (see Lemma 6.3). In order

to estimate the excess of density, the standard technique consists in comparing K, where K is already
known to be very flat in a ball B(x0, r) (i.e. β(x0, r) ≤ ε), with the competitor given by the replacement
of K by a segment S in B(x0, r). While doing this, one has to define a suitable admissible function v in
B(x0, r) associated to the competitor S, that coincides with u outside B(x0, r) and has an elastic energy
controlled by that of u. This is where we have to face the problem (v) mentioned earlier. The way we
overcome this difficulty is a technical extension result (see Lemma 4.5). Whenever β(x0, r) +ω(x0, r) ≤ ε
for ε sufficiently small (depending only on the Ahlfors regularity constant θ0), one can find a rectangle
U , such that

B(x0, r/5) ⊂ U ⊂ B(x0, r),
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and a “wall set” Σ ⊂ ∂U , such that:

K ∩ ∂U ⊂ Σ and H1(Σ) ≤ ηr,

where η is small. Moreover, if K ′ is a competitor for K in U (which “separates”), then there exists a
function v ∈ LD(U \K ′) such that

u = v on ∂U \ Σ,

and
∫

U\K′

Ae(v) : e(v) dx ≤ C

η6

∫

B(x0,r)\K
Ae(u) : e(u) dx.

The main point being that the set Σ ⊂ U where the values of u and v do not match, has very small length,
essentially of order η > 0, that can be taken arbitrarily small. The price to pay is a diverging factor as
η → 0 in the right-hand side of the previous inequality. A similar statement with H1(Σ) ≤ rβ(x0 , r) is
much easier to prove, and is actually used before as a preliminary construction (see Lemma 4.2). We
believe Lemma 4.5 to be one of the most original part of the proof of Theorem 1.1.

With this extension result at hand, estimating the flatness through the excess of density as described
before, and choosing η of order ω(x0, r)

1/6, enables one to obtain a decay estimate for the flatness of the
type (see Proposition 3.2),

β
(

x0,
r

50

)

≤ Cω(x0, r)
1/14.

The previous decay estimate together with the decay of the renormalized energy constitute the main
ingredients which lead to the C1,α regularity result.

Organization of the paper. The paper is organized as follows. In Section 2, we introduce the main
notation used throughout the paper, and we precisely define the variational problem of fracture mechanics
we are interested in. In Section 3, we prove our main result, Theorem 1.1, concerning the partial C1,α-
regularity of the isolated connected components of the crack. The proof relies on two fundamental results.
The first one, Proposition 3.2 is a flatness estimate in terms of the renormalized bulk energy which is
established in Section 4. The second one, Proposition 3.3, is a bulk energy decay which is proved in
Section 5. Eventually, we gather in the Appendix of Section 6 several technical results.

2. Statement of the problem

2.1. Notation. The Lebesgue measure in R
n is denoted by Ln, and the k-dimensional Hausdorff measure

by Hk. If E is a measurable set, we will sometimes write |E| instead of Ln(E). If a and b ∈ Rn, we write
a · b =

∑n
i=1 aibi for the Euclidean scalar product, and we denote the norm by |a| =

√
a · a. The open

(resp. closed) ball of center x and radius r is denoted by B(x, r) (resp. B(x, r)).

We write M
n×n for the set of real n × n matrices, and M

n×n
sym for that of all real symmetric n × n

matrices. Given a matrix A ∈ Mn×n, we let |A| :=
√

tr(AAT ) (AT is the transpose of A, and trA is its
trace) which defines the usual Frobenius norm over Mn×n.

Given an open subset U of Rn, we denote by M(U) the space of all real valued Radon measures with
finite total variation. We use standard notation for Lebesgue spaces Lp(U) and Sobolev spaces W k,p(U)
or Hk(U) := W k,2(U). If K is a closed subset of Rn, we denote by Hk

0,K(U) the closure of C∞
c (U \K) in

Hk(U). In particular, if K = ∂U , then Hk
0,∂U (U) = Hk

0 (U).

Functions of Lebesgue deformation. Given a vector field (distribution) u : U → Rn, the symmetrized
gradient of u is denoted by

e(u) :=
∇u+ ∇uT

2
.

In linearized elasticity, u stands for the displacement, while e(u) is the elastic strain. The elastic energy
of a body is given by a quadratic form of e(u), so that it is natural to consider displacements such that
e(u) ∈ L2(U ;Mn×n

sym ). If U has Lipschitz boundary, it is well known that u actually belongs to H1(U ;Rn)
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as a consequence of the Korn inequality. However, when U is not smooth, we can only assert that
u ∈ L2

loc(U ;Rn). This motivates the following definition of the space of Lebesgue deformation:

(2.1) LD(U) := {u ∈ L2
loc(U ;Rn) : e(u) ∈ L2(U ;Mn×n

sym )}.
If U is connected and u is a distribution with e(u) = 0, then necessarily it is a rigid movement, i.e.
u(x) = Ax+ b for all x ∈ U , for some skew-symmetric matrix A ∈ Mn×n and some vector b ∈ Rn. If, in
addition, U has Lipschitz boundary, the following Poincaré-Korn inequality holds: there exists a constant
cU > 0 and a rigid movement rU such that

(2.2) ‖u− rU‖L2(U) ≤ cU‖e(u)‖L2(U) for all u ∈ LD(U).

According to [2, Theorem 5.2, Example 5.3], it is possible to make rU more explicit in the following way:
consider a measurable subset E of U with |E| > 0, then one can take

rU (x) :=
1

|E|

∫

E

u(y) dy +

(

1

|E|

∫

E

∇u(y) −∇u(y)T

2
dy

)(

x− 1

|E|

∫

E

y dy

)

,

provided the constant cU in (2.2) also depends on E.

Hausdorff convergence of compact sets. Let K1 and K2 be compact subsets of a common compact
set K ⊂ Rn. The Hausdorff distance between K1 and K2 is given by

dH(K1,K2) := max

{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

}

.

We say that a sequence (Kn) of compact subsets of K converges in the Hausdorff distance to the compact
set K∞ if dH(Kn,K∞) → 0. Finally let us recall Blaschke’s selection principle which asserts that from any
sequence (Kn)n∈N of compact subsets of K, one can extract a subsequence converging in the Hausdorff
distance.

Capacities. In the sequel, we will use the notion of capacity for which we refer to [1, 27]. We just recall
the definition and several facts. The (k, 2)-capacity of a compact set K ⊂ Rn is defined by

Capk,2(K) := inf
{

‖ϕ‖Hk(Rn) : ϕ ∈ C∞
c (Rn), ϕ ≥ 1 on K

}

.

This definition is then extended to open sets A ⊂ R2 by

Capk,2(A) := sup
{

Capk,2(K) : K ⊂ A, K compact
}

,

and to arbitrary sets E ⊂ Rn by

Capk,2(E) := inf
{

Capk,2(A) : E ⊂ A, A open
}

.

One of the interests of capacity is that it enables one to give an accurate sense to the pointwise value
of Sobolev functions. More precisely, every u ∈ Hk(Rn) has a (k, 2)-quasicontinuous representative ũ,
which means that ũ = u a.e. and that, for each ε > 0, there exists a closed set Aε ⊂ Rn such that
Capk,2(Rn \ Aε) < ε and ũ|Aε is continuous on Aε (see [1, Section 6.1]). The (k, 2)-quasicontinuous
representative is unique, in the sense that two (k, 2)-quasicontinuous representatives of the same function
u ∈ Hk(Rn) coincide Capk,2-quasieverywhere. In addition, if U is an open subset of Rn, then u ∈ Hk

0 (U)
if and only if for all multi-index α ∈ Nn with length |α| ≤ k − 1, ∂αu has a (k − |α|, 2)-quasicontinuous
representative that vanishes Capk−|α|,2-quasi everywhere on ∂U , i.e. outside a set of zero Capk−|α|,2-

capacity (see [1, Theorem 9.1.3]). In the sequel, we will only be interested in the cases k = 1 or k = 2 in
dimension n = 2.

2.2. Definition of the problem. We now describe the underlying fracture mechanics model and the
related variational problem.

Reference configuration. Let us consider a homogeneous isotropic linearly elastic body occupying
Ω ⊂ R2 in its reference configuration. The Hooke law associated to this material is given by

Aξ = λ(trξ)I + 2µξ for all ξ ∈ M
2×2
sym ,
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where λ and µ are the Lamé coefficients satisfying µ > 0 and λ + µ > 0. Note that this expression can
be inverted into

A−1σ =
1

2µ
σ − λ

4µ(λ+ µ)
(trσ)I =

1 + ν

E
σ − ν

E
(trσ)I for all σ ∈ M

2×2
sym ,

where E := 4µ(λ+ µ)/(λ+ 2µ) is the Young modulus and ν := λ/(λ+ 2µ) is the Poisson ratio.

Admissible displacements/cracks pairs. Let Ω′ ⊂ R
2 be a bounded open set such that diam(Ω′) ≤

2diam(Ω) and Ω ⊂ Ω′. We say that a pair set/function is admissible, and we write (u,K) ∈ A(Ω), if
K ⊂ Ω is closed, and u ∈ LD(Ω′ \K).

Griffith energy. For all (u,K) ∈ A(Ω), we define the Griffith energy functional by

G(u,K) :=

∫

Ω\K
Ae(u) : e(u) dx+ H1(K).

In this work, we are interested in (interior) regularity properties of the global minimizers of the Griffith
energy under a Dirichlet boundary condition, i.e., solutions to the (strong) minimization problem

(2.3) inf
{

G(v,K ′) : (v,K ′) ∈ A(Ω), v = ψ a.e. in Ω′ \ Ω
}

,

where ψ ∈ W 1,∞(R2;R2) is a prescribed boundary displacement. Note that, this formulation of the
Dirichlet boundary condition permits to account for possible cracks on ∂Ω, where the displacement does
not match the prescribed displacement ψ.

The question of the existence of solutions to (2.3) has been addressed in [12] (see also [11, 25]),
extending up to the boundary the regularity results [14, 10]. For this, by analogy with the classical
Mumford-Shah problem, it is convenient to introduce a weak formulation of (2.3) as follows

inf

{∫

Ω

Ae(v) : e(v) dx+ H1(Jv) : v ∈ GSBD2(Ω′), v = ψ a.e. in Ω′ \ Ω

}

,

with GSBD2 a suitable subspace of that of generalized special functions of bounded deformation (see [16])
where the previous energy functional is well defined. According to [11, Theorem 4.1], if Ω has Lipschitz
boundary, the previous minimization problem admits at least a solution, denoted by u. In addition, if Ω
is of class C1, thanks to [12, Theorems 5.6 and 5.7], there exist θ0 > 0 and R0 > 0, only depending on A,
such that the following property holds: for all x0 ∈ Ju and all r ∈ (0, R0) such that B(x0, r) ⊂ Ω′, then

H1(Ju ∩B(x0, r)) ≥ θ0r.

The previous property of Ju ensures that, setting K := Ju, then H1(K \ Ju ∩ Ω) = 0, so that the pair
(u,K) ∈ A(Ω) is a solution of the strong problem (2.3). In addition, the crack set K is H1-rectifiable
and Ahlfors regular: for all x0 ∈ K and all r ∈ (0, R0) such that B(x0, r) ⊂ Ω′, then

(2.4) θ0r ≤ H1(K ∩B(x0, r)) ≤ Cr,

where C is a constant depending only on Ω. The second inequality is obtained by comparing (u,K) with
the most standard competitor (v,K ′) where v := u1Ω′\(Ω∩B(x0,r)) and K ′ := [K \ (Ω∩B(x0, r))]∪ ∂(Ω∩
B(x0, r)).

Next, taking in particular K ′ = K and any v ∈ LD(Ω \K) as competitor implies that u ∈ LD(Ω \K)
is also a solution of the minimization problem

min

{

∫

Ω\K
Ae(v) : e(v) dx : v ∈ LD(Ω \K), v = ψ on ∂Ω \K

}

.

Note that u is unique up to an additive rigid movement in each connected component of Ω \K disjoint
from ∂Ω \ K. It turns out that u satisfies the following variational formulation: for all test functions
ϕ ∈ H1(Ω \K;R2) with ϕ = 0 on ∂Ω \K,

(2.5)

∫

Ω\K
Ae(u) : e(ϕ) dx = 0.
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In particular, u is a solution to the elliptic system

−div(Ae(u)) = 0 in D′(Ω \K;R2),

and, as a consequence, elliptic regularity shows that u ∈ C∞(Ω \K;R2).

3. The main quantities and proof of the C1,α regularity

We now introduce the main quantities that will be at the heart of our analysis.

3.1. The normalized energy. Let (u,K) ∈ A(Ω). Then for any x0 and r > 0 such that B(x0, r) ⊂ Ω
we define the normalized elastic energy by

ω(x0, r) :=
1

r

∫

B(x0,r)\K
Ae(u) : e(u) dx.

Sometimes we will write ωu(x0, r) to emphasize the underlying displacement u.

Remark 3.1. By definition of the normalized energy, for all 0 < t < r, we have

(3.1) ω(x0, t) ≤
r

t
ω(x0, r),

If K ′ = 1
r (K − x0) and v = 1√

r
u(r(· + x0)) then

ωu(x0, r) = ωv(0, 1).

3.2. The flatness. Let K be a closed subset of R2. For any x0 ∈ R2 and r > 0, we define the flatness
by

β(x0, r) :=
1

r
inf
L

max

{

sup
y∈K∩B(x0,r)

dist(y, L), sup
y∈L∩B(x0,r)

dist(y,K)

}

,

where the infimum is taken over all affine lines L passing through x0. In other words

β(x0, r) =
1

r
inf
L
dH(K ∩B(x0, r), L ∩B(x0, r)).

Sometimes we will write βK(x0, r) to emphasize the underlying crack K.

Remark 3.2. By definition of the flatness, we always have that for all 0 < t < r,

(3.2) βK(x0, t) ≤
r

t
βK(x0, r),

and if K ′ = 1
r (K − x0), then

βK(x0, r) = βK′(0, 1).

In the sequel, we will consider the situation where

(3.3) βK(x0, r) ≤ ε,

for ε > 0 small. This implies in particular that K ∩ B(x0, r) is contained in a narrow strip of thickness
εr passing through the center of the ball.

Let L(x0, r) be a line containing x0 and satisfying

(3.4) dH(L(x0, r) ∩B(x0, r),K ∩B(x0, r)) ≤ rβK(x0, r).

We will often use a local basis (depending on x0 and r) denoted by (e1, e2), where e1 is a tangent vector
to the line L(x0, r), while e2 is an orthogonal vector to L(x0, r). The coordinates of a point y in that
basis will be denoted by (y1, y2).

Provided (3.3) is satisfied with ε ∈ (0, 1/2), we can define two discs D+(x0, r) and D−(x0, r) of radius
r/4 and such that D±(x0, r) ⊂ B(x0, r) \ K. Indeed, using the notation introduced above, setting
x±0 := x0 ± 3

4re2, we can check that D±(x0, r) := B(x±0 , r/4) satisfy the above requirements.

A property that will be fundamental in our analysis is the separation in a closed ball.
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Definition 3.1. Let K be a closed subset of R2, x0 ∈ R2 and r > 0 be such that βK(x0, r) ≤ 1/2. We say
that K separates D±(x0, r) in B(x0, r) if the balls D±(x0, r) are contained into two different connected
components of B(x0, r) \K.

The following lemma guarantees that when passing from a ball B(x0, r) to a smaller one B(x0, t), and
provided that βK(x, r) is relatively small, the property of separating is preserved for t varying in a range
depending on βK(x, r).

Lemma 3.1. Let τ ∈ (0, 1/16), let K ⊂ Ω be a relatively closed set, and let x0 ∈ K, r > 0 be such
that B(x0, r) ⊂ Ω. Assume that βK(x0, r) ≤ τ and that K separates D±(x0, r) in B(x0, r). Then for all
t ∈ (16τr, r), we have βK(x0, t) ≤ 1

2 and K still separates D±(x0, t) in B(x0, t).

Proof. We will need the following elementary inequality resulting from the mean value Theorem

(3.5) arcsin(t) ≤ sup
s∈[0, 1

2
]

1√
1 − s2

t =
2√
3
t ≤ 2t for all t ∈

[

0,
1

2

]

.

Using the notations introduced above, considering the local basis {e1, e2} such that e1 is a tangent vector
to L(x0, r) and e2 is a normal vector to L(x0, r), we have

(3.6) K ∩B(x0, r) ⊂ {y ∈ B(x0, r) : |y2| ≤ τr}.
For all t ∈ (16τr, r), we have

(3.7) β(x0, t) ≤
r

t
β(x0, r) ≤

1

16τ
β(x0, r) ≤

1

16
≤ 1

2
,

so that D±(x0, t) are well defined. Denoting by ν(x0, t) a normal vector to the line L(x0, t), we can
assume that ν(x0, t) · e2 > 0.

We first note that, similarly to (3.7), we can estimate

(3.8) dist(x, L(x0, t)) ≤ tβ(x0, t) ≤ rβ(x0, r) ≤ τr for all x ∈ K ∩B(x0, t).

From (3.8) and (3.6) we deduce

B(x0, t) ∩ L(x0, t) ⊂ {y ∈ R
2 : |y2| ≤ 2τr}.

Denoting by α = arccos(ν(x0, t) · e2) the angle between ν(x0, t) and e2, the previous inclusion implies

(3.9) α ≤ arcsin

(

2τr

t

)

≤ 4τr

t
≤ 1

4
,

where we have used (3.5), and that t > 16τr.
Let y0 := x0 + 3

4ν(x0, t)t be the center of the disc D+(x0, t). We have that |(y0 − x0)2| = cos(α)34 t. In
particular, using the elementary inequality | cos(α) − 1| ≤ α and (3.9) we get

dist(y0, L(x0, r)) = |(y0 − x0)2| = cos(α)
3

4
t ≥ 3

4
(1 − α)t ≥ t

2
,

hence, since t > 16τr, we infer that for all y ∈ B(y0,
t
4 ),

dist(y, L(x0, r)) ≥
t

2
− t

4
=
t

4
≥ 4τr.

All in all, we have proved that

D+(x0, t) = B

(

y0,
t

4

)

⊂ {y ∈ R
2 : y2 ≥ 4τr}.

Arguing similarly for D−(x0, t), we get

D−(x0, t) ⊂ {y ∈ R
2 : y2 ≤ −4τr}.

Since by (3.6) we have that K ∩ B(x0, t) ⊂ {y ∈ B(x0, t) : |y2| ≤ τr}, we deduce that D±(x0, t) must
belong to two distinct connected components of B(x0, t)\K, and thus that K actually separates D±(x0, t)
in B(x0, t). �
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The following topological result is well-known.

Lemma 3.2. Let K ⊂ Ω be a relatively closed set, and let x0 ∈ K, r > 0 be such that B(x0, r) ⊂ Ω.
Assume that H1(K ∩ B(x0, r)) < +∞, βK(x0, r) ≤ 1/2 and that K separates D±(x0, r) in B(x0, r).
Then, there exists an injective Lipschitz curve Γ ⊂ K that still separates D±(x0, r) in B(x0, r).

Proof. Since K separatesD±(x0, r) in B(x0, r) there exists a compact and connected set K̃ ⊂ K∩B(x0, r)

which still separates (see [33, Theorem 14.3]). Since K̃ has also finite H1 measure, it follows from [18,

Corollary 30.2] that K̃ is arcwise connected. We denote by (e1, e2) an orthonormal system such that

L(x0, r) is directed by e1. Since K̃ separates D±(x0, r) in B(x0, r), then K̃ must contain at least one
point in both connected components of ∂B(x, r) ∩ {y ∈ R2 : |y2| ≤ r

2}. Denoting by z and z′ those

two points, there exists a Lipschitz injective curve Γ in K̃ ∩ B(x0, r) joining z and z′, which separates
D±(x0, r) in B(x0, r) (see for example [18, Proposition 30.14]). �

3.3. Initialization of the main quantities. We prove that, if (u,K) is a minimizer of the Griffith
functional, one can find many balls B(x0, r) ⊂ Ω such that K separates D±(x0, r) in B(x0, r) and such
that βK(x0, r) and ωu(x0, r) are small for r > 0 small enough, and for H1-a.e. x0 ∈ Γ, where Γ ⊂ K is
any connected component of K ∩ Ω. The restriction to a connected component Γ is only due to ensure
the separation property on K. Notice that in the following proposition we do not need the connected
component to be isolated.

Proposition 3.1. Let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional and let Γ ⊂ K be a
connected component of K ∩ Ω such that H1(Γ) > 0. Then for every ε ∈ (0, 10−3) there exists an
exceptional set Z ⊂ Γ with H1(Z) = 0 such that the following property holds. For every x0 ∈ Γ \Z, there
exists r0 > 0, such that

βK(x0, r0) ≤ ε, ωu(x0, r0) ≤ ε

and K separates D±(x0, r0) in B(x0, r0).

Proof. The initialization for the quantity β is standard (see for instance [18, Exercice 41.21.3] and [18,
Exercice 41.23.1]), we sketch below the proof for the sake of completeness.

Since K is a rectifiable set, we know that there exists Z1 ⊂ K with H1(Z1) = 0 such that, at every
point x0 ∈ K \ Z1, K admits an approximate tangent line Tx0

, that is

(3.10) lim
r→0

H1(K ∩B(x0, r) \ Tx0,εr)

r
= 0,

for all ε ∈ (0, 1), where Tx0,εr := {y ∈ R2 : dist(y, Tx0
) ≤ εr}. Since K is also Ahlfors-regular by

assumption, it is easily seen that Tx0
is the usual tangent, in the sense that for all ε ∈ (0, 1) there exists

rε > 0 such that

K ∩B(x0, r) ⊂ Tx0,εr,

for all r ≤ rε. Indeed, assume that there exist ε0 ∈ (0, 1) and two sequences, rk → 0 and yk ∈
K ∩B(x0, rk), such that

dist(yk, Tx0
) > ε0rk.

Then, by Ahlfors regularity (2.4) we have

H1
(

K ∩B (x0, 2rk) \ Tx0,
ε0rk

2

)

≥ H1
(

K ∩B
(

yk,
ε0rk

2

))

≥ θ0ε0
rk
2
.

We conclude that

lim inf
k→+∞

H1
(

K ∩B (x0, 2rk) \ Tx0,
ε0rk

2

)

2rk
≥ θ0ε0

4
> 0,

which is against (3.10). Hence, by definition, for all x0 ∈ K \ Z1 and all ε ∈ (0, 1), there exists r1 > 0
such that

β(x0, r) ≤ ε for all r ≤ r1.
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Now we consider ω(x0, r), which again can be initialized by the same argument used for the standard
Mumford-Shah functional (see for instance [4, Proposition 7.9]). Let us reproduce it here. We consider
the measure µ := Ae(u) : e(u)L2. For all t > 0, let

Et :=

{

x ∈ K : lim sup
r→0

µ(B(x, r))

r
> t

}

.

By a standard covering argument (see [4, Theorem 2.56]) one has that

tH1(Et) ≤ µ(Et).

But Et ⊂ K and µ(K) = 0, thus H1(Et) = 0 for all t > 0. By taking a sequence tn ց 0+ and defining
Z2 :=

⋃

nEtn , we have that H1(Z2) = 0 and, for all x0 ∈ K \ Z2,

lim
r→0

ω(x0, r) = 0.

In other words, for every x0 ∈ K \ (Z1 ∪ Z2), there exists r2 < r1 such that

β(x0, r) ≤ ε, ω(x0, r) ≤ ε,

for all r ≤ r2.
It remains to prove the separation property of K. To this aim, let us consider a connected component

Γ of K ∩ Ω which is relatively closed in K ∩ Ω. Since Γ is a compact and connected set in R2 with
H1(Γ) < +∞, according to [18, Proposition 30.1] it is the range of an injective Lipschitz mapping
γ : [0, 1] → Γ. This implies that Γ has an approximate tangent line Lx0

for H1-a.e. x0 ∈ Γ. In addition,
according to [8, Proposition 2.2.(iii)], there exists an exceptional set Z3 ⊂ Γ with H1(Z3) = 0 and with
the property that, for all x0 ∈ Γ \ Z3, one can find r3 > 0 such that,

(3.11) π(Γ ∩B(x0, r)) ⊃ Lx0
∩B(x0, (1 − 10−3)r) for all r ≤ r3,

where π : R
2 → Lx0

denotes the orthogonal projection onto the line Lx0
. In particular, if moreover

β(x0, r) ≤ ε ≤ 10−3, it follows that the balls D±(x0, (1 − 10−3)r) are well defined and, thanks to
(3.11), that Γ must separate D±(x0, (1 − 10−3)r) in B(x0, (1 − 10−3)r), hence K must separate too.
Setting Z := Z1 ∪ Z2 ∪ Z3, then H1(Z) = 0, and we have proved that for all x0 ∈ Γ \ Z and all
r ≤ r0 := min(r1, r2, (1 − 10−3)r3), we obtain that

β(x0, r) ≤ ε, ω(x0, r) ≤ ε,

and K separates D+(x0, r) from D−(x0, r) in B(x0, r), as required. �

3.4. Proof of Theorem 1.1. The proof of our main result, Theorem 1.1, rests on both the following
results, whose proofs are postponed to the subsequent sections. The first one is a flatness estimate in
terms of the renormalized energy, which will be established in Section 4.

Proposition 3.2. There exist ε1 > 0 and C1 > 0 (only depending on θ0, the Ahlfors regularity constant
of K) such that the following property holds. Let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional.
For all x0 ∈ K and r > 0 such that B(x0, r) ⊂ Ω,

ωu(x0, r) + βK(x0, r) ≤ ε1,

and K separates D±(x0, r) in B(x0, r), we have

βK

(

x0,
r

50

)

≤ C1ωu(x0, r)
1
14 .

The second result is the following normalized energy decay which will be proved in Section 5.

Proposition 3.3. For all τ > 0, there exists a ∈ (0, 1) and ε2 > 0 such that the following property holds.
Let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional, and let Γ be an isolated connected component
of K ∩ Ω such that H1(Γ) > 0. Let x0 ∈ Γ and r > 0 be such that B(x0, r) ⊂ Ω and

K ∩B(x0, r) = Γ ∩B(x0, r), βK(x0, r) ≤ ε2,

then we have
ωu (x0, ar) ≤ τ ωu(x0, r).
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With both previous results at hands, we are in position to bootstrap the preceding decay estimates
in order to get a C1,α-regularity estimate. Indeed, the conclusion of Theorem 1.1 will follow from the
following result.

Proposition 3.4. Let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional and let Γ be an isolated
connected component of K ∩Ω. Then, there exists a relatively closed set Z ⊂ Γ with H1(Z) = 0 such that
for every x0 ∈ Γ \ Z, one can find r0 > 0 such that Γ ∩B(x0, r0) is a C1,α curve.

Proof. Let ε1 > 0 and C1 > 0 be the constants given by Proposition 3.2, and let a > 0 and ε2 > 0 be the
constants given by Proposition 3.3 corresponding to τ = 10−2. We define

δ1 := min
{

ε1, ε2, 10−3a
}

, δ2 := min

{

δ1,

(

aδ1
C1

)14
}

.

We can assume that H1(Γ) > 0, otherwise the Proposition is trivial. Using that Γ is an isolated
connected component of K ∩ Ω and Proposition 3.1 (applied with ε = min(δ1, δ2)/2), we can find an
exceptional set Z ⊂ Γ with H1(Z) = 0 such that the following property holds: for every x0 ∈ Γ\Z, there
exists r > 0, such that

K ∩B(x0, r) = Γ ∩B(x0, r),

(3.12) ω(x0, r) ≤
δ2
2
, β(x0, r) ≤

δ1
2
, and K separates D±(x0, r) in B(x0, r).

We start by showing a first self-improving estimate which stipulates that the quantities ω(x0, r) and
β(x0, r) will remain small at all smaller scales.

Step 1. We define b := a/50, and we claim that if

ω(x0, r) ≤ δ2 , β(x0, r) ≤ δ1, and K separates D±(x0, r) in B(x0, r),

then the following three assertions are true:

(3.13) ω(x0, br) ≤ δ2 , β(x0, br) ≤ δ1, and K separates D±(x0, br) in B(x0, br)

ω(x0, br) ≤ 1

2
ω(x0, r)(3.14)

β (x0, br) ≤ C1

a
ω(x0, r)

1
14 .(3.15)

Let us start with the renormalized energy. By Proposition 3.3 we get

ω(x0, ar) ≤ 10−2ω(x0, r),

which yields using (3.1)

ω(x0, br) ≤ 50ω(x0, ar) ≤
1

2
ω(x0, r) ≤ δ2.

For what concerns the flatness, we can apply Proposition 3.2, so that

β
(

x0,
r

50

)

≤ C1ω(x0, r)
1
14 .

Thus by (3.2) we get

β(x0, br) ≤
1

a
β
(

x0,
r

50

)

≤ C1

a
ω(x0, r)

1
14 ≤ δ1,

because δ2 ≤
(

aδ1
C1

)14

. Finally, since δ1 ≤ 10−3a, we infer that 16δ1r ≤ br < r, so that K still separates

D±(x0, br) in B(x0, br) owing to Lemma 3.1 (applied with τ = δ1), and thus the claim is proved.

Step 2. Iterating the decay estimate established in Step 1, we get that (3.13), (3.14), and (3.15) hold
true in each ball B(x0, b

kr), k ∈ N. We thus obtain that

ω(x0, b
kr) ≤ 2−kω(x0, r)
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and subsequently, using now (3.15),

β(x0, b
kr) ≤ C1

a
2−

k−1
14 ω(x0, r)

1
14 .

If t ∈ (0, 1) we let k ≥ 0 be the integer such that

bk+1 ≤ t < bk.

Notice in particular that

k + 1 ≥ ln(1/t)

ln(1/b)
> k

thus 2−
k+1

14 ≤ tα with α = ln(2)
14| ln(b)| ∈ (0, 1). We deduce that

β(x0, tr) ≤
bk

t
β(x0, b

kr) ≤ C1

ab
2−

k−1

14 ω(x0, r)
1
14 ≤ Ctαω(x0, r)

1
14 ,

for some constant C > 0 only depending on C1 and a.

Step 3. We now conclude the proof of the proposition. Indeed, according to (3.12), for every x ∈
K ∩B(x0, r/2) we still have

ω(x, r/2) ≤ δ2, β(x, r/2) ≤ δ1

and K separates D±(x, r/2) in B(x, r/2). Thus, by Steps 1 and 2 applied in each ball B(x, r/2) with
x ∈ K ∩B(x0, r/2), we deduce that

β(x, tr) ≤ Cδ
1
14

2 tα for all t ∈ (0, 1/2),

and since this is true for all x ∈ K ∩B(x0, r/2), we deduce that K ∩B(x0, a0r) is a C1,α curve for some
a0 ∈ (0, 1/2) thanks to Lemma 6.4 in the appendix. �

4. Proof of the flatness estimate

In order to prove Proposition 3.2, we need to construct a competitor in a ball B(x0, r), where the
flatness β(x0, r) and the renormalized energy ω(x0, r) are small enough. The main difficulty is to control
how the crack behaves close to the boundary of the ball. A first rough competitor is constructed in
Propositions 4.1 and 4.2 by introducing a wall set of length rβ(x0, r) on the boundary. It leads to density
estimates in balls (or alternatively in rectangles) which state that, provided the crack is flat enough, the
energy density scales like the diameter of the ball (or the width of the rectangle), up to a small error
depending on β(x0, r) and ω(x0, r).

Unfortunately, this rough competitor is not sufficient to get a convenient flatness estimate leading to
the desired regularity result. A better competitor is obtained by suitably localizing the crack in two
almost opposite boxes of size η > 0, arbitrarily small (see Lemma 4.4). Then we can define a competitor
inside a larger rectangle U , whose vertical sides intersect both the small boxes. The crack competitor is
then defined by taking an almost horizontal segment inside the rectangle, together with a new wall set
Σ ⊂ ∂U of arbitrarily small length, made of the intersection of the rectangle with the boxes. It is then
possible to introduce a displacement competitor (see Lemma 4.5) by extending the value of u on ∂U \ Σ
inside U . The price to pay is that the bound on the elastic energy associated to this competitor might
diverge as the length of the wall set is small. It is however possible to optimize the competition between
the flatness and the renormalized energy associated to this competitor by taking η = ω(x0, r)

1/7, leading
to the conclusion of Proposition 3.2.

4.1. Density estimates. In this section we prove some density estimates for the set K. Such estimates
will be useful to select good radii, in a way that the corresponding spheres intersect the set K in two
almost opposite points. One of the main tools to construct competitors will be the following extension
lemma.
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Lemma 4.1 (Harmonic extension in a ball from an arc of circle). Let 0 < δ ≤ 1/2, x0 ∈ R2, r > 0 and
let Cδ ⊂ ∂B(x0, r) be the arc of circle defined by

Cδ := {(x1, x2) ∈ ∂B(x0, r) : (x− x0)2 > δr}.
Then, there exists a constant C > 0 (independent of δ, x0, and r) such that every function u ∈ H1(Cδ;R2)
extends to a function g ∈ H1(B(x0, r);R

2) with g = u on Cδ and
∫

B(x0,r)

|∇g|2 dx ≤ Cr

∫

Cδ

|∂τu|2 dH1.

Proof. Let Φ : Cδ → C0 be a bilipschitz mapping with Lipschitz constants independent of δ ∈ (0, 1/2], x0,
and r > 0. Since u ◦ Φ−1 ∈ H1(C0;R2), we can define the extension by reflection ũ ∈ H1(∂B(x0, r);R

2)
on the whole circle ∂B(x0, r), that satisfies

∫

∂B(x0,r)

|∂τ ũ|2dH1 ≤ C

∫

Cδ

|∂τu|2 dH1,

where C > 0 is a constant which is independent of δ.
We next define g as the harmonic extension of ũ in B(x0, r). Using [18, Lemma 22.16], we obtain

∫

B(x0,r)

|∇g|2 dx ≤ Cr

∫

∂B(x0,r)

|∂τ ũ|2 dH1 ≤ Cr

∫

Cδ

|∂τu|2 dH1,

which completes the proof. �

Lemma 4.2 (Extension lemma, first version). Let (u,K) ∈ A(Ω) be a minimizer of the Griffith func-
tional, and let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω and βK(x0, r) ≤ 1/10. Let S be the strip
defined by

S := {y ∈ B(x0, r) : dist(y, L(x0, r)) ≤ rβ(x0, r)}.
Then there exist a universal constant C > 0, ρ ∈ (r/2, r), and v± ∈ H1(B(x0, ρ);R2), such that v± =
u on C ±, C± being the connected components of ∂B(x0, ρ) \ S, and

∫

B(x0,ρ)

|e(v±)|2 dx ≤ C

∫

B(x0,r)\K
|e(u)|2 dx.

Proof. Let A± be the connected components of B(x0, r) \ S. Since K ∩ A± = ∅, by the Korn inequal-
ity there exist two skew-symmetric matrices R± such that the functions x 7→ u(x) − R±x belong to
H1(A±;R2) and

∫

A±

|∇u −R±|2 dx ≤ C

∫

A±

|e(u)|2 dx,

where the constant C > 0 is universal since the domains A± are all uniformly Lipschitz for all possible
values of β(x0, r) ≤ 1/10. Using the change of variables in polar coordinates, we infer that

∫

A±

|∇u−R±|2 dx =

∫ r

0

(

∫

∂B(x0,ρ)∩A±

|∇u −R±|2 dH1

)

dρ

which allows us to choose a radius ρ ∈ (r/2, r) satisfying

∫

∂B(x0,ρ)∩A+

|∇u−R+|2 dH1 +

∫

∂B(x0,ρ)∩A−

|∇u−R−|2 dH1

≤ 2

r

∫

A+

|∇u−R+|2 dx+
2

r

∫

A−

|∇u −R−|2 dx ≤ C

r

∫

B(x0,r)\K
|e(u)|2 dx .

Setting C
± := ∂A±∩∂B(x0, ρ), in view of Lemma 4.1 applied to the functions u± : x 7→ u(x)−R±x, which

belong to H1(C±;R2) since they are regular, for δ = rβ(x0, r) we get two functions g± ∈ H1(B(x0, ρ);R2)
satisfying g±(x) = u(x) −R±x for H1-a.e. x ∈ C± and

∫

B(x0,ρ)

|∇g±|2 dx ≤ Cρ

∫

C±

|∂τu±|2 dH1 ≤ C

∫

B(x0,r)\K
|e(u)|2 dx.
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Finally, the functions x 7→ v±(x) := g±(x) +R±x satisfy the required properties. �

We now use the extension to prove two density estimates, first in smaller balls, then in smaller rect-
angles.

Proposition 4.1 (Density estimate in a ball). Let (u,K) ∈ A(Ω) be a minimizer of the Griffith func-
tional, and let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω and βK(x0, r) ≤ 1/10. Then there exist a
universal constant C > 0 and a radius ρ ∈ (r/2, r) such that

∫

B(x0,ρ)\K
Ae(u) : e(u) dx+ H1(K ∩B(x0, ρ)) ≤ 2ρ+ Cρ

(

ωu(x0, r) + βK(x0, r)
)

.

Proof. We keep using the same notation than that used in the proof of Lemma 4.2. Let ρ ∈ (r/2, r)
and v± ∈ H1(B(x0, ρ);R2) be given by the conclusion of Lemma 4.2. We now construct a competitor in
B(x0, ρ) as follows. First, we consider a “wall” set Z ⊂ ∂B(x0, ρ) defined by

Z := {y ∈ ∂B(x0, ρ) : dist(y, L(x0, r)) ≤ rβ(x0, r)}.
Note that K ∩ ∂B(x0, ρ) ⊂ Z,

∂B(x0, ρ) = [∂A+ ∩ ∂B(x0, ρ)] ∪ [∂A− ∩ ∂B(x0, ρ)] ∪ Z = C
+ ∪ C

− ∪ Z,
and that

H1(Z) = 4ρ arcsin

(

rβ(x0, r)

ρ

)

≤ 4rβ(x0, r).

We are now ready to define the competitor (v,K ′) by setting

K ′ :=
[

K \B(x0, ρ)
]

∪ Z ∪
[

L(x0, r) ∩B(x0, ρ)
]

,

and, denoting by V ± the connected components of B(x0, ρ) \ L(x0, r) which intersect A±,

v :=

{

v± in V ±

u otherwise.

Since H1(K ′ ∩B(x0, ρ)) ≤ 2ρ+ 4rβ(x0, r), we deduce that
∫

B(x0,ρ)\K
Ae(u) : e(u) dx+ H1(K ∩B(x0, ρ))

≤
∫

B(x0,ρ)\K
Ae(v) : e(v) dx+ H1(K ′ ∩B(x0, ρ))

≤ C

∫

B(x0,r)\K
|e(u)|2 dx+ ρ(2 + Cβ(x0, r))

≤ 2ρ+ Cρ
(

ω(x0, r) + β(x0, r)
)

,

and the proposition follows. �

The following proposition is similar to Proposition 4.1, but here balls are replaced by rectangles. The
assumption that K separates D±(x0, r) in B(x0, r) is not crucial here and could be removed. We will
keep it to simplify the proof of the proposition, since nothing changes for the purpose of proving Theorem
1.1.

Proposition 4.2 (Density estimates in a rectangle). Let (u,K) ∈ A(Ω) be a minimizer of the Griffith
functional, and let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω, βK(x0, r) ≤ 1/10, and K separates
D±(x0, r) in B(x0, r). Let {e1, e2} be an orthogonal system such that L(x0, r) is directed by e1. Then
there exists a universal constant C∗ > 0, such that

H1

(

K ∩
{

y ∈ B(x0, r) :
r

5
≤ (y − x0)1 ≤ 2r

5

})

≤ r

5
+ C∗r

(

βK(x0, r) + ωu(x0, r)
)

.
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Proof. We first apply Lemma 4.2 to get a radius ρ ∈ (r/2, r) and functions v± ∈ H1(B(x0, ρ);R2) which
satisfy the conclusion of that result. In order to construct a competitor for K in B(x0, ρ), we would like
to replace the set K inside the rectangle

R := {y ∈ R
2 : (y − x0)1 ∈ [r/5, 2r/5] and |(y − x0)2| ≤ rβ(x, r)},

by the segment L(x0, r) ∩R which has length exactly equal to r/5. Such a competitor may not separate
the balls D±(x0, ρ) in B(x0, ρ). If D±(x0, ρ) belonged to the same connected component, we could only
take v+ (or v−) as a competitor of u, introducing a big jump on the boundary of B(x0, ρ) and removing
completely the jump on K. To overcome this problem, we consider a “wall set” (inside the vertical
boundaries of R)

Z ′ := {y ∈ R
2 : (y − x0)1 ∈ {r/5, 2r/5} and |(y − x0)2| ≤ rβ(x, r)},

as well as a second wall set on ∂B(x0, r) as before, defined by

Z := {y ∈ ∂B(x0, ρ) : dist(y, L(x0, r)) ≤ rβ(x0, r)}.
We define

K ′ :=
[

K ∩ Ω \R
]

∪ Z ∪ Z ′ ∪
[

L(x0, r) ∩R
]

.

Note that K ′ is now separating the ball B(x0, ρ) (thanks to the wall set Z ′) and

H1(K ′ ∩B(x0, ρ)) ≤ r

5
+ 8rβ(x0, r) + H1(K ∩B(x0, ρ) \R).

Now we define the competitor for the function u in B(x0, ρ). To this aim, using that K ′ separates the
ball B(x0, ρ), we can find two connected components V ± of B(x0, ρ)\K ′ whose closure intersect C ± and
define

v :=

{

v± in V ±

u otherwise.

Let us recall that u = v± on ∂B(x0, ρ) \ Z. Note that the presence of Z in the singular set K ′ is due to
the fact that v± does not match u on Z. The pair (v,K ′) is then a competitor for (u,K) in B(x0, ρ),
and thus,

∫

B(x0,ρ)\K
Ae(u) : e(u) dx + H1(K ∩B(x0, ρ))

≤
∫

B(x0,ρ)\K′

Ae(v) : e(v) dx + H1(K ′ ∩B(x0, ρ))

≤ C

∫

B(x0,r)\K
|e(u)|2 dx+

r

5
+ 8rβ(x0, r) + H1(K ∩B(x0, ρ) \R)

from which we deduce that

H1

(

K ∩
{

y ∈ B(x0, r) :
r

5
≤ (y − x0)1 ≤ 2r

5

})

≤ r

5
+ Cr (β(x0, r) + ω(x0, r)) .

which completes the proof of the result. �

An interesting consequence of the previous density estimates is a selection result of good radii, in a
way that the corresponding spheres intersect the set K at only two almost opposite points.

Lemma 4.3 (Finding a good radius). There exists a universal constant ε0 > 0 such that the following
property holds: let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional and let x0 ∈ K and r > 0 be
such that B(x0, r) ⊂ Ω and

ωu(x0, r) + βK(x0, r) ≤ ε0.

If K separates D±(x0, r) in B(x0, r), then there exists s ∈ (r/8, r) such that #(K ∩ ∂B(x0, s)) = 2.
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Proof. According to Proposition 4.1, there exist a universal constant C > 0 and a radius ρ ∈ (r/2, r)
such that

∫

B(x0,ρ)\K
Ae(u) : e(u) dx+ H1(K ∩B(x0, ρ)) ≤ 2ρ+ Cρ

(

ω(x0, r) + β(x0, r)
)

.

We now fix

(4.1) ε0 := min

{

1

8C
,

1

10

}

.

Using formula (6.1) in Lemma 6.1 and (4.1), we get the estimate
∫ ρ

0

#(K ∩ ∂B(x0, s)) ds ≤ H1(K ∩B(x0, ρ)) ≤
(

2 +
1

8

)

ρ.

Moreover, thanks to the fact that rβ(x0, r) ≤ 1
10r ≤ 1

5ρ <
1
4ρ, we have that for all s ∈ (ρ4 , ρ) the circle

∂B(x0, s) is not totally contained in the strip {x ∈ B(x0, r) : dist(x, L(x0, r)) ≤ β(x0, r)r}. Therefore,
since K is assumed to separate D±(x0, r) in B(x0, r), we deduce that for all s ∈ (ρ4 , ρ)

#(K ∩ ∂B(x0, s)) ≥ 2.

Setting

A := {s ∈ (ρ/4, ρ) : #(K ∩ ∂B(x0, s)) ≥ 3},
we obtain

3L1(A) + 2L1([ρ/4, ρ] \A) ≤
∫ ρ

ρ/4

#(K ∩ ∂B(x0, s))ds

≤
(

2 +
1

8

)

ρ,

and finally,

L1(A) ≤
(

2 +
1

8
− 2

3

4

)

ρ =
5ρ

8
<

3ρ

4
= L1((ρ/4, ρ)).

We then deduce the existence of some s ∈ (ρ/4, ρ) \A, which thus satisfies #(K ∩ ∂B(x0, s)) = 2. Since
ρ ∈ (r/2, r), this radius s then belongs to (r/8, r). �

4.2. The main extension result. The first rough density estimate given by Proposition 4.1 is based
on the property that the crack is always contained in a small strip of thickness rβ(x0 , r). This enables
one to construct a competitor outside a wall set with height of order rβ(x0, r). However, in order to
bootstrap the estimates on our main quantities, β and ω, we need to slightly improve such a density
estimate obtaining a remainder of order rη, η well chosen (of order ω(x0, r)

1/7), instead of rβ(x0, r).
To this aim, we need a refined version of the extension Lemma 4.2, in which the boundary value of the
competitor displacement is prescribed outside a wall set of height rη, instead of rβ(x0, r). To construct
such a suitable small wall set, we first find a nice region in the annulus B(x0,

2r
5 ) \B(x0,

r
5 ) where to cut,

i.e. we find some little boxes in which the set K is totally trapped. This is the purpose of the following
lemma. Notice that in all this subsection and in the next one we never use any connectedness assumption
on K, but we rather use a separating assumption only.

Lemma 4.4 (Selection of cutting squares). Let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional,
and let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω and

ωu(x0, r) + βK(x0, r) ≤
1

5C∗
min

(

1, 10−2θ0
)

,

where θ0 > 0 is the Ahlfors regularity constant of K, and C∗ > 0 is the universal constant given in
Proposition 4.2. We also assume that K separates D±(x0, r) in B(x0, r). Let {e1, e2} be an orthogonal
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system such that L(x0, r) is directed by e1. Then for every η ∈ (0, 10−2) there exist two points y0 and z0
∈ R

2 such that

(y0 − x0)1 ∈ (r/5, 2r/5), (z0 − x0)1 ∈ (−2r/5,−r/5),(4.2)

|(y0 − x0)2| ≤ β(x0, r)r, |(z0 − x0)2| ≤ β(x0, r)r,(4.3)

and

K ∩ {y ∈ R
2 : |(y − y0)1| ≤ ηr} ⊂ {y ∈ R

2 : |(y − y0)2| ≤ 30ηr},(4.4)

K ∩ {y ∈ R2 : |(y − z0)1| ≤ ηr} ⊂ {y ∈ R2 : |(y − z0)2| ≤ 30ηr}.(4.5)

Proof. It is enough to prove the existence of a point y0 since the argument leading to the existence of z0
is similar. For simplicity, we will denote by β := β(x0, r), ω := ω(x0, r).

We start by finding a good vertical strip in which K has small length. Let us define the vertical strip

S :=

{

y ∈ B(x0, r) :
r

5
≤ (y − x0)1 ≤ 2r

5

}

.

Let η < 1/10 and let N ∈ N, N ≥ 2, be such that 1
5N ≤ η < 1

5N−5 . Then (N − 1)/N ≥ 1
2 and

(4.6)
η

2
≤ 1

5N
≤ η.

We split S into the pairwise disjoint union of N smaller sets S1, . . . , SN defined, for all k ∈ {1, . . . , N},
by

Sk =:

{

y ∈ S :
r

5
+
k − 1

5N
r ≤ (y − x0)1 <

r

5
+

k

5N
r

}

.

Since β ≤ 1/10 we can apply Proposition 4.2 which implies

(4.7)

N
∑

k=1

H1(K ∩ Sk) ≤ H1(K ∩ S) ≤ (1 + E)r

5
,

with E := 5C∗(β + ω), where we recall that θ0 is the Ahlfors regularity constant of K, and C∗ > 0 is the
universal constant given in Proposition 4.2. As it will be used later, we notice that under our assumptions
we have in particular that

(4.8) E ≤ min(1, 10−2θ0).

From (4.7) we deduce the existence of k0 ∈ {1, . . . , N} such that (see Figure 1)

(4.9) H1(K ∩ Sk0
) ≤ (1 + E)r

5N
.

By the separation property of K, one can find inside K∩Sk0
, an injective Lipschitz curve Γ connecting

both vertical sides of ∂Sk0
(see Lemma 3.2). In particular, we have

(4.10)
r

5N
≤ H1(Γ) ≤ (1 + E)r

5N
,

and thus (4.9) leads to

(4.11) H1(K ∩ Sk0
\ Γ) ≤ Er

5N
≤ ηEr.

Thanks to the length estimate (4.10), if we denote by z, z′ ∈ ∂Sk0
both points of Γ on the boundary

of Sk0
, we have in particular, for every point y ∈ Γ,

|y − z| ≤ H1(Γ) ≤ (1 + E)

5N
r ≤ 2

5N
r,

because E ≤ 1. In other words,

(4.12) sup
y∈Γ

|y − z| ≤ 2

5N
r ≤ 2ηr.
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B(x0, r)

K

S

Sk0

bbb
x0

Figure 1. The choice of Sk0
.

We now finally give a bound on the distance from the points of K to the curve Γ in a strip slightly
thinner than Sk0

, by use of the Ahlfors-regularity of K. For that purpose we let S′ ⊂ Sk0
be defined by

S′ :=

{

y ∈ Sk0
:
r

5
+
k0 − 1

5N
r + δr ≤ (y − x0)1 ≤ r

5
+

k0
5N

r − δr

}

,

with δ := 2ηE
θ0

. Since E ≤ 10−2θ0, we deduce that δ ≤ 10−1

5N , so that S′ is not empty.
We claim that

(4.13) sup
y∈K∩S′

dist(y,Γ) ≤ 2ηE

θ0
r.

Indeed, if y ∈ K ∩ S′ is such that d := dist(y,Γ) > δr = 2ηE
θ0
r, then B(y, δr) ⊂ Sk0

\ Γ and, by Ahlfors
regularity,

H1(K ∩B(y, δr)) ≥ θ0δr = 2ηEr,

which is a contradiction with (4.11) and proves (4.13).
To conclude, gathering (4.13) and (4.12), we have obtained

(4.14) sup
y∈K∩S′

|y − z| ≤ 2ηE

θ0
r + 2ηr ≤ 3ηr,

since 2E/θ0 ≤ 1. Therefore, if we define y0 as being the middle point of the segment [z, z + r
5N e1] (in

particular in the middle of S′), the conclusion (4.2) and (4.3) of the lemma are satisfied.
Next, we notice that by (4.6), the width of S′ is exactly

1

5N
r − 2δr =

1

5N
r − 4

ηE

θ0
r ≥

(

η

2
− 4

ηE

θ0

)

r ≥ ηr

4
,
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provided that E ≤ θ0
16 , which is valid thanks to (4.8) (see Figure 2). Consequently, using (4.14) and that

(y0)2 = z2, we deduce that with this choice of y0 it holds

K ∩
{

y ∈ R
2 : |(y − y0)1| ≤ η/8r

}

⊂ K ∩ S′ ⊂
{

y ∈ R
2 : |(y − y0)2| ≤ 3ηr

}

.

Sk0

S′

δr δr

r
5N

z
z′ Γ

K \ Γ

b
y0

6ηr

η
4r

b

b

Figure 2. The set K is trapped into a rectangle of size ≃ ηr.

The proof of the lemma follows by relabeling η/8 as η. �

We are now in the position to establish an improved version of the extension lemma. Its proof is
similar to that of Proposition 4.1, the difference being the definition of the wall set that has now size ηr
instead of rβ(x0, r).

Lemma 4.5 (Extension Lemma). Let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional, and let
x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω and

ωu(x0, r) + βK(x0, r) ≤
1

5C∗
min

(

1, 10−2θ0
)

,

where θ0 is the Ahlfors regularity constant of K and C∗ > 0 is the universal constant given in Proposi-
tion 4.2. We also assume that K separates D±(x0, r) in B(x0, r).

Then for all 0 < η < 10−4 there exist:

• an open rectangle U such that B(x0, r/5) ⊂ U ⊂ B(x0, r),
• a wall set (i.e. union of two vertical segments) Σ ⊂ ∂U such that K∩∂U ⊂ Σ, u ∈ H1(∂U \Σ;R2)

and H1(Σ) ≤ 120ηr.

In addition, if K ′ ⊂ Ω is a closed set such that K ′ \U = K \U and D±(x0, r/5) are contained in two
different connected components of U \K ′, then there exists a function v ∈ H1(Ω \K ′;R2) such that

v = u on (Ω \ U) \ Σ
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and

(4.15)

∫

U\K′

|e(v)|2 dx ≤ C

η6

∫

B(x0,r)\K
|e(u)|2 dx,

where C > 0 is universal.

Proof. We denote by {e1, e2} an orthogonal system such that L(x0, r) is directed by e1 and we apply
Lemma 4.4, which gives the existence of two points y0 and z0 ∈ B(x0, 2r/5) \B(x0, r/5) satisfying (4.2)–
(4.5). In order to construct the rectangle U and the wall set Σ, we need to introduce a domain A which
is a “rectangular annulus” of thickness of order ηr.

Step 1: Construction of a rectangular annulus A. The vertical parts of A are defined as being
the following open rectangles

V1 :=

{

x ∈ R
2 : |(x− y0)1| < ηr, |(x− x0)2| <

1

3
r

}

and

V2 :=

{

x ∈ R
2 : |(x− z0)1| < ηr, |(x− x0)2| <

1

3
r

}

.

Notice that (y0 − x0)1 ≤ 2
5r and ηr ≤ 10−2r, so that

sup
y∈V1

(y − x0)1 ≤ 2

5
r + 10−2r =

41

100
r,

which means that the right corners of V1 have a distance to x0 bounded by
√

412

1002 + 1
9r < r and therefore

V1 ⊂ B(x0, r).

By symmetry, V2 ⊂ B(x0, r) as well.
Now the horizontal parts of A are given by the following open rectangles

H1 :=

{

x ∈ R
2 : (z0)1 − ηr < (x − x0)1 < (y0)1 + ηr,

1

3
r − ηr < (x − x0)2 <

1

3
r

}

and

H2 :=

{

x ∈ R
2 : (z0)1 − ηr < (x − x0)1 < (y0)1 + ηr, −1

3
r < (x − x0)2 < −1

3
r + ηr

}

.

Note that the four rectangles V1, V2, H1, and H2 are all contained in the ball B(x0, r). Finally, we
define the “rectangular annulus” A by

A := V1 ∪ V2 ∪H1 ∪H2,

which satisfies B(x0, r/5) ⊂ A ⊂ B(x0, r), because 1
3r − ηr ≥ 1

3r − 1
100r = 97

300r >
r
5 (see Figure 3).

Next, we consider the two closed boxes

T1 :=
{

x ∈ R
2 : |(x− y0)1| ≤ ηr and |(x− y0)2| ≤ 30ηr

}

⊂ V1 ⊂ A,

T2 :=
{

x ∈ R
2 : |(x− z0)1| ≤ ηr and |(x− z0)2| ≤ 30ηr

}

⊂ V2 ⊂ A,

the main point being that K ∩A ⊂ T1 ∪ T2.
Let us finally consider the subset of A outside the cutting boxes,

A′ := A \ (T1 ∪ T2),
and let A± be both connected components of A′. The open sets A± are Lipschitz domains, and they are
actually unions of vertical and horizontal rectangles of thickness of order η and lengths of order r (notice
that 30η ≤ 10−2). In addition, since by construction we have K∩A± = ∅, it follows that u ∈ H1(A±;R2)
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b
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Figure 3. The rectangular annulus A.

and that the Korn inequality (see Lemma 6.2) applies in each rectangle composing A±. Therefore, there
exist two skew-symmetric matrices R± such that

(4.16)

∫

A±

|∇u −R±|2 dx ≤ C

η5

∫

A±

|e(u)|2 dx ≤ C

η5

∫

B(x0,r)\K
|e(u)|2 dx,

for some constant C > 0 universal, where η−5 appears estimating the distance between the skew-
symmetric matrices in the intersection of two overlapping vertical and horizontal rectangles.

Step 2: Construction of the rectangle U . Let us denote by R := R+1A+ +R−1A− , then
∫

A′

|∇u−R|2 dx ≤ C

η5

∫

B(x0,r)\K
|e(u)|2 dx.

For any t ∈ [−ηr, ηr] we denote the vertical line passing through y(t) := y0 + te1 by Lt := y(t) + Re2.
According to Fubini’s Theorem, we have

∫ ηr

−ηr

∫

Lt∩A′

|∇u −R|2 dH1 dt ≤ C

η5

∫

B(x0,r)\K
|e(u)|2 dx.

We can thus find t0 ∈ [−ηr, ηr] such that u ∈ H1(Lt0 ∩ A′;R2) and

2ηr

∫

Lt0∩A′

|∇u −R|2 dH1 ≤ C

η5

∫

B(x0,r)\K
|e(u)|2 dx.

We perform the same argument at the point z0, finding some t1 ∈ [−ηr, ηr] such that, denoting by Lt1

the line z0 + t1e1 + Re2, one has u ∈ H1(Lt1 ∩A′;R2) and
∫

Lt1∩A′

|∇u−R|2 dH1 ≤ C

rη6

∫

B(x0,r)\K
|e(u)|2dx.

22



Arguing similarly for the top horizontal part of A+, we get a horizontal line LH+ such that u ∈
H1(LH+ ∩ A+;R2) and

∫

LH+∩A+

|∇u −R+|2 dH1 ≤ C

rη6

∫

B(x0,r)\K
|e(u)|2dx.

The vertical line Lt0 intersects LH+ at a single point a+0 , and Lt1 intersects LH+ at another single point
a+1 .

We perform a similar construction on the lower part A− of A′ which leads to another horizontal line
LH− such that u ∈ H1(LH− ∩ A−;R2) and

∫

LH−∩A−

|∇u− R−|2 dH1 ≤ C

rη6

∫

B(x0,r)\K
|e(u)|2dx.

The vertical line Lt0 intersects LH− at a single point a−0 , and Lt1 intersects LH− at another single point
a−1 .

Finally, we define U as the rectangle with vertices (a−0 , a
−
1 , a

+
0 , a

+
1 ) (See Figure 4) and we define Σ as

Σ := (T1 ∪ T2) ∩ ∂U,
so that K ∩ ∂U ⊂ Σ, H1(Σ) = 120ηr, and

(4.17)

∫

∂U\Σ
|∇u−R|2 dH1 dt =

∫

∂U∩A′

|∇u−R|2 dH1 dt ≤ C

rη6

∫

B(x0,r)\K
|e(u)|2 dx.

K

b b

bb

U

a+0a+1

a−0a−1

Σ

Figure 4. The rectangular domain U and the wall set Σ.

Step 3: Construction of the competitor v. Since U is a rectangle with “uniform shape”, there
exists a bilipschitz mapping Φ : R2 → R2 such that Φ(U) = B := B(0, 1), Φ(∂U) = ∂B and Φ(∂U+) = Cδ

for some δ < 1/2, where ∂U+ := ∂U ∩ A+ and Cδ is as in the statement of Lemma 4.1. Note that the
Lipschitz constants of Φ and Φ−1 are bounded by Cr−1 and Cr where C is universal. Let R+ be the
skew symmetric matrix appearing in (4.16). Since u ∈ H1(∂U+;R2), we infer that the function x 7→
u◦Φ−1(x)−R+Φ−1(x) belongs to H1(Cδ;R2). Applying Lemma 4.1, we obtain a function h+ ∈ H1(B;R2)
such that h = u ◦ Φ−1 −R+Φ−1 on Cδ and

∫

B

|∇h+|2 dx ≤ C

∫

Cδ

∣

∣∂τ (u ◦ Φ−1 −R+Φ−1)
∣

∣

2
dH1,
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where C > 0 is a universal constant. Then, defining v+ := h+ ◦ Φ ∈ H1(U ;R2) and noticing that if
τ is a tangent vector to ∂B, then ∇Φ−1τ is a tangent vector to ∂U+ H1-a.e. in ∂U+, we infer that
v+(x) = u(x) −R+x for H1-a.e. x ∈ ∂U+ and

∫

U

|∇v+|2 dx ≤ Cr

∫

∂U∩A+

|∂τu− R+τ |2 dH1.

Arguing similarly for ∂U− := ∂U ∩A− leads to a function v− ∈ H1(U ;R2) such that v−(x) = u(x)−R−x
for H1-a.e. x ∈ ∂U− and

∫

U

|∇v−|2 dx ≤ Cr

∫

∂U∩A−

|∂τu−R−τ |2 dH1,

where R− is the skew-symmetric matrix appearing in (4.16).
Let K ′ ⊂ Ω be as in the statement. We construct a function v ∈ H1(Ω \K ′;R2) by setting

v(x) := v±(x) +R±x,

if x belongs to the connected component of U \K ′ containing D±(x0, r/5), and v := u otherwise.
Note that by construction v = u on ∂U \ Σ, and

∫

U\K′

|e(v)|2 dx ≤ Cr

∫

∂U\Σ
|∇u−R±|2 dH1.

Notice that K ∩∂U = K ′∩∂U by assumption, because K \U = K ′ \U and U is open. Thus, from (4.17)
it follows that

∫

U\K′

|e(v)|2 dx ≤ C

η6

∫

B(x0,r)\K
|e(u)|2 dx,

as required. �

4.3. Proof of Proposition 3.2. In Lemma 4.5 we have constructed the key displacement competitor
associated to a separating crack competitor, which will be employed to show the flatness estimate. The
construction of the crack competitor will be similar to that of Proposition 4.1, i.e. it will be obtained by
replacing K by a segment in some ball. The difference here will be in the error appearing in the density
estimate, which will depend only on ω(x0, r), and not anymore on β(x0, r).

Proposition 4.3. There exist ε′0 > 0 and C′ > 0 such that the following holds. Let (u,K) ∈ A(Ω) be a
minimizer of the Griffith functional, and let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω,

ωu(x0, r) + βK(x0, r) ≤ ε′0,

and K separates D±(x0, r) in B(x0, r). Then there exists s ∈ (r/40, r/5) such that K∩∂B(x0, s) = {z, z′},
for some z 6= z′, and

(4.18) H1(K ∩B(x0, s)) ≤ |z − z′| + C′rωu(x0, r)
1
7 .

Proof. We define

ε′0 := min

(

10−28,
ε0
5
,

10−2θ0
5C∗

,
1

5C∗

)

,

where ε0 > 0 is the universal constant of Lemma 4.3, θ0 > 0 is the Ahlfors regularity constant, and C∗ > 0
is the universal constant of Proposition 4.2. We notice that ω(x0, r/5) + β(x0, r/5) ≤ ε0 and that K still
separates D±(x0, r/5) in B(x0, r/5), since they are contained in two different connected components of
B(x0, r/5) \ {y ∈ R

2 : |(y − x0)2| > β(x0, r)r}. Thus, according to Lemma 4.3 applied in B(x0, r/5), we
can indeed find s ∈ (r/40, r/5) such that #(K ∩ ∂B(x0, s)) = 2, and we denote by z and z′ both points
of K ∩ ∂B(x0, s).

Let now η ∈ (0, 10−4) be fixed. Let U be the rectangle, satisfying B(x0, r/5) ⊂ U ⊂ B(x0, r), and Σ
be the wall set, satisfying K ∩ ∂U ⊂ Σ ⊂ ∂U and H1(Σ) ≤ 120ηr, given by Lemma 4.5 in B(x0, r) for
η ∈ (0, 10−4) fixed above.

Consider the set

K ′ := [z, z′] ∪ (K \B(x0, s)).
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By construction K ′ \ U = K \ U and D±(x0, r/5) are contained in different connected components of
U \K ′. Then, Lemma 4.5 provides a function v ∈ H1(Ω \K ′;R2) which coincides with u on (Ω \ U) \ Σ
and satisfies (4.15). The pair (v,K ′′), with

K ′′ := K ′ ∪ Σ,

is thus a competitor for (u,K), and by minimality of (u,K) we have that
∫

B(x0,r)\K
Ae(u) : e(u) dx+ H1(K ∩B(x0, r)) ≤

∫

B(x0,r)\K′′

Ae(v) : e(v) dx + H1(K ′′ ∩B(x0, r)).

Since u = v outside of U and K ′′ ∩ ∂B(x0, r) = K ∩ ∂B(x0, r), we deduce by (4.15) that

H1(K ∩B(x0, r)) ≤ H1(K ′′ ∩B(x0, r)) +
C

η6
rω(x0, r)

≤ H1(K ∩B(x0, r) \B(x0, s)) + |z − z′| + H1(Σ) +
C

η6
rω(x0, r).

Since H1(Σ) ≤ 120ηr we get that

H1(K ∩B(x0, s)) ≤ |z − z′| + 120ηr +
C

η6
rω(x0, r).

Finally, we use that η > 0 was assumed to be arbitrary in the interval (0, 10−4). Since ω(x0, r) ≤ 10−28

by assumption, we can choose η = ω(x0, r)
1
7 ≤ 10−4, so that

H1(K ∩B(x0, s)) ≤ |z − z′| + Crω(x0, r)
1
7 ,

as required. �

We are now ready to prove the main flatness estimate.

Proof of Proposition 3.2. Let us define

(4.19) ε1 = min

{

ε′0,

(

min(1, θ0)

400C′

)7
}

,

where ε′0 > 0 is the threshold of Proposition 4.3 and C′ > 0 is the universal constant in (4.18). By
Proposition 4.3, we know that there exists s ∈ (r/40, r/5) such that K ∩ ∂B(x0, s) = {z, z′}, for some
z 6= z′, and

(4.20) H1(K ∩B(x0, s)) ≤ |z − z′| + C′rω(x0, r)
1
7 .

Notice that

max{|(z − x0)2|, |(z′ − x0)2|} ≤ 40ε′0r,

since β(x0, s) ≤ 40ε′0, and that

(4.21) H1(K ∩B(x0, s)) ≤ 2r + C′rω(x0, r)
1
7 ≤ 3r,

because C′ω(x0, r)
1
7 ≤ 1 by (4.19). Let L be the line passing through x0 which is parallel to the segment

[z, z′].

Step 1. We first prove that

(4.22) sup
y∈K∩B(x0,r/50)

dist(y, L) ≤ C′′rω(x0, r)
1
14 ,

where C′′ > 0 only depends on θ0 > 0.
Since K ∩ B(x0, s) separates D±(x0, s) in B(x0, s), by Lemma 3.2 there exists an injective Lipschitz

curve Γ ⊂ K ∩B(x0, s) joining z and z′. Being H1(Γ) ≥ |z − z′|, according to estimate (4.20) we have

(4.23) H1(K ∩B(x0, s) \ Γ) ≤ H1(K ∩B(x0, s)) −H1(Γ) ≤ C′rω(x0, r)
1
7 .
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We claim that for all y ∈ K ∩B(x0, r/50),

(4.24) dist(y,Γ) ≤ 2C′

θ0
rω(x0, r)

1
7 .

Indeed, assume by contradiction that there exists y0 ∈ K ∩ B(x0, r/50) such that dist(y0,Γ) > δr, with

δ = 2C′

θ0
rω(x0, r)

1
7 . According to condition (4.19) we have that δ < 1

200 , so that

B(y0, δr) ⊂ B(x0, r/40) \ Γ ⊂ B(x0, s) \ Γ.

By Ahlfors regularity of K,

H1(K ∩B(x0, s) \ Γ) ≥ H1(K ∩B(y0, δr)) ≥ θ0δr = 2C′ω(x0, r)
1
7 r,

which is in contradiction with (4.23) and establishes the validity of the claim (4.24).
Now, an application of Lemma 6.3 ensures that for all w ∈ Γ

dist(w, [z, z′])2 ≤ H1(Γ)
(

H1(Γ) − |z′ − z|
)

≤ H1(K ∩B(x0, s))
(

H1(K ∩B(x0, s)) − |z′ − z|
)

≤ 3C′r2ω(x0, r)
1
7 ,(4.25)

by (4.21) and (4.20).
According to (4.24), (4.25), and the triangle inequality, we infer that for all y ∈ K ∩B(x0, r/50)

(4.26) dist(y, [z, z′]) ≤
√

3C′rω(x0, r)
1
14 +

2C′

θ0
rω(x0, r)

1
7 ≤ C̃′rω(x0, r)

1
14 ,

with C̃′ > 0 depending on θ0, where we used that ω(x0, r) ≤ 1 to estimate ω(x0, r)
1
7 ≤ ω(x0, r)

1
14 . Finally,

if L denotes the line passing through x0 which is parallel to the segment [z, z′], we deduce that (4.22)
holds by the triangle inequality and (4.26) applied to x0 ∈ L ∩K ∩B(x0, r/50).

Step 2. We now prove that

(4.27) sup
x∈L∩B(x0,r/50)

dist(x,K) ≤ C′′′rω(x0, r)
1
14 ,

where C′′′ > 0 possibly depends on θ0. For this purpose, we recall that K separates D±(x0, r) in B(x0, r),
thus in particular, for every x ∈ L ∩ B(x0, r/50), the orthogonal line to L passing through x meets a

point y ∈ K. If y ∈ B(x0, r/50), then by Step 1 we know that |x− y| ≤ C′′ω(x0, r)
1
14 r, and then

dist(x,K) ≤ C′′rω(x0, r)
1
14 .

Now, if y 6∈ B(x0, r/50), this is only possible for x very close to ∂B(x0, r/50), because K ∩ B(x0, r) is

contained in a strip around L of height C′′rω(x0, r)
1
14 , which is small. More precisely, one sees using

Pythagoras Theorem that the second case occurs only for points x ∈ L satisfying

dist(x, ∂B(x0, r/50)) ≤ r

50
−
(

( r

50

)2

−
(

C′′rω(x0, r)
1
14

)2
)

1
2

≤ rMC′′ω(x0, r)
1
14 ,

where M > 0 is a universal constant obtained from the elementary inequality

1

50
−
(

(

1

50

)2

− t2

)
1
2

≤Mt for all 0 < t < 10−3,

which results from the mean value theorem. By the triangle inequality we then obtain

dist(x,K) ≤ (M + 1)C′′rω(x0, r)
1
14 .

Gathering (4.22) and (4.27), and using (3.4), we deduce that β(x0, r/50) ≤ C1rω(x0, r)
1
14 for some

constant C1 > 0 depending on θ0, which concludes the proof of the proposition. �
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5. Proof of the normalized energy decay

In this section we prove a decay estimate for the normalized energy of a Griffith minimizer. The
strategy is based upon a compactness argument and a Γ-convergence type analysis where one shows the
stability of the Neumann problem in planar elasticity along a sequence of sets Kn which converge in
the Hausdorff sense to a diameter within a ball. It gives an alternative approach even for the scalar
case (albeit only 2-dimensional and under topological conditions) to the corresponding decay estimates
of the normalized energy in the standard proofs of regularity for the Mumford-Shah minimizers ([4], [29,
Theorem 1.10]).

We will start establishing some auxiliary results on the Airy function.

5.1. The Airy function. We state here a general result concerning the existence of the Airy function
associated to a minimizer of the Griffith energy. It follows a construction similar to that in [6, Propo-
sition 4.3], itself inspired by that introduced in [9]. The Airy function will be useful in order to get
compactness results along a sequence of minimizers. The main difference with the situation in [6] is that
now K is not assumed to be connected. The proofs are very similar to those of [6], and for that reason
we do not write all the arguments but only point out the main changes with respect to the original proof.

First we recall the following result coming from De Rham’s Theorem and proved in [6, Lemma 4.1]
in the case where Ω is a ball. The extension to a general bounded open set with Lipschitz boundary is
straightforward, since the only property used in that proof is the existence of traces of Sobolev functions
on the boundary.

Lemma 5.1. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary and let L ⊂ Ω be a closed set.
Let us consider the following subspaces of L2(Ω;R2)

XL := {σ ∈ C∞(Ω;R2) : supp(σ) ∩ L = ∅, divσ = 0 in Ω},
YL := {∇v : v ∈ H1(Ω \ L) , v = 0 on ∂Ω \ L}.

Then XL = Y ⊥
L in L2(Ω;R2).

From the previous Lemma, one can construct the “harmonic conjugate” v associated to a minimizer
(u,K) of the Griffith functional. The proof follows the lines of that in [6, Proposition 4.2]. The main
difference with [6] is that, here, the singular set K is not assumed to be connected. This implies that it
is not in general possible to conclude that v vanishes on the full crack K. However, the following proof
makes it possible to ensure that, in some suitable weak sense, v is constant in each connected component
of K, but the constants might depend on the associated connected component. This is the reason why we
renormalize the harmonic conjugate v to vanish only on an arbitrary connected component of the crack
of positive length.

Proposition 5.1 (Harmonic conjugate). Let Ω ⊂ R2 be a bounded and simply connected open set with
Lipschitz boundary, and let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional. Then, for every
connected component L of K with H1(L) > 0, there exists a function v ∈ H1

0,L(Ω;R2) ∩ C∞(Ω \K;R2)
such that

(5.1) σ := Ae(u) =

(

−∂2v1 ∂1v1
−∂2v2 ∂1v2

)

a.e. in Ω.

Proof. Let L be a connected component of K with H1(L) > 0. According to the variational formulation
(2.5) and the fact that σ(x) ∈ M2×2

sym for a.e. x ∈ Ω \K, for any v ∈ H1(Ω \K;R2) with v = 0 on ∂Ω \K,
we have

∫

Ω

σ : ∇v dx = 0.

This is a fortiori true for any v ∈ H1(Ω \ L;R2) with v = 0 on ∂Ω \ L. Consequently, both lines of σ,
denoted by

σ(1) :=

(

σ11
σ12

)

, σ(2) :=

(

σ12
σ22

)

,
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belong to Y ⊥
L . Lemma 5.1 ensures the existence of a sequence (σ

(1)
n ) ⊂ XL such that σ

(1)
n → σ(1) in

L2(Ω;R2). Since div σ
(1)
n = 0 in Ω, Ω is simply connected and supp(σ

(1)
n ) ∩ L = ∅, it follows that

σ(1)
n = ∇⊥p(2)n :=

(

−∂2p(2)n

∂1p
(2)
n

)

,

for some p
(2)
n ∈ C∞(Ω) with supp(∇p(2)n ) ∩ L = ∅. Since L is connected, we can assume, up to add

a constant, that p
(2)
n = 0 on L. Consequently, since H1(L) > 0, Poincaré’s inequality implies that

p
(2)
n → p(2) in H1(Ω) for some p(2) ∈ H1

0,L(Ω) satisfying σ(1) = ∇⊥p(2). We prove similarly the existence

of p(1) ∈ H1
0,L(Ω) satisfying σ(2) = −∇⊥p(1). We then define

v :=

(

p(2)

−p(1)
)

∈ H1
0,L(Ω;R2)

which satisfies (5.1). Finally, since σ ∈ C∞(Ω \K;M2×2
sym), then v ∈ C∞(Ω \K;R2). �

We next construct the Airy function w associated to the displacement u in Ω following an approach
similar to [6, 9], but once more with the difference that, here, K is no more assumed to be connected.

Proposition 5.2 (Airy function). Let Ω ⊂ R
2 be a bounded and simply connected open set with Lipschitz

boundary, and let (u,K) ∈ A(Ω) be a minimizer of the Griffith functional. If L is a connected component
of K such that H1(L) > 0, then there exists a function w ∈ H2(Ω) ∩H1

0,L(Ω) such that

(5.2) ∆2w = 0 in D′(Ω \K)

and

(5.3) σ =

(

∂22w −∂12w
−∂12w ∂11w

)

a.e. in Ω.

In addition, if A ⊂ R2 is an open set with A ⊂ Ω, then w ∈ H2
0,L(A).

Proof. Proposition 5.1 ensures the existence of p(1) and p(2) ∈ H1
0,L(Ω) such that

σ(1) = ∇⊥p(2), σ(2) = −∇⊥p(1) a.e. in Ω.

Since p(1) = p(2) = 0 on L, arguing as in [6, Proposition 4.3], it follows that
(

−p(2)
p(1)

)

∈ Y ⊥
L = XL,

owing again to Lemma 5.1. Next, arguing as in the proof of Proposition 5.1, we deduce the existence of
a function w ∈ H1

0,L(Ω) such that

∇w =

(

p(1)

p(2)

)

∈ L2(Ω;R2).

By construction, the Airy function w satisfies (5.3) and, arguing as in [6, Proposition 4.3], it also satisfies
(5.2).

It remains to show that if A ⊂ R2 is an open set with A ⊂ Ω, then w ∈ H2
0,L(A). We first note

that w ∈ H1
0,L(Ω) ∩ H2(Ω) with ∇w ∈ H1

0,L(Ω;R2). In particular, since w ∈ H2(Ω), it has a (Hölder)
continuous representative, still denoted w, so that it makes sense to consider its pointwise values.

Since A \L is not smooth, in order to show that w ∈ H2
0,L(A), we will use a capacity argument similar

to that used in [6, Proposition 4.3] and in [9, Theorem 1].
Let us consider a cut-off function η ∈ C∞

c (Ω; [0, 1]) satisfying η = 0 on ∂Ω and η = 1 on A. Denoting
by z := ηw, then z ∈ H2(Ω) ∩H1

0 (Ω \ L) and ∇z ∈ H1
0 (Ω \ L;R2).

By [1, Theorem 9.1.3], z ∈ H2
0 (Ω \ L) if a Cap2,2-quasicontinuous representative of z vanishes on

∂(Ω \L) Cap2,2 q.e., and a Cap1,2-quasicontinuous representative of ∇z vanishes on ∂(Ω \L) Cap1,2 q.e..

Since ∇z ∈ H1
0 (Ω \ L), the second property is a consequence of [27, Theorem 3.3.42]. As for the first

property, since z is continuous, it coincides with its Cap2,2-quasicontinuous representative. Moreover,
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since the empty set is the only set of zero Cap2,2-capacity, we are reduced to show that z = 0 everywhere on
∂(Ω\L). Let F := {x ∈ ∂(Ω\L) : z(x) = 0}. Then, F is a compact set satisfying Cap1,2(∂(Ω\L)\F ) = 0,

being z ∈ H1
0 (Ω\L). LetG be a connected component of ∂(Ω\L)\F . Since a compact and connected set of

positive diameter has a positive Cap1,2-capacity (see [27, Corollary 3.3.25]), we deduce that diam(G) = 0,
so that G is (at most) a singleton. Moreover, F being compact, its complementary ∂(Ω\L)\F is open in
the relative topology of ∂(Ω\L), and thus G is (at most) an isolated point. Finally, since ∂(Ω\L) = ∂Ω∪L,
being L ⊂ Ω closed and H1(L) < +∞, and since neither ∂Ω or L have isolated points, we have G = ∅,
and thus z = 0 on ∂(Ω \ L).

As a consequence of [1, Theorem 9.1.3], we conclude that z ∈ H2
0 (Ω \ L), or in other words, that

there exists a sequence (zn) ⊂ C∞
c (Ω \ L) such that zn → z = ηw in H2(Ω \ L). Note in particular that

zn ∈ C∞(A) and that zn vanishes in a neighborhood of L ∩ A. Therefore, since z = w and ∇z = ∇w in
A, we deduce that w ∈ H2

0,L(A). �

Remark 5.1. If Γ ⊂ K∩Ω is a connected component of K∩Ω, then there exists a connected component
L of K such that Γ ⊂ L. If we consider the Airy function given by Proposition 5.2 associated with this
component L, then for all A ⊂ R2 open with A ⊂ Ω we have that w ∈ H2

0,Γ(A) because H2
0,L(A) ⊂

H2
0,Γ(A).

5.2. Proof of Proposition 3.3. We argue by contradiction by assuming that the statement of the
proposition is false. Then, there exists τ0 > 0 such that for every n ∈ N, one can find a minimizer
(ûn, K̂n) ∈ A(Ω) of the Griffith functional (with the same Dirichlet boundary data ψ), an isolated

connected component Γ̂n of K̂n ∩ Ω, points xn ∈ Γ̂n, radii rn > 0 with B(xn, rn) ⊂ Ω such that

K̂n ∩B(xn, rn) = Γ̂n ∩B(xn, rn), βK̂n
(xn, rn) → 0,

and

ωûn (xn, arn) > τ0 ωûn(xn, rn),

for some a ∈ (0, 1) (to be fixed later).

Rescaling and compactness. In order to prove compactness properties on the sequences of sets and
displacements, we need to rescale them into a unit configuration. For simplicity, from now on, we denote
by B := B(0, 1). Let us first rescale the sets K̂n and Γ̂n by setting, for all n ∈ N,

Kn :=
K̂n − xn

rn
, Γn :=

Γ̂n − xn
rn

.

Let L̂n := L(xn, rn) be an affine line such that

dH(L̂n ∩B(xn, rn), K̂n ∩B(xn, rn)) ≤ rnβK̂n
(xn, rn),

and Ln := L̂n−xn

rn
its rescaling. Up to a subsequence, and up to a change of orthonormal basis, we can

assume that Ln ∩B → T ∩B in the sense of Hausdorff, where T := Re1. Then, since

dH(Ln ∩B,Kn ∩B) =
1

rn
dH(L̂n ∩B(xn, rn), K̂n ∩B(xn, rn)) ≤ βK̂n

(xn, rn) → 0,

we deduce that Γn ∩B = Kn ∩B → T ∩B in the sense of Hausdorff.
We next rescale the displacements ûn by setting, for all n ∈ N and a.e. y ∈ B,

un(y) :=
ûn(xn + rny)
√

ωûn(xn, rn)rn
.

Then, we have

(5.4)

∫

B\Kn

Ae(un) : e(un) dx = 1,

(5.5) ωun (0, a) > τ0.
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Note that un ∈ LD(B \Kn) is a solution of

inf

{

∫

B\Kn

Ae(z) : e(z) dx : z ∈ LD(B \Kn), z = un on ∂B \Kn

}

,

and in particular,

(5.6)

∫

B\Kn

Ae(un) : e(un) dx ≤
∫

B\Kn

Ae(un + ϕ) : e(un + ϕ) dx

for all ϕ ∈ LD(B \Kn) with ϕ = 0 on ∂B \Kn.
According to the energy bound (5.4), up to a subsequence, we have

e(un)1B\Kn
⇀ e weakly in L2(B;M2×2

sym)

for some e ∈ L2(B;M2×2
sym). We next show that e is the symmetrized gradient of some displacement. To

this aim, we consider, for any 0 < δ < 1/10, the Lipschitz domain

Aδ := {x ∈ B : dist(x, T ) > δ} = A+
δ ∪ A−

δ ,

where A±
δ are both connected components of Aδ. Note that for such δ, D± := B

(

(0,± 3
4 ), 14 )

)

⊂ A±
δ and

Kn ∩ Uδ = ∅ for n large enough (depending on δ). Denoting by

r±n (x) :=
1

|D±|

∫

D±

un(y) dy +

(

1

|D±|

∫

D±

∇un(y) −∇un(y)T

2
dy

)(

x− 1

|D±|

∫

D±

y dy

)

,

the rigid body motion associated to un in D±, by virtue of the Poincaré-Korn inequality [2, Theorem 5.2
and Example 5.3], we get that

‖un − r±n ‖H1(A±

δ ;R2) ≤ cδ‖e(un)‖L2(A±

δ ;M2×2
sym),

for some constant cδ > 0 depending on δ. Thanks to a diagonalisation argument, for a further subsequence
(not relabeled), we obtain a function v ∈ LD(B \ T ) such that un − r±n ⇀ v weakly in H1(A±

δ ;R2), for
any 0 < δ < 1/10. Necessarily we must have that e = e(v) and thus,

e(un)1B\Kn
⇀ e(v) weakly in L2(B;M2×2

sym).

Minimality. We next show that v satisfies the minimality property
∫

B\T
Ae(v) : e(v) dx ≤

∫

B\T
Ae(v + ϕ) : e(v + ϕ) dx

for all ϕ ∈ LD(B \ T ) such that ϕ = 0 on ∂B \ T . According to [9, Theorem 1], it is enough to consider
competitors ϕ ∈ H1(B \ T ;R2) such that ϕ = 0 on ∂B \ T .

For a given arbitrary competitor ϕ ∈ H1(B \ T ;R2) such that ϕ = 0 on ∂B \ T , we construct a
sequence of competitors for the minimisation problems (5.6) using a jump transfert type argument (see
[22] and [6]). To this aim, we denote by C±

n the connected component of B \Kn which contains the point
(0,±1/2), and we define ϕn as follows

• ϕn(x1, x2) = ϕ(x1, x2) if (x1, x2) ∈ [C+
n ∩ {x2 ≥ 0}] ∪ [C−

n ∩ {x2 ≤ 0}];
• ϕn(x1, x2) = ϕ(x1,−x2) if (x1, x2) ∈ [C+

n ∩ {x2 < 0}] ∪ [C−
n ∩ {x2 > 0}];

• ϕn(x1, x2) = 0 otherwise.

Then, one can check that ϕn ∈ H1(B \ Kn;R2) and ϕn = 0 on ∂B \ Kn. Moreover, ϕn → ϕ strongly
in L2(B;R2) and e(ϕn)1B\Kn

→ e(ϕ) strongly in L2(B;M2×2
sym). Therefore, thanks to the minimality

property satisfied by un, we infer that
∫

B\Kn

Ae(un) : e(un) dx ≤
∫

B\Kn

Ae(un + ϕn) : e(un + ϕn) dx,

which implies, by expanding the squares, that

0 ≤ 2

∫

B\Kn

Ae(un) : e(ϕn) dx+

∫

B\Kn

Ae(ϕn) : e(ϕn) dx.
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Using that e(ϕn)1B\Kn
→ e(ϕ) strongly in L2(B;M2×2

sym) and e(un)1B\Kn
⇀ e(v) weakly in L2(B;M2×2

sym),
we can pass to the limit as n→ +∞ to get that

0 ≤ 2

∫

B\T
Ae(v) : e(ϕ) dx+

∫

B\T
Ae(ϕ) : e(ϕ) dx,

or still
∫

B\T
Ae(v) : e(v) dx ≤

∫

B\T
Ae(v + ϕ) : e(v + ϕ) dx.

As a consequence, v is a smooth function in B\T . Moreover, due to the Korn inequality in both connected
components of B \ T (which are Lipschitz domains), we get that v ∈ H1(B \ T ;R2).

Convergence of the elastic energy. In order to pass to the limit in inequality (5.5), we need to show
the convergence of the elastic energy, or in other words, the strong convergence of the sequence of elastic
strains (e(un))n∈N. This will be achieved by using Proposition 5.2 which provides an Airy function ŵn

associated to the displacement ûn, satisfying ŵn ∈ H2(Ω)∩H1
0,Γ̂n

(Ω)∩H2
0,Γ̂n

(A) for all open set A ⊂ R2

with A ⊂ Ω, (see also Remark 5.1) such that

∆2ŵn = 0 in Ω \ K̂n,

and

Ae(ûn) =

(

∂22ŵn −∂12ŵn

−∂12ŵn ∂11ŵn

)

in Ω.

Since K̂n ∩ B(xn, rn) = Γ̂n ∩ B(xn, rn) and B(xn, rn) ⊂ Ω, we infer that ŵn ∈ H2
0,K̂n

(B(xn, rn)). We

rescale the Airy function ŵn by setting, for all n ∈ N and a.e. y ∈ B,

wn(y) :=
ŵn(xn + rny)
√

ωûn(xn, rn)rn

in such a way thatwn ∈ H2
0,Kn

(B),

∆2wn = 0 in B \Kn,

and

Ae(un) =

(

∂22wn −∂12wn

−∂12wn ∂11wn

)

.

In addition, since
∫

B

|D2wn|2 dx =

∫

B

|Ae(un)|2 dx ≤ C

∫

B

|e(un)|2 dx ≤ C,

then Poincaré’s inequality ensures that the sequence (wn)n∈N is bounded in H2(B), and thus, up to a
subsequence wn ⇀ w weakly in H2(B), for some w ∈ H2(B). A similar capacity argument than that
used in the proof of [6, Proposition 6.1] shows that w ∈ H2

0,T (B(0, r)) for all r < 1, and

∆2w = 0 in B \ T,
and

(5.7) Ae(u) =

(

∂22w −∂12w
−∂12w ∂11w

)

.

In addition, using that the biharmonicity of wn is equivalent to the minimality
∫

B

|D2wn|2 dx ≤
∫

B

|D2z|2 dx

for all z ∈ wn + H2
0,Kn

(B), we can again reproduce the proof of [6, Proposition 6.1] to get that wn → w

strongly in H2(B(0, r)) for all r < 1. In particular, it implies that e(un)1B\Kn
→ e(v) strongly in

L2(B(0, r);M2×2
sym), and thus passing to the limit in inequalities (5.4) and (5.5) yields

(5.8) ωv(0, 1) ≤ 1 and ωv (0, a) ≥ τ0.

31



According to inequality (5.8), we infer that

either
1

a

∫

B(0,a)∩{x2>0}
Ae(v) : e(v) dx ≥ τ0

2
or

1

a

∫

B(0,a)∩{x2<0}
Ae(v) : e(v) dx ≥ τ0

2
.

Without loss of generality, we assume that

(5.9)
1

a

∫

B(0,a)∩{x2>0}
Ae(v) : e(v) dx ≥ τ0

2
.

Decay of the elastic energy. We finally want to show a decay estimate on the elastic energy which
will give a contradiction to (5.9). To this aim, denoting by B± = B ∩ {±x2 > 0}, we will work on the
Airy function w to construct an extension of v|B+ on B which still solves the elasticity system in B.
According to (formula (3.28) in) [34] (see also [21]), since w ∈ C∞(B+) is a solution of

∆2w = 0 in B+, w = 0,∇w = 0 on B ∩ {x2 = 0},
we can consider the biharmonic reflexion w̃ ∈ C∞(B) of w|B+ in B defined by

w̃(x) =

{

w(x) if x ∈ B+,

−w(x1,−x2) − 2x2∂2w(x1,−x2) − x22∆w(x1,−x2) if x ∈ B−,

which satisfies ∆2w̃ = 0 in B. Thanks to this biharmonic extension, we are going to extend the displace-
ment v|B+ on the whole ball B into a function ṽ which minimizes the elastic energy. To this aim, let us
define the stress by

σ̃ :=

(

∂22w̃ −∂12w̃
−∂12w̃ ∂11w̃

)

,

and the strain

ẽ :=

(

ẽ11 ẽ12
ẽ12 ẽ22

)

:= A−1σ̃,

with

ẽ11 =
σ̃11
E

− ν

E
σ̃22, ẽ22 =

σ̃22
E

− ν

E
σ̃11 ẽ12 =

1 + ν

E
σ̃12.

Note that divσ̃ = 0 in B, and the compatibility condition

∂22ẽ11 + ∂11ẽ22 − 2∂12ẽ12 = 0 in B

ensures the existence of some ṽ ∈ C∞(B;R2) such that ẽ = e(ṽ) in B. In particular, according to (5.7),
we have

Ae(v) =

(

∂22w −∂12w
−∂12w ∂11w

)

=

(

∂22w̃ −∂12w̃
−∂12w̃ ∂11w̃

)

= Ae(ṽ) in B+,

which shows that e(ṽ) = e(v) in B+, and thus that v and ṽ only differ from a rigid body motion in B+.
We have thus constructed an extension ṽ of v|B+ which satisfies −div(Ae(ṽ)) = 0 in B, or equivalently,

∫

B

Ae(ṽ) : e(ṽ) dx ≤
∫

B

Ae(ṽ + ϕ) : e(ṽ + ϕ) dx

for all ϕ ∈ LD(B) such that v = 0 on ∂B.

According to (5.9), we have that

(5.10)
1

a

∫

B(0,a)

Ae(ṽ) : e(ṽ) dx ≥ τ0
2
.

Moreover, by standards decay energy estimates for elliptic systems (see e.g. [15, Proposition 3.4]), we
infer that for all γ ∈ (0, 2), there exists a constant cγ = c(γ,A) > 0 such that for all r ≤ 1,

∫

B(0,r)

Ae(ṽ) : e(ṽ) dx ≤ cγr
2−γ

∫

B

Ae(ṽ) : e(ṽ) dx ≤ cγr
2−γ ,
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where the last inequality comes from (5.8), possibly changing cγ . Taking γ = 1/2 and r = a yields

1

a

∫

B(0,a)

Ae(ṽ) : e(ṽ) dx ≤ c1/2a
1/2,

which is against (5.10) provided we choose a < ( τ0
2c1/2

)2. ✷

6. Appendix

The following lemma is an easy consequence of the coarea formula.

Lemma 6.1. Let K ⊂ R
2 be a H1-rectifiable set. Then for all 0 < s < r and x0 ∈ R

2 we have

(6.1)

∫ r

s

#(K ∩ ∂B(x0, t)) dt ≤ H1(K ∩B(x0, r) \B(x0, s)).

Proof. Applying the coarea formula [4, Theorem 2.91] to the H1-rectifiable set E := K∩B(x0, r)\B(x, s)
and the Lipschitz function f : x 7→ |x| yields

∫ r

s

#(K ∩ ∂B(x0, t)) dt =

∫

R

H0(E ∩ f−1(t)) dt =

∫

E

JdEf dH1,

where, H1-a.e. in E, JdEf denotes the 1-dimensional coarea factor associated to the tangential differential
dfE . Since E admits an approximate tangent line oriented by a unit vector τ at H1-a.e. points, we deduce
that

JdEfx =

∣

∣

∣

∣

x

|x| · τ
∣

∣

∣

∣

≤ 1 H1-a.e. in E,

which leads to (6.1). �

We next recall a version of the Korn inequality in a rectangle.

Lemma 6.2 (Korn’s constant in a rectangle). For h ∈ (0, 1), let Ωh := (−1, 1) × (−h, h) be a rectangle
in R2 of height 2h. There exists a constant C > 0 (independent of h) such that for all u ∈ LD(Ωh) one
can find a skew symmetric matrix Rh for which the following Korn inequality holds:

∫

Ωh

|∇u− Rh|2 dx ≤ C

h4

∫

Ωh

|e(u)|2 dx.

Proof. For u ∈ LD(Ωh) we define the function v ∈ LD(Ω1) by
{

v1(x1, x2) := u1(x1, hx2)

v2(x1, x2) := hu2(x1, hx2)
for a.e. x = (x1, x2) ∈ Ω1.

We note that

∇v(x1, x2) =

(

∂1u1 h∂2u1
h∂1u2 h2∂2u2

)

(x1, hx2),

so that

e(v)(x1, x2) =

(

e11(u) he12(u)
he21(u) h2e22(u)

)

(x1, hx2).

Applying Korn’s inequality to v in Ω1 yields
∫

Ω1

|∇v −R|2 dx ≤ C

∫

Ω1

|e(v)|2 dx,

for some skew symmetric matrix R, and where C > 0 is the Korn constant in the unit cube. In view of
the above computations and using that h ∈ (0, 1), we deduce that

|e(v)(x1, x2)|2 ≤ |e(u)(x1, hx2)|2,
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while using that R11 = R22 = 0 and R12 = −R21 we get

|∇v(x1, x2) −R|2
=
(

|∂1u1|2 + |h∂1u2 +R12|2 + |h∂2u1 −R12|2 + h4|∂2u2|2
)

(x1, hx2)

=
(

|∂1u1|2 + h2|∂1u2 + h−1R12|2 + h2|∂2u1 − h−1R12|2 + h4|∂2u2|2
)

(x1, hx2)

≥ h4|∇u(x1, hx2) −Rh|2,
where

Rh := h−1R =





0 h−1R12

−h−1R12 0





is still a skew symmetric matrix. We then obtain that

h4
∫

Ω1

|∇u(x1, hx2) −Rh|2 dx ≤ C

∫

Ω1

|e(u)(x1, hx2)|2 dx.

Finally, using the change of variables (y1, y2) = (x1, hx2) we get

h4
∫

Ωh

|∇u −Rh|2 dy ≤ C

∫

Ωh

|e(u)|2 dy,

which completes the proof of the Lemma. �

The next lemma is a standard flatness estimate on curves coming from Pythagoras Theorem.

Lemma 6.3. Let γ : [0, 1] → R2 be a curve with endpoints z = γ(0) and z′ = γ(1), with image
Γ := γ([0, 1]). Then

(6.2) dist(y, [z, z′])2 ≤ H1(Γ)
(

H1(Γ) − |z′ − z|
)

2
for all y ∈ Γ.

Proof. Let ȳ be a maximizer of the function y ∈ Γ 7→ dist(y, [z, z′]), i.e., ȳ is the most distant point in Γ
to the segment [z, z′], and define d =: dist(ȳ, [z, z′]). Let us consider the point y′ ∈ R2 making (z, z′, y′)
an isosceles triangle with same height d (See Figure 5). Denoting by a := |z − z′|/2 and L := |y′ − z|,
according to Pythagoras Theorem, we have

d2 = L2 − a2 = (L− a)(L + a).

b

b

z = γ(0)

Γ

d

ȳ

y′

a

z′ = γ(1)

b

b

L

Figure 5. The height estimate from Pythagoras Theorem.

Thus H1(Γ) ≥ |z − ȳ| + |ȳ − z′| ≥ 2L and H1(Γ) ≥ |z − z′| so that

d2 ≤ 1

4

(

H1(Γ) − |z − z′|
) (

H1(Γ) + |z − z′|
)

≤ H1(Γ)
(

H1(Γ) − |z − z′|
)

2
,

which proves (6.2). �
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We conclude the appendix with the following standard Lemma (see for instance [18, proof of Corollary
33.50], [20, proof of Theorem 5.5.], [19, Section 10] for a non-exhaustive list of similar results). Unfortu-
nately, we could not find a precise reference in the exact following elementary form, thus we provide an
independent and complete proof for the reader’s convenience.

Lemma 6.4. Let K ⊂ R2 be a closed set containing the origin and satisfying the following propery: there
exist constants C > 0, r0 > 0 and α > 0 such that

βK(x, r) ≤ Crα for all x ∈ K ∩B(0, 1) and all r ≤ r0.

Then there exists a ∈ (0, 1) (only depending on C, r0, and α) such that K ∩ B(0, a) is a 10−2-Lipschitz
graph, as well as a C1,α regular curve.

Proof. For every x ∈ K ∩ B(0, 1) and 0 < r ≤ r0, we denote as usual by L(x, r) an affine line which
approximates K ∩B(x, r), i.e. such that

(6.3) max
{

sup
z∈K∩B(x,r)

dist(z, L(x, r)), sup
z∈L(x,r)∩B(x,r)

dist(z,K)
}

≤ β(x, r)r ≤ Cr1+α.

In addition, we denote by τ(x, r) ∈ S
1/{±1} a non-oriented unit vector which is tangent to L(x, r) and

defined modulo ±1. We use in S1/{±1} the complete distance defined, for all τ1, τ2 ∈ S1/{±1}, by

dS(τ1, τ2) := min(|τ1 − τ2|, |τ1 + τ2|).

Step 1. Existence of tangents. For all k ∈ N we denote by rk := 2−kr0. We claim that the sequence
(τ(x, rk))k∈N is a Cauchy sequence in (S1/{±1}, dS). For that purpose, we show that for all k ≥ 0, and
all x ∈ K ∩B(0, 1) we have

dS
(

τ(x, rk+1), τ(x, rk)
)

≤ 9Crαk .

Indeed, let z := x + τ(x, rk+1)rk+1 ∈ L(x, rk+1) ∩ B(x, rk+1). Because of (6.3), there exists y ∈ K ∩
B(x, rk+1) such that |z − y| ≤ Cr1+α

k+1 and in particular,

(6.4) rk+1 − Cr1+α
k+1 ≤ |y − x| ≤ rk+1.

Then, if we denote by v := y−x
|y−x| , we have that

dS
(

v, τ(x, rk+1)
)

≤ |v − τ(x, rk+1)| =

∣

∣

∣

∣

y − x

|y − x| −
z − x

rk+1

∣

∣

∣

∣

≤
∣

∣

∣

∣

y − x

|y − x| −
y − x

rk+1

∣

∣

∣

∣

+
1

rk+1
|z − y|

≤ |rk+1 − |y − x||
rk+1

+ Crαk+1

≤ 2Crαk+1,(6.5)

where we used (6.4) to get the last inequality. Similarly, since y ∈ B(x, rk+1) ∩K ⊂ B(x, rk) ∩K, there
exists z′ ∈ L(x, rk) ∩B(x, rk) such that |y − z′| ≤ Cr1+α

k . By (6.4) again we can estimate

|z′ − x| ≤ |y − x| + |z′ − y| ≤ rk+1 + Cr1+α
k

and
|z′ − x| ≥ |y − x| − |z′ − y| ≥ rk+1 − Cr1+α

k+1 − Cr1+α
k ≥ rk+1 − 2Cr1+α

k ,

thus a computation similar to the one of (6.5) leads to

dS
(

v, τ(x, rk)
)

≤
∣

∣

∣

∣

v − z′ − x

|z′ − x|

∣

∣

∣

∣

=

∣

∣

∣

∣

y − x

|y − x| −
z′ − x

|z′ − x|

∣

∣

∣

∣

≤
∣

∣

∣

∣

y − x

|y − x| −
y − x

rk+1

∣

∣

∣

∣

+

∣

∣

∣

∣

y − x

rk+1
− z′ − x

rk+1

∣

∣

∣

∣

+

∣

∣

∣

∣

z′ − x

|z′ − x| −
z′ − x

rk+1

∣

∣

∣

∣

.

≤ Crαk+1 + C
r1+α
k

rk+1
+ 2C

r1+α
k

rk+1
≤ 7Crαk .(6.6)
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Gathering both the above inequalities, we obtain

dS(τ(x, rk), τ(x, rk+1)) ≤ dS(τ(x, rk), v) + dS(v, τ(x, rk+1)) ≤ 9Crαk = 9Crα0 2−kα,

as claimed. It follows that for all k, l ≥ k0,

dS
(

τ(x, rk), τ(x, rl)
)

≤
+∞
∑

i=k0

9Crα0 2−iα = 2−k0α

(

9Crα0
1 − 2−α

)

.

Since the latter can be made arbitrarily small provided k0 is large enough, we deduce that τ(x, rk) is a
Cauchy sequence in S1/{±1}, and therefore, it converges to some vector denoted by τ(x). In particular,
letting l → +∞, we get the following estimate for all k ≥ 0

dS
(

τ(x, rk), τ(x)
)

≤ C′rαk ,

where

C′ :=
9C

1 − 2−α
.

Moreover, it can be easily seen through the distance estimate (6.3), that Tx := x + Rτ(x) is a tangent
line for the set K at the point x.

Step 2. Hölder estimate for tangents. We now prove that the mapping x 7→ τ(x) is Hölder continuous.
Let x and y be two different points of K ∩B(0, 1) and let ρ := |y − x|. Assume first that ρ ≤ r0/4 and
let k ∈ N be such that

rk+2 ≤ ρ ≤ rk+1.

We have that

dS
(

τ(x), τ(y)
)

≤ dS
(

τ(x), τ(x, rk)
)

+ dS
(

τ(x, rk), τ(y, rk)
)

+ dS
(

τ(y, rk), τ(y)
)

≤ 2C′rαk + dS
(

τ(x, rk), τ(y, rk)
)

.(6.7)

In order to estimate dS
(

τ(x, rk), τ(y, rk)
)

, we notice that y ∈ B(x, rk) ∩ K, thus there exists z ∈
L(x, rk) ∩ B(x, rk) such that |y − z| ≤ Cr1+α

k . Let us set v := y−x
|y−x| , so that a computation similar to

that of (6.5) or (6.6) leads to

dS(v, τ(x, rk)) ≤ 8Crαk ,

and inverting the roles of x and y

dS(v, τ(y, rk)) ≤ 8Crαk .

Turning back to (6.7), we deduce that

(6.8) dS
(

τ(x), τ(y)
)

≤ 2C′rαk + 16Crαk ≤ 16(C′ + C)22αrαk+2 ≤ 4α+2(C′ + C)|x− y|α.
In the case when ρ ≥ r0/4, we can simply estimate

dS
(

τ(x), τ(y)
)

≤ 2 ≤ 2
4α

rα0
|x− y|α,

which finally yields, for general x, y ∈ K ∩B(0, 1),

dS
(

τ(x), τ(y)
)

≤ C′′|x− y|α,(6.9)

with C′′ := max
(

4α+1r−α
0 , 4α+2(C′ + C)

)

.
In other words, we have proved that K admits a tangent everywhere on B(0, 1) and that tangent lines

behave nicely. We will prove now that K ∩B(0, a) is a curve for a small enough. Actually, a convenient
way to prove this is to show the stronger property that K∩B(0, a) is a Lipschitz graph for some a ∈ (0, 1)
small enough.

Step 3. K ∩ B(0, a) is a Lipschitz graph. We first show that for a > 0 small enough (to be fixed later),
the set K ∩ B(0, a) is a graph above the line Rτ(0), that we assume for simplicity to be oriented by
e1 := τ(0). Notice that for all x ∈ K ∩B(0, a),

(6.10) dS(τ(x), e1) ≤ C′′aα,
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which means that for a small, all the tangents are oriented almost horizontally in K ∩B(0, a).
We assume by contradiction that there exist two distinct points x, y ∈ K ∩B(0, a) such that x1 = y1.

Let a ≤ r0/10, ρ := 10|x− y| = 10|x2 − y2| ≤ 20a, and let k ∈ N be such that

rk+1 ≤ ρ ≤ rk.

We denote by γk ∈ [0, π/2] the angle between e1 and τ(x, rk). Since

dS(e1, τ(x, rk)) ≤ C′′aα + C′rαk ≤ C′′aα + C′(40a)α,

for a small enough it is not restrictive to assume γk ∈ [0, π/4]. We deduce that

dist(y, Tx) ≤ dist(y, L(x, rk))

cos γk
≤

√
2 dist(y, L(x, rk)) ≤

√
2Cr1+α

k ≤
√

2C(40a)αrk.

Similarly, if γ ∈ [0, π/2] stands for the angle between e1 and τ(x), we have for a small enough and for a
universal constant C′′′ > 0

|x2 − y2| = |x− y| =
dist(y, Tx)

cos γ
≤ 2C(40a)αrk ≤ aαC′′′|x2 − y2|,

which is a contradiction for a small enough (depending on C′′′). Therefore, K ∩B(0, a) must be a graph
above the segment B(0, a) ∩ τ(0)R identified to [−a, a]. Now to prove that the graph is 10−3-Lipschitz
for a small enough, we can reproduce the same argument but for x, y ∈ K ∩ B(0, a) satisfying now, by
contradiction, |x2 − y2| > 10−3|x1 − y1|.
Step 4. Conclusion. We have proved that K ∩B(0, a) is the 10−3-Lipschitz graph of some function f on
[−a, a]. Moreover, the tangent line to the graph of f at the point (t, f(t)), which exists for a.e. t ∈ [−a, a],
coincides with the tangent line x + Rτ(x) to K at the point x = (t, f(t)). Since the map x 7→ τ(x) is α-
Hölder continuous, it follows that the map t 7→ f ′(t) coincides a.e. on [−a, a] with an α-Hölder continuous
function. A smoothing argument then implies that f ∈ C1,α([−a, a]), and K ∩B(0, a) is a C1,α curve. �
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