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Abstract- In the context of the Surface Water and Ocean Topography mission (SWOT), 15 

investigations are needed to refine the error budget for discharge estimations. This study 16 

proposes to evaluate the uncertainties in the estimation of mean river discharge around the 17 

seasonal peak flow due to the satellite temporal sampling intervals. The daily time series of in 18 

situ river discharge measurements for 11 large rivers are used to analyze the uncertainties 19 

associated with the sampling of four altimeter repeat cycles: the 35, 22 and 10-day repeat 20 

cycles in the nadir-looking configuration of current altimeters and the 22-day repeat cycle in 21 

the SWOT wide-swath configuration, where a given location is observed every cycle twice at 22 

the equator and six times in higher latitudes. Results show that for boreal rivers, a sampling of 23 

35 or 22 days from current nadir altimeters is too coarse to give an accurate estimate of the 24 

average discharge around the seasonal peak flow, whereas, for all watersheds, the uncertainties 25 

associated with a 10-day repeat cycle or the 22-day repeat cycle in the SWOT wide-swath 26 

configuration are within the range of acceptable uncertainties (15-20%). In addition, the 27 

absolute maximum mean discharge uncertainties associated with the SWOT time sampling 28 

have a strong relationship with the variance of the river discharge. This suggests that, rather 29 

than the commonly used basin area, the magnitude of the short-time-scale variance of the 30 

discharge could be used as predictor of the uncertainties associated with temporal sampling 31 

intervals when estimating average discharge around the seasonal peak flow. 32 

 33 

1. Introduction 34 

Continental freshwater runoff or discharge, as well as the spatial distribution and storage of 35 

fresh water on land, is a key parameter of the global water cycle and play an important role in 36 

driving the climate system [1]. Moreover, natural disasters of hydrological origin dramatically 37 

affect human societies, with large economic losses during water-related extreme events such as 38 

floods or droughts.  39 
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Despite a widespread recognition of the need for better observations at global scale, surface 40 

freshwater measurements are still limited mostly to sparse in situ networks of gauges, the 41 

number of which has dramatically decreased during the last two decades, especially in remote 42 

areas [1]. In addition, public access to recent observations is generally restricted. 43 

Over the last twenty years, satellite remote sensing techniques have become more useful for 44 

hydrologic investigations [1], [2], [3]. In particular, satellite altimetry (TOPEX-Poseidon (T-P), 45 

Jason-2, ERS-1/2, GFO and ENVISAT missions) has been used for systematic monitoring of 46 

water levels in large rivers, lakes and floodplains [4] and several studies have demonstrated the 47 

capability of using these sensors locally for estimating river discharge in large rivers (still 48 

limited to rivers with a width of few kilometers), including the Ganges-Brahmaputra [5] or the 49 

Ob River [6]. Indeed, the construction of empirical regression curves between altimetry-derived 50 

river water heights in large river basins and in situ measurements of river discharge can provide 51 

altimetry-based discharge estimates for times when in situ discharge observations are missing, 52 

or even, to extend the time-series of river discharge forwards/backwards. This technique has 53 

several limitations [1], [5], [7], such as, to name a few, the quality of the current altimetry data 54 

themselves over continental water bodies, the current altimeter sampling frequency along track, 55 

and the spatial coverage of current satellite altimetry missions which is not adequate for global 56 

scale investigations due to their orbit track separation at the equator (few tens to hundreds of 57 

kilometers). In addition, a major drawback in the use of current altimetric measurements to 58 

monitor river stage and discharge is the temporal sampling rate at a given location, which is 10 59 

days for T-P/Jason-2 and 35 days for ERS-1/2 and ENVISAT. With such space/time sampling 60 

intervals, current satellite altimeters cannot compete with observations made daily or twice 61 

daily by in situ gauges, a frequency required to study local hydrological processes, to evaluate 62 

flood risk or for the management of water resources. Nevertheless, for studies related to 63 

climate, the use of current radar altimetry is still extremely valuable as a complement to 64 
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ground-based observations [5]. 65 

The future wide swath altimetry measurements made by the Surface Water and Ocean 66 

Topography (SWOT) satellite mission (to be launched in 2020) will provide high-resolution 67 

characterization of water surface elevations with 2D global maps of terrestrial surface water 68 

extent and storage changes and discharge estimates [1]. Previous studies [1], [7], [8], [9] have 69 

reviewed the expected accuracy of the variables that will be measured and investigated the 70 

different errors which will affect SWOT data and the derived discharge. Instantaneous 71 

discharge estimated globally from SWOT are expected to have errors below 25%, even if 72 

locally these errors might be higher for ungauged basins. These errors are primarily due to 73 

errors on SWOT measurements (error on water elevation will be equal or below 10 cm, error on 74 

the water mask will be around 20% of the true area and error on the river slope will be equal or 75 

below 1cm/1km). Other anticipated sources of error come from ancillary data needed to 76 

compute the discharge (bathymetry and friction coefficient). When estimating monthly or 77 

average river discharge from instantaneous discharge estimates, the temporal resolution of the 78 

satellite observations will also be a source of uncertainties. 79 

In this paper, we focus on the evaluation of the uncertainties due to the temporal sampling 80 

on the estimation of mean river discharge around the annual peak flow. Even though it is 81 

important to accurately monitor low flow and high flow discharge, the hydrologic events 82 

around the yearly peak flow are of particular importance as they are generally associated with 83 

the flood waves. 84 

The in situ measurement and observation of river discharge are in general well established 85 

and, ideally, the goal for in situ discharge data accuracy is within +- 5% of the true value. 86 

However, given the difficulties to measure the depth and velocities (and consequently the true 87 

discharge), especially in large and strong‐ flowing rivers, the community agrees that a 15-20% 88 

accuracy is generally acceptable. When using radar altimetry, the accuracy of river discharge 89 
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estimates depends, among other factors, on the satellite temporal sampling: for instance, mean 90 

discharge estimates will likely be more accurate for a river with several views per orbit than for 91 

a river with one revisit. Former and current radar altimeters (T/P, Jason-2, ERS-1/2, 92 

ENVISAT) view nadir along the orbit track, so a particular point is observed only once every 93 

repeat cycle except at overpasses (ascending and descending views) where two measurements 94 

are made. Given the inter-track interval (~300 km and ~80km at the equator respectively for T-95 

P/Jason-2 and ERS-1/2 and ENVISAT) most of continental water bodies that are monitored are 96 

sampled only once and not always at an adequate location to measure river discharges. Unlike a 97 

nadir-viewing instrument, wide-swath instrument might see the same location from adjacent 98 

orbits, so a particular point might be observed several times every repeat cycle. With its wide 99 

swath altimetry measurements, the SWOT mission will offer a global spatial coverage with the 100 

number of views of a given location per cycle varying as function of latitude, and ranging from 101 

twice at the equator to more than 6 times at high latitudes. At the time of writing, SWOT 102 

nominal orbit will have a 22-day repeat period and a global coverage of the Earth up to the 103 

latitudes 78
o 
North and South.  104 

Using T-P (10-day repeat cycle), ERS-2 and ENVISAT (35-day repeat cycle) altimeters, [5] 105 

and [6] showed that the errors of the discharge estimated indirectly from altimetric 106 

measurements (at 10 days, monthly or annual time scales) are on average well within the range 107 

of acceptable errors (5 to 20%). However, the impact of the temporal sampling on the accuracy 108 

of the river discharge estimates during the annual peak flow is still not well known. For 109 

instance, if all overpasses occurred during flood stage, it leads to an overestimation of the 110 

average discharge based on these observations whereas in other cases, the sensor may 111 

completely miss the peak flow event. Over the Ganges-Brahmaputra river system, [5] showed 112 

that even with a coarse 35 day interval sampling interval (ERS-2/ENVISAT), the 113 

underestimation or overestimation of the in situ mean discharge in general never exceeds 20%. 114 
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Using a similar methodology, the goal of this study is to assess the effects that different 115 

altimeter repeat cycles (10-day, 22-day, 35-day temporal sampling and with a “real” SWOT 116 

repeat cycle in the wide-swath configuration) will have in estimating mean discharge around 117 

the yearly peak flow. For this we will use daily in situ gauge measurements from 11 large rivers 118 

around the world. Section 2 presents and discusses the datasets and the methodology. Section 3 119 

presents and discusses the results. The conclusions are given in Section 4. 120 

 121 

2. Dataset and methodology 122 

We analyze the daily time series of in situ river discharge measurements for 11 large rivers 123 

(Table 1), which represent a fair sample of different environments, from the Tropics to Boreal 124 

regions. These time series are provided by 1) the HYBAM project (www.ore-hybam.org) for 125 

the Amazon and Congo Rivers and 2) the Global Runoff Data Center [10] for the other rivers. 126 

These 11 rivers were selected because of the availability of fairly long (more than a decade), 127 

accurate (evaluated) and continuous measurements.  128 

Using these datasets, we performed the following analysis for each of the 11 rivers, with T 129 

representing the repeat cycle of the satellite (10, 22 or 35 days):  130 

The date of the peak flow is identified for each year in the in situ record. A sliding window 131 

of T days is applied to the record, starting T days before the peak flow and going to the peak 132 

flow date in each year. The window moves with one-day steps; at each step, the average 133 

discharge is calculated using all T days in the window (the true mean) and using only the two 134 

end-points. The same calculation is done for all the years for which in situ discharge is 135 

available (Table 1). The difference (in percent of true mean) between the two means at each 136 

step is averaged over the years. The analysis is done for each of the 11 stations.  137 

In parallel, “true” SWOT observation times were determined for each of the 11 gauge 138 

locations by calculating the number of times each gauge location is viewed from the satellite 139 
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during a cycle using the relationship between the number of revisits and latitude [7]. The same 140 

analysis is done as previously but instead of considering only the 2-end points of the 22-day 141 

repeat cycle, we consider all observations of the target within the 22-day repeat cycle. The 142 

numbers of revisits per cycle for each station is given in Table 1, but note that the SWOT 143 

sampling is not uniformly distributed in time during one repeat cycle. Depending on the 144 

location, a target may be observed twice on two consecutive days and then not be sampled 145 

again for the next ten days. In our case, for the Amazon at Obidos, two observations are made 146 

on the 16
th

 and 17
th

 day of the cycle whereas there are up to six observations for the Lena River 147 

in Siberia, with irregular sampling on the 2
nd 

5
th

, 8
th

, 11
th

, 18th and 21
st
 days of the cycle. 148 

Globally, the maximum time between two observations for a target is 13 days [7]. Note also, 149 

that in this study, we have only considered the SWOT measurements that observe the gauge 150 

location directly. However, because of its wide swath, SWOT will also measure water 151 

elevations upstream and downstream of the gauge location, which could then be used to infer 152 

water elevation at the gauge location using hydrodynamic models or statistical relationships 153 

and therefore, increase the number of samples on the mean discharge estimate [11]. Thus, the 154 

SWOT temporal sampling uncertainty computed in this study corresponds to the maximum 155 

expected error. 156 

Finally, in the present study, we are interested in the effect of temporal sampling only. It is 157 

important to remind here that these uncertainties represent only a source of error among many 158 

other uncertainties associated with the estimates of instantaneous and mean river discharge 159 

from altimeter data. Indeed, as discussed in the introduction, the river water height needs to be 160 

first converted into discharge and such retrieval errors [7, 9] will also largely impact the results. 161 

These effects will not be discussed here. 162 

 163 

3. Results and Discussion. 164 
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The results for the 35-day, 22-day and 10-day temporal sampling are plotted in Figure 1 for 165 

the 11 stations. The x-axis values represent the lower endpoint of a T day sliding window. For 166 

0, the lower end-point of the time window is at peak minus T days and the upper end-point is 167 

on the day of the peak discharge. At 5, the lower end is at peak minus T plus 5 days and the 168 

upper end is at peak plus 5 days and so on. The y-axis represents for each step the average 169 

difference over the years between the average discharge calculated using only the two end-170 

points and the true mean discharge calculated using all days in the time window. The y-axis 171 

values are expressed in percent of the true mean.  172 

As expected, with the 35-day window (Figure 1a, the case of ERS/ENVISAT altimeters), 173 

the uncertainties are the largest, with big differences from river to river.  The largest differences 174 

are found for the three basins in Siberia, the Ob, the Yenisey and the Lena, for which river 175 

discharge is characterized by a sharp and rapid increase at the end of the snowmelt season when 176 

the river ice breaks up. High river discharge values last only few weeks before a sharp 177 

decrease. For instance, for the Lena River, when one of the end-points is within +-5 days of the 178 

date of the peak flow, the average overestimation can be more than 200% of the true mean. 179 

When the two samples bracket the peak flow date (around day 14 to 25), the underestimation is 180 

between 30 to more than 50%. The Yenisey and the Ob Rivers show the same patterns, but 181 

with smaller over/underestimation, especially for the Ob River for which the flood season and 182 

high peak flow last longer [12,13]. For mid-latitude and tropical watersheds, the results show 183 

differences within the acceptable range of uncertainties for river discharges, i.e. around +-20%. 184 

In most tropical watersheds (Amazon, Niger, Orinoco…), when one of the end-points is on the 185 

date of the peak flow (day=0 for instance), the mean discharge using the two end-points 186 

overestimates the true 35-day mean river discharge by about 10%. Then the differences show 187 

almost permanent underestimations of the 35-day mean discharge as soon as the peak flow is 188 

missed by 3 to 4 days. Moving the window forward shows that the differences (underestimates) 189 
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are less than 5%, even with a 35-day sampling interval, and reach a maximum when the two 190 

samples bracket the peak flow date. The differences are larger for mid-latitudes watersheds, but 191 

the differences are generally less than 15% with a maximum underestimation of ~20% for the 192 

Mississippi. Note that among the tropical watersheds, the Irrawaddy shows the largest 193 

uncertainties (maximum and minimum underestimation above 20%) which might be explained 194 

by sharp increases and variability of the river discharge value during the monsoon season. This 195 

behavior is similar to the one found in [5] for two other large rivers of the region, the Ganges 196 

and the Brahmaputra.  197 

As also expected, a ten-day sampling (Figure 1b), which is the repeat cycle of Topex-198 

Poseidon and Jason-2 radar altimeters, leads to much smaller errors when estimating the 199 

discharge around the peak flow. Tropical basins, such as the Amazon, the Orinoco or the 200 

Congo, show almost no difference between the 10-day bracket and the true mean discharge 201 

(uncertainties below 2%). With a 10-day sampling interval, all rivers except the Lena are within 202 

+- 20%. The maximum error for the Lena is an underestimation (25%) when the two samples 203 

bracket the peak flow date (day 5). Nevertheless, uncertainties for around day 0 for the Lena 204 

are reduced from more than 200% with a 35-day repeat cycle to ~20%. For the Yenisey and the 205 

Irrawaddy Rivers, the large uncertainties noticed with the 35-day sample are reduced to less 206 

than 10% with a 10-day repeat cycle. 207 

Figure 1c gives the results for a 22-day repeat cycle for the SWOT mission with only nadir 208 

view, i.e. when the targets are visited only once every 22 days. As an intermediate case 209 

between the 35 and 10-day sampling intervals, the results still show fairly good estimates of 210 

mean discharge around the peak flow for most tropical basins (Amazon, Congo, Orinoco) and 211 

uncertainties in mid-latitude basins on the order of 10%. The Irrawaddy and Yenisey have 212 

largest errors but with maximum over/underestimations around 20%. For the Lena River, a 213 

sampling at twenty-two days is still too coarse to give an accurate estimate of the peak flow 214 
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mean discharge with uncertainties ranging from ~100% to -40%. 215 

However, as mentioned earlier, “true” SWOT observation times are more frequent per orbit 216 

repeat cycle with each gauge location sampled at least twice within a 22-day repeat cycle. 217 

Using the real SWOT orbit sampling (Table 1), Figure 2 shows that the errors on estimated 218 

discharge around the peak flow are greatly reduced and well within the range of acceptable 219 

uncertainties for all 11 rivers. For the boreal and mid-latitudes basins (Figure 2a), the 220 

over/underestimation of mean discharges is always under 20%. The Lena, which is now 221 

sampled up to 6 times in a cycle also shows uncertainties within this range. For the Ob River, 222 

which already showed acceptable errors with a 22-day cycle (Figure 1c) is now sampled six 223 

times in a true SWOT configuration, reducing uncertainties less than 5%.  224 

For the tropical watersheds (Figure 2b, 2 revisits minimum as in Table 1), all associated 225 

uncertainties are below 10%, except for the Irrawaddy, which still shows larger errors 226 

(overestimation of ~10% and underestimation of ~20%) even when it is sampled twice. For the 227 

Amazon, the Congo, the Mekong, the Orinoco, the uncertainties are on the order of a few 228 

percent. Thus, these results show that for the 11 rivers considered here, the uncertainties 229 

associated with SWOT temporal sampling when estimating mean discharge around the annual 230 

peak flow are well within the range of acceptable errors. 231 

Absolute maximum mean discharge errors for each river (as in Figure 2a and 2b) have been 232 

plotted as a function of the percentage of river discharge variance for frequencies above 1/(20 233 

days) (Figure 3). This percentage is computed as follows.  For daily each discharge time-series 234 

for the 11 rivers, a Fourier transform is calculated, and the integral of its variance (which is the 235 

square of the Fourier transform amplitude) over all time scales less than 20 days computed as a 236 

percentage of the total variance. This percentage gives the relative contribution of frequencies 237 

above 1/(20 days) to the discharge variance, and is expected to be larger for rivers with 238 

significant variability at shorter time scale. Figure 3 shows that the temporal sampling error is 239 
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associated with the short-time-scale variability of the river discharge time series. A regression 240 

analysis gives a quantitatively estimate of the relationship between discharge variance and 241 

SWOT temporal sampling errors in a form of a power law, statistically significant at 99% 242 

confidence level (R
2
=0.87 with 11 points, p-values<0.01 with |R|>0.735). Quite logically, for 243 

rivers with large short-time-scale variance, typically the boreal rivers with freeze/thaw cycles 244 

and the monsoon–affected Irrawaddy, the SWOT sampling error is larger. Usually, temporal 245 

sampling errors on mean river discharge are parameterized as a function of the river catchments 246 

area [7]. However, we show that in the case of estimates of the mean discharge around the 247 

seasonal peak flow, the uncertainty has a strong relationship with the variance of the river 248 

discharge. In the case of these 11 large rivers, the correlation between the absolute discharge 249 

errors and the catchment’s area is only R
2
=0.18. Thus, the magnitude of the short-time-scale 250 

variance is a stronger predictor of the peak discharge error than the basin area. Although this 251 

analysis only had 11 samples, we suggest that the relationship with the variance could then be a 252 

new tool to infer the quality of future SWOT measurements at other gauge locations, if some 253 

past discharge time series is available to calibrate the relationship. 254 

 255 

4. Conclusion. 256 

This study reports a first effort to evaluate the uncertainties in the estimation of mean river 257 

discharge around the seasonal peak flow due to satellite altimeters temporal sampling intervals. 258 

Analyzing the daily time series of in situ river discharge measurements for 11 large rivers in 259 

different environments, the results show that for high latitudes rivers, a sampling of 35 or 22 260 

days in the nadir-looking configuration of current altimeter mission is too coarse to give an 261 

accurate estimate of the average discharge around the seasonal peak flow. For tropical 262 

watersheds however, such time sampling intervals lead to uncertainties that generally never 263 

exceed 20% and thus are in the range of uncertainties acceptable for river discharge 264 
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estimations. On the other hand, the uncertainties associated with a 10-day repeat cycle are well 265 

within the range of acceptable errors from Tropical to Siberian rivers. Thanks to its wide swath 266 

altimetry technique, which will enable to observe a given location at least twice at the equator 267 

and up to six times in high latitudes every repeat cycle, the uncertainty due to SWOT time 268 

sampling on the average discharge around the seasonal peak flow is greatly reduced when 269 

compared to a 22-day repeat cycle instrument with a nadir looking angle. We found that these 270 

uncertainties are generally well within the range of acceptable errors for boreal watersheds 271 

(absolute maximum mean discharge uncertainties from 5 to 20%), mid-latitudes watersheds 272 

(absolute maximum mean discharge uncertainties ~10%) and tropical watersheds (absolute 273 

maximum mean discharge uncertainties from 2 to ~20%). Moreover, we find that absolute 274 

maximum mean discharge uncertainties around the seasonal peak flow have a strong 275 

relationship with the variance of the river discharge. Thus, around the peak flow, we suggest 276 

that the magnitude of the short-time-scale variance of the discharge could be used as predictor 277 

of the uncertainties rather than the commonly used basin area. 278 

The future launch of the SWOT mission in 2020 will represent a step increase for 279 

continental hydrology and further studies are needed to refine the SWOT error budget for 280 

discharge estimates. For instance, the uncertainties for smaller rivers (~100 m to ~1 km width) 281 

have not been addressed here and require further investigations. Moreover, we address in this 282 

study the source of errors due to the temporal sampling of the satellite only, but in reality it will 283 

combined with other sources of uncertainty. These issues need to be addressed in future works. 284 
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 329 

Table 1: Information on the daily in situ river discharge time series used in this study: River 330 

name, Gauge station name and location, first and last year of the available time series, 331 

catchment’s area, mean value and standard deviation (STD) for the entire daily discharge time 332 

series and the number of views of the a given gauge station per SWOT cycle. 333 

River 

Name 

Station Name and locations Time series Catchment area 

(km
2
) 

Mean Discharge/ 

STD (m
3
/s) 

Number of 

samples per 

SWOT cycle 

Amazon Obidos (1.92
o
S; 55.67

o
W) 1968-2008 4618000 172700 / 49840 2 

Congo Brazzaville (4.25
o
S; 15.28

o
E) 1968-2008 3500000 40500 / 9300 2 
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Danube Ceatal Izmail (45.21
o
N; 28.72

o
E) 1954-2008 807000 6580 / 2550 2 

Irrawaddy Sagaing (21.98
o
N;96.10

o
E) 1978-1988 117900 8170 / 6820 2 

Lena Kusur (70.70
o
N; 127.65

o
E) 1954-2003 2430000 16950 / 23860 6 

Mekong Phnom Penh (11.58
o
N; 104.96

o
E) 1960-1973 663000 13305 / 13300 2 

Mississippi Vicksburg, MS (32.31
o
N; 90.95

o
W) 1954-1999 2964000 17370 / 9620 2 

Niger Lokoja (7.80
o
N; 6.77

o
E) 1970-1993 2077000 4830 / 4890 2 

Ob Shalekard (66.57
o
N;66.53

o
E) 1954-1999 2949000 12800 / 11190 6 

Orinoco Puente Angosta (8.15
o
N; 63.60

o
W) 1950-1989 836000 31650 / 21690 2 

Yenisey Igarka (67.48
o
N; 86.50

o
E) 1980-2003 2440000 19170 / 23180 3 

 334 

 335 

Figures Caption: 336 

Figure 1: Uncertainty of the 35-day (a) and 10-day (b) and 22-day (c) sampling intervals in the 337 

estimation of mean river discharge around the yearly peak flow for 11 large rivers (see text for 338 

details and the method): the Ob (black solid line), the Yenissey (black doted line), the Lena 339 

(black dashed line), the Orinoco (red solid line), the Amazon (red dashed line), the Congo 340 

(green solid line), the Niger (green dashed line), the Irrawaddy (blue solid line), the Mekong 341 

(Blue dashed line), the Danube (purple solid line), and the Mississippi (purple dashed line). 342 

 343 
 344 

Figure 2: Same as Figure 1 with the SWOT 22-day repeat cycle but taking into account the 345 

number of SWOT views per cycle. For clarity, we separate the rivers in boreal/mid-latitudes 346 

environments (a) and the ones located in the Tropics (b) 347 

 348 

Figure 3: Relationship between the uncertainties on the monthly discharge estimates around 349 

the yearly peak flow in the context of SWOT 22-day repeat cycle versus the percentage of total 350 

discharge variance for frequencies above 1/(20 days) estimated for the 11 stations. 351 
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