Valentin Bura 
email: valentin.bura@gmail.com
  
Positive 1-in-3-SAT admits a non-trivial Kernel

Keywords: Computational Complexity, Boolean Satisfiability, Kernelization Mots clés. Complexité informatique, Satisfaction booléenne, Kernelization

We illustrate the strength of Algebraic Methods, adapting Gaussian Elimination and Substitution to the problem of Exact Boolean Satisfiability.

For 1-in-3 SAT with non-negated literals we are able to obtain considerably smaller equivalent instances of 0/1 Integer Programming restricted to Equality.

Both Gaussian Elimination and Substitution may be used in a processing step, followed by a type of brute-force approach on the kernel thus obtained.

Our method shows that Positive instances of 1-in-3 SAT may be reduced to significantly smaller instances of I.P.E. in the following sense. Any such instance of |V | variables and |C| clauses can be polynomial-time reduced to an instance of 0/1 Integer Programming with Equality, of size at most 2/3|V | variables and at most |C| clauses.

We obtain an upper bound for the complexity of counting, O(2κr2 (1-κ)r ) for number of variables r and clauses to variables ratio κ.

We proceed to define formally the notion of a non-trivial kernel, defining the problems considered as Constraint Satisfaction Problems.

We conclude showing the methods presented here, giving a non-trivial kernel for positive 1-in-3 SAT, imply the existence of a non-trivial kernel for 1-in-3 SAT.

Introduction

Recall that SAT and its restrictions cnf-SAT, k-cnf-SAT and 3-cnf-SAT are NP-complete as shown in [START_REF] Cook | The complexity of theorem-proving procedures[END_REF][START_REF] Karp | Reducibility among combinatorial problems[END_REF][START_REF] Levin | Universal sequential search problems[END_REF]. The 1-3-SAT problem is that, given a collection of triples over some variables, to determine whether there exists a truth assignment to the variables so that each triple contains exactly one true literal and exactly two false literals.

Schaefer's reduction given in [START_REF] Schaefer | The complexity of satisfiability problems[END_REF] transforms an instance of 3-cnf-SAT into a 1-3-SAT instance. A simple truth-table argument shows this reduction to be parsimonious, hence 1-3-SAT is complete for the class #P while a parsimonious reduction from 1-3-SAT also shows 1-3-SAT + to be complete for #P.

We mention Toda's result in [START_REF] Toda | Pp is as hard as the polynomial-time hierarchy[END_REF] implying that P.H. is as hard computationally as counting, which in a sense is our preoccupation here. A related result of Valiant and Vazirani [START_REF] Valiant | Np is as easy as detecting unique solutions[END_REF] implies that detecting unique solutions is as hard as NP. The algorithm we present does count solutions exhaustively, making use of preprocessing and brute-force on the resulting kernel.

The 1-K-SAT problem, a generalization of 1-3-SAT, is that, given a collection of tuples of size K over some variables, to determine whether there exists a truth assignment to the variables so that each K-tuple contains exactly one true and K -1 false literals.

The 1-K-SAT problem has been studied before under the name of XSAT. In [START_REF] Dahllöf | Algorithms for four variants of the exact satisfiability problem[END_REF] very strong upper bounds are given for this problem, including the counting version. These bounds are O(1.1907 |V | ) and O(1.2190 |V | ) respectively, while in [START_REF] Björklund | Exact algorithms for exact satisfiability and number of perfect matchings[END_REF] the same bound of 2 |C| |V | O (1) is given for both decision and counting, where |V | is the number of variables and |C| the number of clauses.

Gaussian Elimination was used before in the context of boolean satisfiability. In [START_REF] Soos | Enhanced gaussian elimination in dpll-based sat solvers[END_REF] the author uses this method for handling xor types of constraints. Other recent examples of Gaussian elimination used in exact algorithms or kernelization may be indeed found in the literature [START_REF] Wahlström | Abusing the tutte matrix: An algebraic instance compression for the k-set-cycle problem[END_REF][START_REF] Giannopoulou | Tree deletion set has a polynomial kernel but no optˆo(1) approximation[END_REF].

Hence the idea that constraints of the type implying this type of exclusivity can be formulated in terms of equations, and therefore processed using Gaussian Elimination, is not new and the intuition behind it is very straightforward.

We mention the influential paper by Dell and Van Melkebeek [START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF] together with a continuation of their study by Jansen and Pieterse [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF][START_REF] Jansen | Sparsification upper and lower bounds for graph problems and not-all-equal sat[END_REF]. It is shown in these papers that, under the assumption that coNP NP\P, there cannot exist a significantly small kernelization of various problems, of which exact satisfiability is one. We shall use these results directly in our current approach.

We begin our investigation by showing how a 1-3-SAT + instance can be turned into an integer programming version 0-1-IP = instance with fewer variables. The number of variables in the 0-1-IP = instance is at most two-thirds of the number of variables in the 1-3-SAT + instance. We achieve this by a straightforward preprocessing of the 1-3-SAT + instance using Gauss-Jordan elimination.

We are then able to count the solutions of the 1-3-SAT + instance by performing a brute-force search on the 0-1-IP = instance. This method gives interesting upper bounds on 1-3-SAT + , and the associated counting problem, though without a further analysis, the bounds thus obtained may not be the strongest upper bounds found in the literature for these problems.

Our method shows how instances become easier to solve with variation in clauses-to-variables ratio. For random k-cnf-SAT the ratio of clauses to variables has been studied intensively, for example [START_REF] Ding | Proof of the satisfiability conjecture for large k[END_REF] gives the proof that a formula with density below a certain threshold is with high probability satisfiable while above the threshold is unsatisfiable.

The ratio plays a similar role in our treatment of 1-3-SAT. Another important observation is that in our case this ratio cannot go below 1/3 up to uniqueness of clauses, at the expense of polynomial time pre-processing of the problem instance.

We note that, by reduction from 3-cnf-SAT any instance of 1-3-SAT in which the number of clauses does not exceed the number of variables is NP-complete.

Hence we restrict our attention to these instances.

Our preprocessing induces a certain type of "order" on the variables, such that some of the non-satisfying assignments can be omitted by our solution search.

We therefore manage to dissect the 1-K-SAT instance and obtain a "core" of variables on which the search can be performed. For a treatment of Parameterized Complexity the reader is directed to [START_REF] Downey | Fundamentals of parameterized complexity[END_REF].

Outline

After a brief consideration of the notation used in Section 3, we define in Section 4 the problems 1-3-SAT, 1-3-SAT + and the associated counting problems #1-3-SAT and #1-3-SAT + .

We elaborate on the relationship between the number of clauses and the number of variables in 1-3-SAT + . We give a proof that 1-3-SAT is NPcomplete via reduction from 3-cnf-SAT, and a proof that 1-3-SAT + is NPcomplete via reduction from 1-3-SAT.

We conclude by remarking that due to this chain of reductions, the restriction of 1-3-SAT + to instances with more variables than clauses is also NPcomplete, since these kind of instances encode the 3-cnf-SAT problem. We hence restrict our treatment of 1-3-SAT + to these instances. Section 5 presents our method of reducing a 1-3-SAT + instance to an instance of 0/1 Integer Programming with Equality only. This results in a 0/1 I.P.E. instance with at most two thirds the number of variables found in the 1-3-SAT + instance.

Our method describes the method sketched by Jansen and Pieterse in an introductory paragraph of [START_REF] Jansen | Sparsification upper and lower bounds for graph problems and not-all-equal sat[END_REF]. Jansen and Pieterse are not primarily interested in reduction of the number of variables, only in reduction of number of constraints.

They do not tackle the associated counting problem.

The method consists of encoding a 1-3-SAT + instance into a system of linear equations and performing Gaussian Elimination on this system. Linear Algebraic methods show the resulting matrix can be rearranged into an r × r diagonal submatrix of "independent" columns, where r is the rank of the system, to which it is appended a submatrix containing the rest of the columns and the result column which correspond roughly to the 0/1 I.P.E. instance we have in mind. We further know the values in the independent submatrix can be scaled to 1.

The most pessimistic scenario complexity-wise is when the input clauses, or the rank of the resulting system, is a third the number of variables, |C| = 1/3|V |, from which we obtain our complexity upper bounds.

To this case, one may wish to contrast the case of the system matrix being full rank, for which Gaussian Elimination alone suffices to find a solution. Further to this, we explain how to solve the 0/1 I.P.E. problem in order to recover the number of solutions to the 1-3-SAT + problem. Section 6 outlines the method of substitution, well-known to be equivalent to Gaussian Elimination. Section 7 gives a worked example of this algorithm. Section 8 and Section 9 are concerned with an analysis of the algorithm complexity, and correctness proof, respectively. Section 10 outlines the implications for Computational Complexity, giving an argument that the existence of the 1-3-SAT + kernel found in previous sections implies the existence of a non-trivial kernel for the more general

Notation

We write as usual A ≤ poly B to signify a polynomial-time reduction.

We denote boolean variables by p 1 , p 2 , . . . , p i , . . . Denote the true and false constants by and ⊥ respectively. For any SAT formula ϕ, write Σ(ϕ) if ϕ is satisfiable and write Σ(ϕ) otherwise. Reserve the notation a(p) for a truth assignment to the variable p.

We write Φ(r, k) for the set of formulas in 3-CNF with r variables and k unique clauses. We also write ϕ(V, C) to specify concretely such a formula, where V, C

shall denote the sets of variables and clauses of ϕ. We write κ(ϕ) = k r .

We will make use of the following properties of a given map f :

subadditivity: f (A + B) ≤ f (A) + f (B) scalability: f (cA) = cf (A) for constant c.
For a given tuple s = (s 1 , s 2 , . . . , s n ) we let s(m) denote the element s m .

For given linear constraints L : i≤n d i x i = R for some n and x i ∈ {0, 1}, we let L[x/L ] be the result of substituting uniformly the expression of constraint L for variable x in constraint L. This is to be performed in restricted circumstances.

Exact Satisfiability

One-in-three satisfiability arose in late seventies as an elaboration relating to Schaefer's Dichotomy Theorem [START_REF] Schaefer | The complexity of satisfiability problems[END_REF]. It is proved there using certain assumptions boolean satisfiability problems are either in P or they are NP-complete.

The counting versions of satisfiability problems were introduced in [START_REF] Valiant | The complexity of computing the permanent[END_REF] and it is known in general that counting is in some sense strictly harder than the corresponding decision problem. This is due to the fact that, for example, producing the number of satisfying assignments of a formula in 2-CNF is complete for #P, while the corresponding decision problem is known to be in P [START_REF] Valiant | The complexity of computing the permanent[END_REF]. We thus restrict our attention to 1-3-SAT and more precisely 1-3-SAT + formulas.

Definition 4.1 (1-3-SAT). 1-3-SAT is defined as determining whether a formula ϕ ∈ Φ(r, k) is satisfiable, where the formula comprises of a collection of triples

C = {{p 1 1 , p 1 2 , p 1 3 }, {p 2 1 , p 2 2 , p 2 3 }, . . . , {p k 1 , p k 2 , p k 3 }} such that p i 1 , p i 2 , p i 3 ∈ V = {p 1 , ¬p 1 , p 2 , ¬p 2 , .
. . , p r , ¬p r }∪{⊥} and for any clause exactly one of the literals is allowed to be true in an assignment, and no clause may contain repeated literals or a literal and its negation, and such that every variable in V appears in at least one clause.

In the restricted case that p i 1 , p i 2 , p i 3 ∈ V + = {p 1 , p 2 , . . . , p r } ∪ {⊥} for 1 ≤ i ≤ r we denote the problem as 1-3-SAT + .

In the extended case that we are required to produce the number of satisfying assignments, these problems will be denoted as #1-3-SAT and #1-3-SAT The following statement is given in [START_REF] Garey | Computers and intractability[END_REF]. For the sake of completeness, we provide a proof by a parsimonious reduction from 1-3-SAT. Proposition 4.2 (Garey and Johnson [START_REF] Garey | Computers and intractability[END_REF]). 1-3-SAT + is NP-complete.

+ . Example 4.1. The 1-3-SAT + formula ϕ = {{p 1 , p 2 , p 3 }, {p 2 , p 3 , p 4 }} is satisfi- able by the assignment a(p 2 ) = and a(p j ) =⊥ for j = 1, 3, 4. The 1-3-SAT + formula ϕ = {{p 1 , p 2 , p 3 }, {p 2 , p 3 , p 4 }, {p 1 , p 2 , p 4 }, {p 1 , p 3 , p 4 }} is not satisfiable.
Proof. Construct instance of 1-3-SAT + from an instance of 1-3-SAT. Add every clause in the 1-3-SAT instance with no negation to the 1-3-SAT + instance.

For every clause containing one negation {¬p, p , p }, add to the 1-3-SAT + two clauses {p, p , p } and {p, p, ⊥} where p is a fresh variable.

For a clause containing two negations {¬p, ¬p , p } we add two fresh variables p, p and three clauses {p, p , p }, {p, p, ⊥} and {p , p , ⊥}.

For a clause containing three negations {¬p, ¬p , ¬p } we add three fresh variables p, p , p and four clauses {p, p , p }, {p, p, ⊥} , {p , p , ⊥} and {p , p , ⊥}.

We obtain a 1-3-SAT + formula with at most 4|C| more clauses and at most |V | + 3|C| more variables, for initial number of clauses and variables |C| and

|V | respectively.
Our reduction is parsimonious, for it is verifiable by truth-table the number of satisfying assignments to the 1-3-SAT clause {¬p, ¬p , ¬p } is the same as the number of satisfying assignments to the 1-3-SAT + collection of clauses {{p, p , p }, {p, p, ⊥}, {p , p , ⊥}, {p , p , ⊥}}. For if an instance of 3-cnf-SAT φ ∈ Φ(r , k ) is reduced to an instance of

1-3-SAT φ ∈ Φ(r , k ) then our reduction entails r = r + 4k and k = 3k .
We analyze the further reduction to the instance of 1-3-SAT + ϕ ∈ Φ(r, k). Let C, C , C , C be the collections of clauses in φ containing, no negation, one negation, two negations and three negations respectively.

Our reduction implies r

= r + |C | + 2|C | + 3|C | and k = |C| + 2|C | + 3|C | + 4|C | = k + |C | + 2|C | + 3|C |. Then, r -k = r + |C | + 2|C | + 3|C | -k -|C | -2|C | -3|C | = r -k = r + 4k -3k = r + k > 0.

Rank of a Formula

A rank function is used as a measure of "independence" for members of a certain set. The dual notion of nullity is defined as the complement of the rank. Definition 5.1. A rank function R obeys the following If formula is clear from context, we also use the shorthand η and η. We define the binary integer programming problem with equality here and show briefly that 1-3-SAT + is reducible to a "smaller" instance of this problem. Definition 5.3 (0, 1-integer programming with equality). The 0-1-IP = problem is defined as follows. Given a family of finite tuples s 1 , s 2 , . . . , s k with each s i ∈ Q S for some fixed S ∈ N, and given a sequence q 1 , q 2 , . . . , q k ∈ Q, decide whether there exists a tuple T ∈ {0, 1} S such that S j=1 s i (j)T (j) = q i for each i ∈ {1, 2, . . . , k}

1. R(∅) = 0, 2. R(A ∪ B) ≤ R(A) + R(B), 3. R(A) ≤ R(A ∪ {a}) ≤ R(A) + 1.
Remark 5.2. 0-1-IP = ∈ O(k2 S )
where k is the number of 0-1-IP = tuples and S is the size of the tuples.

Proof. The bound is obtained through applying an exhaustive search. Proof. The result of performing Gauss-Jordan Elimination on Sys(ϕ) yields, after a suitable re-arrangement of column vectors, the reduced echelon form

GJE(Sys(ϕ)) =            1 0 0 . . . 0 x 11 x 12 . . . x 1d R 1 0 1 0 . . . 0 x 21 x 22 . . . x 2d R 2 0 0 1 . . . 0 x 31 x 32 . . . x 3d R 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . 1 x k1 x k2 . . . x kd R k           
Now consider the following structure, obtained from the given dependencies above through ignoring the zero entries

           1 x 11 x 12 . . . x 1d R 1 1 x 21 x 22 . . . x 2d R 2 1 x 31 x 32 . . . x 3d R 3 . . . . . . . . . . . . . . . 1 x k1 x k2 . . . x kd R k           
This induces an instance of 0-1-IP = which can be solved as follows

Initialize C := 0 Enumerate all sequences s ∈ S = {0, 1} d
For each such sequence s:

If ∀j ≤ k[ i≤d s(i)xji = Rj ∨ i≤d s(i)xji = Rj -1] then C ←-C + 1.
We note the length of sequences s ∈ S is d = r -k, hence the brute force procedure has to enumerate 2 r-k members of S. Furthermore, each such sequence s ∈ S is tested twice against all of the constraints x 1i , x 2i , . . . , x ki for i ≤ d, resulting in the claimed time complexity of O(2k2 r-k ).

To see the algorithm is correct, we give a proof that considers when the counter is incremented. Suppose for all j ≤ k some s ∈ S is not a solution to either i≤d s(i)x ji = R j or i≤d s(i)x ji = R j -1. In this case, the counter is not incremented and we claim s does not induce a solution to the 1-3-SAT + formula ϕ. For in this case s is not a 0/1 solution to the system Sys(ϕ) and hence by Corollary 5.1 cannot be a satisfying solution to ϕ. In effect, the counter is not incremented as we have not seen an additional satisfying solution.

Now suppose for all j ≤ k some s ∈ S is a solution to either i≤d s(i)x ji = R j or i≤d s(i)x ji = R j -1. In this case, the counter is incremented and we claim s is indeed a solution to the 1-3-SAT + formula ϕ.

For if s is a solution to all jth rows constraint i≤d s(i)x ji = R j then s satisfies the constraint x j1 +x j2 +• • •+x jd = R j giving the satisfying assignment a(p) =⊥ for all variables p corresponding to variables in the diagonal matrix, and a(p) =⊥ for variables corresponding to column i for which s(i) = 0, and a(p) = for variables corresponding to column i for which s(i) = 1.

Similarly, if s is a solution to all jth rows constraint i≤d s(i)x ji = R j -1 then s satisfies the constraint 1 + x j1 + x j2 + • • • + x jd = R j giving the satisfying assignment a(p) = if p corresponds to the diagonal variable (j, j), a(p) =⊥ for all variables p corresponding to all other variables in the diagonal matrix, and a(p) =⊥ for variables corresponding to column i for which s(i) = 0, and a(p) = for variables corresponding to column i for which s(i) = 1.

Corollary 5.2. 1-3-SAT + ≤ poly 0-1-IP = .

Proof. By the pre-processing of the problem instance using Gaussian Elimination, shown above, 1-3-SAT + is reduced in polynomial time to 0-1-IP = .

Theorem 5.1. #1-3-SAT + ∈ O(η2 η+1 ) for formula rank and nullity η and η.

Proof. There are η-many equations to satisfy by any assignment, and there are η-many variables to search through exhaustively in order to solve the 0-1-IP = problem, which in turn solves the 1-3-SAT + problem.

Corollary 5.3. #1-3-SAT + ∈ O(2κr2 (1-κ)r
) for any instance ϕ ∈ Φ(r, k) and κ = k/r.

The Method of Substitution

The substitution algorithm is depicted below in Fig. 1. We give a brief textual explanation of the algorithm below.

Pre-processing phase 3. Sort the formula ϕ in ascending order of n(c).

Substitution phase

1. Initialize i ← |C|, 2. For each c i : n(i) = a(i) -m(i) -s(i) = a(i) -M (i), 3. Initialize j ← |C|, 4.
For each clause c j ∈ ϕ with j = i with c j : n(j) = a(j) -m(j) -s(j) such that n(j) is found in the variables of m(i), or n(j) is found in the variables of s(i), do 5. Perform the substitution c i ← c i [n(j)/n(i)], and normalize the result.

6. Decrement variable j. Continue step 4.

7. Decrement variable i. Continue step 2. Denote by σ(ϕ) or by σ, when clear from context, the structure thus obtained, denote by η(σ) and η(σ) the rank and nullity thus induced, and denote by N (σ)

i ← k while i ≥ 1 do j ← k while j ≥ 1 do if j = i then if c(j) : n(j) = a(j) -( x<r d(x) + n(i)), and c(i) : n(i) = a(i) -( t<r d(t)) then c(j) ← n(j) = (a(j) -a(i)) -( x<r d(x) + t<r d(t)) end if end if j ← j -1 end while i ← i -1 end while
and N (σ) the sets of independent, and dependent variables generated through our process.

We remark the operator σ is idempotent.

Remark 6.2. σ(σ(ϕ)) = σ(ϕ).
Proof. Each clause c(j) is read, and each read clause is compared with every other clause c(i), in search for a common variable n(i), if this variable is found, a replacement is performed on c(j).

Suppose there exists a clause c such that As a consequence, any set of formulas is closed under substitution.

L = σ(ϕ)(c) = σ(σ(ϕ))(c) = L .
Remark 6.3. σ[σ[Φ]] = σ[Φ].

An example

Consider the 1-3-SAT formula

ϕ = {{p 1 , p 2 , p 3 }, {p 4 , p 5 , p 6 }, {p 2 , p 5 , p 6 }, {p 1 , p 2 , p5}}
We outline the meaning of the rows and columns within our tabular format.

c i : n(i) m(i) c(i) C(i): n(i) a(i) m(i) c(i)
The formula ϕ is represented in tabular format. Sort according to n(i). The formula is encoded as below. Use a tabular data structure for the algorithm, initialized to empty.

1.

C(1): ∅ ∅ ∅ ∅ C(4): ∅ ∅ ∅ ∅ C(3): ∅ ∅ ∅ ∅ C(2): ∅ ∅ ∅ ∅ 2.
C Obtain the following partial result.

5.

C(1): 1 0 5, 6 3

C(4): 1 0 5, 6 5 
C(3): 2 1 5 6 
C(2): 4 1 5 6
Rearrange the tabular structure. A Brute-Force Search on the set {p 3 , p 5 , p 6 } of dependent variables yields the desired result to the 1-3-SAT + formula.

After the substitution process is finished, each of the clauses is expressed in terms of independent variables, variables which cannot be expressed in terms of other variables. We denote by |n(i)| the number of variables in constraint c(i)

induced by the substitution method, excluding the variable n(i).

Algorithm Analysis

We maximize the number of substitutions performed at each step. Hence, at first step we encounter two substitutions, at the second we encounter three substitutions, while at every subsequent step we must assume there exist two variables for which we can substitute in terms of previously found variables, which indicates that the formula for the Fibonacci expansion describes our process. Proof. In this case we have 2k independent variables, for a value of k of 1/3r. Proof. It suffices to show that η(ϕ) ≥ η(σ).

Suppose for a contradiction this is not the case. We have that η(ϕ) < η(σ).

That is, that the dependent variables of the system of equations exceed in number the dependent variables obtained through our substitution algorithm.

We let η(ϕ) = η(σ) + K. What this means is there exist variables

p 1 , p 2 , • • • , p K such that p i ∈ N (σ) \ N (ϕ) for 1 ≤ i ≤ K.
Take any such variable in this list and perform another substitution such as to decrease K by one. The existence of the list p 1 , p ).

Dell and Melkebeek [START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF] give a rigorous treatment of the concept of "sparsification". In their framework, an oracle communication protocol for a language L is a communication protocol between two players.

The first player is given the input x and is only allowed to run in time polynomial in the length of x. The second player is computationally unbounded, without initial access to x. At the end of communication, the first player should be able to decide membership in L. The cost of the protocol is the length in bits of the communication from the first player to the second.

Therefore, if the first player is able to reduce, in polynomial time, the problem instance significantly, the cost of communicating the "kernel" to the second player would also decrease, hence providing us with a very natural formal account for the notion of sparsification.

Jansen and Pieterse in [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF] state and give a procedure for any instance of Exact Satisfiability with unbounded clause length to be reduced to an equivalent instance of the same problem with only |V | + 1 clauses, for number of variables

|V |.

The concern regarding the number of clauses in 1-3-SAT + can be addressed, as we have done above. We observe that for any instance C of 3-cnf-SAT, the chain of polynomial-time parsimonious reductions C → Ĉ → C, for Ĉ and C instances of 1-3-SAT and 1-3-SAT + respectively, implies that the variables of Ĉ and C outnumber the clauses.

What is also claimed in [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF] is that, assuming coNP NP \ P, no polynomial time algorithm can in general transform an instance of Exact Satisfiability of ) for an encoding h of ϕ and some > 0.

Remark 10.3 (Jansen and Pieterse [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF]). 1-3-SAT admits a kernel (f (r), g(k))

with g(k) ≤ h(k, r) and h(k, r) ∈ O(r 2 ).
The following statement is given in [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF]. The authors elaborate on the results

of [START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF] to analyze combinatorial problems from the perspective of sparsification, and give several arguments that non-trivial kernels for such problems would entail a collapse of the Polynomial Hierarchy to the level above P = NP.

It is essential to note here that this line of reasoning was used by researchers studying sparsification with the intention of proving lower bounds on the existence of kernels, while the results presented by us are slightly more optimistic.

Lemma 10.2 (Jansen and Pieterse [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF]). If 1-3-SAT admits a non-trivial kernel, then coNP ⊆ NP \ P.

Lemma 10.3. If 1-3-SAT + admits a non-trivial kernel, then 1-3-SAT admits a non-trivial kernel.

Proof. Let ϕ ∈ Φ(r, k) be an instance of 1-3-SAT. By Schaeffer's results it follows ϕ can be parsimoniously polynomial time reduced to a 1-3-SAT + formula φ ∈ Φ(r , k ) with r = r + 4k and k = 3k.

Assuming 1-3-SAT + admits a non-trivial kernel, this implies 1-3-SAT admits a non-trivial kernel, and therefore through Lemma 10.1 coNP ⊆ NP \ P.

To spell this out, suppose we have non-trivial kernel (f (r ), g(k )) for the problem 1-3-SAT, with g(k ) ≤ h(k , r ) and h(k , r ) ∈ O(r 2-). We observe using the reduction from 1-3-SAT, f (r + 4k) ≤ f (r) + 4f (k) ≤ 5f (r) and therefore f (r ) ∈ O(r) and, we obtain via the reduction the existence of a non-trivial kernel for 1-3-SAT, that is g(3k) ≤ 3g(k) ≤ 3h(k, r) with h(k, r) ∈ O(r 2-).

Essentially the following result is a restatement of Corollary 5.3.

Theorem 10.1. 1-3-SAT + admits a non-trivial kernel.

Proof. Follows from Lemma 5.3. The first player preprocesses the input in polynomial time using Substitution, and passes the input to the second player which makes use of its unbounded resources to provide a solution to this kernel.

It remains to show the cost of this computation is bounded non-trivially, i.e.

h(k, r) ∈ O(r 2-) for > 0.

This requirement follows from Lemma 5.3. For the instance of 0-1-IP = to which we reduce has at most f (r ) ≤ 2/3r variables and at most g(k ) ≤ r clauses.

We store the resulting instance of 0-1-IP = in a (2/3r + 1) × r matrix M with polynomial-bounded entries, such that M (i, j) = d iff d is the coefficient of variable i in constraint j, to which we add the result column.

From Remark 8.5 we obtain indeed that the bit representation of this kernel is indeed r 2-for some non-negative . 

Conclusion

We have shown the mechanism through which a 1-3-SAT + instance can be transformed into an integer programming version 0-1-IP = instance with variables at most two-thirds of the number of variables in the 1-3-SAT + instance.

This was done by a straightforward preprocessing of the 1-3-SAT + instance using the method of Substitution.

We manage to count satisfying assignments to the 1-3-SAT + instance through a type of brute-force search on the 0-1-IP = instance.

The method we have presented before in the shape of Gaussian Elimination gives interesting upper bounds on 1-3-SAT + , and shows how instances become harder to solve with variations on the clauses-to-variables ratio.

An essential observation here is that in this case this ratio cannot go below 1/3 up to uniqueness of clauses. This can be easily checked in polynomial time.. By reduction from 3-cnf-SAT any instance of 1-3-SAT in which the number of clauses does not exceed the number of variables is also NP-complete.

Our contribution is in pointing out how the method of Substitution together with a type of brute-force approach suffice to find, constructively, a non-trivial kernel for 1-3-SAT + .

Lemma 4 . 1 .

 41 Up to uniqueness of clauses and variable naming the set Φ(r, r/3) determines one 1-3-SAT + formula and this formula is trivially satisfiable.Proof. Consider the formula ϕ = {{p 3i , p 3i+1 , p 3i+2 } | 1 ≤ i ≤ r/3} which has r variables and r/3 clauses, hence belongs to the set Φ(r, r/3) and it is satisfiable, trivially, by any assignment that makes each clause evaluate to true. Now take any clause {a, b, c} ∈ ϕ(V, C) with a, b, c ∈ V . We claim there is no other clause {a , b , c } ∈ ϕ such that {a, b, c} ∩ {a , b , c } = ∅, for otherwise let a be in their intersection and we can see the number of variables used by the r/3 clauses reduces by one variable, to be r -1. Now, since the clauses of ϕ do not overlap in variables, we can see that our uniqueness claim must hold, since the elements of ϕ are partitions of the set of variables. Remark 4.1. For 1-3-SAT + , the sets Φ(r, k) for k < r/3 are empty. Schaefer gives a polynomial time parsimonious reduction from 3-cnf-SAT to 1-3-SAT hence showing that 1-3-SAT and its counting version #1-3-SAT are NP-complete and respectively #P-complete.

Proposition 4 . 1 (

 41 Schaefer,[START_REF] Schaefer | The complexity of satisfiability problems[END_REF]). 1-3-SAT is NP-complete.Proof. Proof by reduction from 3-cnf-SAT. For a clause p ∨ p ∨ p create three 1-3-SAT clauses {¬p, a, b}, {p , b, c}, {¬p , c, d}. Hence, we obtain an instance with |V | + 4|C| variables and 3|C| clauses, for the instance of 3-cnf-SAT of |V | variables and |C| clauses.

Remark 4 . 2 .

 42 In virtue of Theorem 4.1 and Theorem 4.2 we restrict ourselves to instances of 1-3-SAT + ϕ ∈ Φ(r, k) with r ≥ k.

Definition 5 . 2 (

 52 rank and nullity). For a 1-3-SAT + formula ϕ(V, C) define the system of linear equations Sys(ϕ) as follows: for any clause {p, p , p } ∈ C add to Sys(ϕ) equation p + p + p = 1; Define the rank and nullity of ϕ as η(ϕ) = R(Sys(ϕ)) and η(ϕ) = |V | -η(ϕ).

Remark 5 . 1 .Proposition 5 . 1 .

 5151 η is a rank function with respect to sets of 1-3-SAT triples. Lemma 5.1. For any 1-3-SAT + instance ϕ transformed into a linear system Sys(ϕ) we observe the following: p + p + p = 1 has a solution S ⊂ {0, 1} 3 if and only if exactly one of p, p , p is equal to 1 and the other two are equal to 0. For any formula ϕ ∈ Φ(r, k) we have Σ(ϕ) if and only if Sys(ϕ) has at least one solution over {0, 1} r . Corollary 5.1. A formula ϕ ∈ Φ(r, k) has as many satisfiability assignments as the number of solutions of Sys(ϕ) over {0, 1} r .

Lemma 5 . 2 .

 52 Let ϕ ∈ Φ(r, k) be a 1-3-SAT + formula, then η(ϕ) ≤ k and η(ϕ) ≥ r -k.Proof. Follows from the observation that η is a rank function. Lemma 5.3. Consider a 1-3-SAT + formula ϕ and suppose η(ϕ) = k and η(ϕ) = r -k. The satisfiability of ϕ is decidable in O(2k2 r-k ).

1 . 2 .

 12 Let n(c), m(c), s(c) be the lowest, middle and highest labeled variable in clause c. These values are distinct. Represent clause c in normal form as n(c) = 1 -m(c) -s(c).

Figure 1 :Remark 6 . 1 .

 161 Figure 1: Substitution algorithm

  Consider the case L \ L = ∅. Let variable v be in this set difference. It cannot be the case that v = n(c) since this means the procedure missed a mandatory substitution of n(c), which the second iteration picked up.Therefore v = n(c). In this case, v is the result of a chain of substitutions ending with clause c. An induction on this chain shows the procedure missed a mandatory substitution of an n-variable, which the second iteration picked up.Consider the case L \ L = ∅. Let variable v be in this set difference. It cannot be the case that v = n(c), since this means the second iteration introduced a new variable in clause c, the result of a substitution of n(c) which the first iteration missed.Therefore v = n(c). In this case, v is a result of a chain of substitutions ending with clause c. An induction on this chain of substitutions shows the second iteration of the procedure introduced a new variable in clause c, the result of a substitution of an n-variable, which the first iteration missed.

c 1 : 1 2 3 c 2 : 4 5 6 c 3 : 2 5 6 c 4 : 1 2 5 c 1 : 1 2 3 c 4 : 1 2 5 c 3 : 2 5 6 c 2 : 4 5 6

 1326364513453626 

1 ): 1 0 2 3 C( 4 ): 1 0 2 5 C( 3 ): 2 0 5 6 C( 2 ): 4 0 5 6 C

 13453626 

C 1 : 6 C 4 : p 1 = 1 -p 5 , p 5 , p 6 C 3 : p 2 = 1 - p 5 , p 6 C 2 : p 4 = 1 - p 5 , p 6 6 }

 1641156315621566 p 1 = 0 -p 3 , p 5 , p Note the result of the computation: N = {p 1 , p 2 , p 4 } and N = {p 3 , p 5 , p Hence the rank and nullity of the formula are η(ϕ) = 3 and η(ϕ) = 3.

Remark 8 . 1 .Remark 8 . 2 .Remark 8 . 3 .Remark 8 . 4 .

 81828384 The largest number of expansions determined by running substitution on the collection of clauses, is|n(k)| = 2, |n(k -1)| = 3, |n(k -2)| = 5, . . . , |n(k -i)| = F ib(i + 3)Definition 8.1 (Representation). The size of a representation for a given instance of 1-3-SAT + ∈ Φ(r, k) expressed by substitution as n(1), n(2), . . . , n(k) is given by the formula r × log( i≤k |n(i)|) The size of the resulting representation associated to formulas treated by Remark 8.1 converges asymptotically to r 2 × log(1.62).Proof. The bound is given by an analysis of the growth of the Fibonacci sequence. It is well known the rate of growth of the sequence converges approximately to 1.62 n . Contrast the scenario in Remark 8.1, to the case in which there are no substitutions induced, i.e. ϕ = {{p 3i+1 , p 3i+2 , p 3i+3 }, i ≤ 1/3k}. The size of the resulting representation associated to formulas treated by Remark 8.3 is r × log(2/3r).

Theorem 8 . 1 .Remark 8 . 5 .Proof. r 2 - 1 .

 818521 Any 1-3-SAT + formula admits a representation with size S for r × log(2/3r) ≤ S ≤ r 2 × log(1.62) The size of any representation is bounded above by r 2-= r 2 × log(1.62) implies 2 -= 2 + log log(1Let ϕ be a 1-3-SAT + formula and let σ = σ(ϕ) be the resulting structure obtained performing substitution on ϕ. Then, η(ϕ) ≤ η(σ) and η(ϕ) ≥ η(σ).

Remark 10 . 1 .

 101 |V |-many variables to a significantly smaller equivalent instance, i.e. an instance encoded using O(|V | 2-) for any > 0.We believe it is already transparent that, in fact, we have obtained a significantly smaller kernel for 1-3-SAT + above, i.e. transforming parsimoniously an instance of |V | variables to a "compressed" instance of 0-1-IP = of at most 2/3|V | variables. Definition 10.1 (Constraint Satisfaction Problem). A csp is a triple (S, D, T ) where -S is a set of variables, -D is the discrete domain the variables may range over,and -T is a set of constraints. Every constraint c ∈ T is of the form (t, R) where t is a subset of S and R is a relation on D. An evaluation of the variables is a function v : S → D. An evaluation v satisfies a constraint (t, R) if the values assigned to elements of t by v satisfies relation R. The following are constraint satisfaction problems: -3-cnf-SAT -1-3-SAT -1-3-SAT + In what follows we switch between notations and write a csp in a more general form, with a problem (S, D, T ) written as L ⊆ N × Σ * , with instances (k, x) such that k = |S| and x a string representation of D and T . Definition 10.2 (Kernelization). Let L, M be two parameterized decision problems, i.e. L, M ⊆ N × Σ * for some finite alphabet Σ. A kernelization for the problem L parameterized by k is a polynomial time reduction of an instance (k, x) to an instance (k , x ) such that: -(k, x) ∈ L if and only if (k , x ) ∈ M , -k ∈ O(k), and -|x | ∈ O(|x|). Definition 10.3 (Encoding). An encoding of a problem L ⊆ N×Σ * is a bijection h : L → N such that for any (k, x) ∈ N × Σ * we have h(k, x) ∈ O(|x|). Definition 10.4. A non-trivial kernel for 3-cnf-SAT is a kernelization of this problem transforming any instance ϕ ∈ Φ(r, k) to an instance (f (r), g(k)) of an arbitrary NP-complete csp M , such that f (r) ∈ O(r) and g(k) ≤ h(k, r) with h(k, r) ∈ O(r 3-) for an encoding h of ϕ and some > 0.Remark 10.2 (Dell and Melkebeek[START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF]). 3-cnf-SAT admits a trivial kernel (f (r), g(k)) with g(k) ≤ h(k, r) and h(k, r) ∈ O(r 3 ). Lemma 10.1 (Dell and Melkebeek [12]). If 3-cnf-SAT admits a non-trivial kernel, then coNP ⊆ NP \ P. Definition 10.5. A non-trivial kernel for 1-3-SAT is a kernelization of this problem transforming any instance ϕ ∈ Φ(r, k) to an instance (f (r), g(k)) of an arbitrary NP-complete csp M , such that f (r) ∈ O(r) and g(k) ≤ h(k, r) with h(k, r) ∈ O(r 2-

Corollary 10 . 2 .

 102 coNP ⊆ NP \ P Proof. Follows from Lemma 10.3, Theorem 10.1 and Lemma 10.2.

  Proposition 10.2 (Schroeppel and Shamir[19]). #0-1-IP = can be solved in time O(2|C|2 |V |/2 ) and space O(2 |V |/4 ).

	10. Implications
	Proposition 10.1 (Schroeppel and Shamir[19]). #1-3-SAT can be solved in
	time O(2 |V |/2 ) and space O(2 |V |/4 ).
	Corollary 10.1. #1-3-SAT + can be solved in time in time O(4/3|V |2 3|V |/8 )
	and space O(4/3|V |2 3|V |/16
	2 , • • • , p K hence contradicts
	the statement of Remark 6.2.

Acknowledgments

Foremost thanks are due to Igor Potapov for his support and benevolence shown towards this project. Most of the ideas presented here have crystallized while the author was studying with Rod Downey at Victoria University of Wellington, in the New Zealand winter of 2010. This work would have been much harder to write without the kind hospitality of Gernot Salzer at TU Wien in 2013. There I have met and discussed with experts in the field such as Miki Hermann from École Politechnique. I was fortunate enough to attend at TU Wien the outstanding exposition in Computational Complexity delivered by Reinhard Pichler. I am indebted to Noam Greenberg for supervising my Master of Science Dissertation in 2012. I thank Asher Kach, Dan Turetzky and David Diamondstone for many useful thoughts on Computability, Complexity and Model Theory. I have also found useful Dillon Mayhew's insights in Combinatorics, and Cristian Calude's research on Algorithmic Information Theory. Exceptional logicians such as Rob Goldblatt, Max Cresswell and Ed Mares have also supervised various projects in which I was involved. I further thank Mark Reynolds and Tim French from The University of Western Australia for teaching me to think, and act under pressure. Special acknowledgments are given to my colleague Reino Niskanen for useful comments and proof reading an initial compressed version of this manuscript. Bucharest, June 2019