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Abstract

In this paper, we consider inference procedures for entry games with complete information.
Due to the presence of multiple equilibria, we know that such a model may be set-identified
without imposing further restrictions. We complete the model with the unknown selection
mechanism and characterize geometrically the set of predicted choice probabilities, in our case,
a convex polytope with many facets. Testing whether a parameter belongs to the identified set
is equivalent to testing whether the true choice probability vector belongs to this convex set.
Using tools from the convex analysis, we calculate the support function and the extreme points.
The calculation yields a finite number of inequalities, when the explanatory variables are
discrete, and we characterized them once for all. We also propose a procedure that selects the
moment inequalities without having to evaluate all of them. This procedure is computationally
feasible for any number of players and is based on the geometry of the set. Furthermore, we
exploit the specific structure of the test statistic used to test whether a point belongs to a convex
set to propose the calculation of critical values that are computed once and independent of the
value of the parameter tested, which drastically improves the calculation time. Simulations in
a separate section suggest that our procedure performs well compared with existing methods.
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1 Introduction

This paper provides an estimation procedure for empirical models of entry and market structure,

also called entry games, which may be set-identified. Entry games are very popular in the empirical

Industrial Organization literature because they allow researchers to study the nature of firms’ profits

and the nature of competition between firms from data that are generally easy to collect. They

were popularized by the seminal works of Bresnahan and Reiss (1991a), Bresnahan and Reiss

(1991b) and Berry (1992).1 However, the econometric analysis of entry games is complicated by

the presence of multiple equilibria, a problem that affects the standard estimation strategy. Without

additional assumptions, the model is indeed incomplete. Various solutions have been proposed in

the literature. First, assumptions can be added regarding the (unknown) selection mechanism in

regions of multiple equilibria. Reiss (1996) considers a specific order of entry, and Bjorn and Vuong

(1984), randomly draw the equilibrium selection. Bajari et al. (2010) introduce a parametric

specification of the selection mechanism, and Grieco (2014) extends it to a non-parametric function

of observables and non-observables. Alternatively, it is sometimes possible to estimate an entry

game from the observation of some outcome that is independent of the true selection mechanism.

In their seminal work with heterogeneous firms, Bresnahan and Reiss (1991b) report that the

model uniquely predicts the number of active firms. Berry (1992) generalizes the estimation of the

profit function from the observed number of active firms for more than two players. A tremendous

number of empirical applications have followed this path (see the survey by de Paula (2012)),

notably including Mazzeo (2002), Reiss (1996), Cleeren et al. (2010), and Sampaio (2007),

among others. However, adding assumptions could lead to a misspecified model, and working on

certain invariant outcomes may lead to a suboptimal procedure (see Tamer (2003)). The recent and

blossoming literature on partial/set-identification, following earlier work by Manski (1995), makes

it possible to estimate a model that does not uniquely predict actions by using bounds. Following

Tamer (2003), the presence of multiple equilibria does not imply partial identification,2 but the

literature provides inference methods that are eligible in both cases. Ciliberto and Tamer (2009)

1See Berry and Reiss (2007) for a survey.
2However, identification at infinity, as in Tamer (2003), may lead to inference procedures that are non standard;

see Khan and Tamer (2010).
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were the first to use bounds to estimate an entry game with complete information.

In this paper, we complete the model with the selection mechanism, η(·), and characterize the

set of predicted choice probabilities generated by the variation of η(·) in the space of admissible

selection mechanisms. Our first contribution is to characterize more deeply the geometric structure

of this set. The set is a convex polytope with many facets (because we focus on pure strategy Nash

equilibria), and the number of facets increases exponentially with the number of players. Alternative

equilibrium concepts have been proposed in the literature (as in Aradillas-Lopez and Tamer (2008),

Beresteanu et al. (2011) or Galichon and Henry (2011)). Changing the equilibrium concept affects

some of the calculations provided in this paper and, sometimes, increases the complexity but does

not alter the general philosophy. Moreover, Nash equilibrium is the most commonly used solution

concept. In this paper, we derive a closed-form expression for the support function of this polytope,

the extreme points (or vertices) of which can also be calculated as a function of the primitives of the

model. These vertices are indeed characterized by an order of outcome selection in the regions of

multiple equilibria. Each vertex is also geometrically defined by the intersection of some supporting

hyperplanes. We are able to define the cone of outer normal vectors of these hyperplanes and,

thereby, the inequalities that are binding in this point.

Testing whether a parameter belongs to the identified set is equivalent to testing whether the

true choice probability vector belongs to this convex set. Following Rockafellar (1970), the sup-

port function defines a continuum of inequalities that have to be satisfied for any point in the set.

This characterization has already been used in the set-identification literature by, in particular,

Beresteanu and Molinari (2008), Beresteanu et al. (2011) and Bontemps et al. (2012). Geometri-

cally, the support function in a given direction leads to an inequality that detects whether the point

of interest belongs to the same halfspace than the convex set itself. This continuum of inequalities

simplifies here toward a finite number because of the specific structure of the entry game considered

in this paper.

However, when the number of players increases, the number of facets of the polytope increases

exponentially, and, therefore, the smallest number of inequalities necessary to have a sharp char-

acterization - from 16 in a game with three players to more than one million in a game with six

players. The standard approach for moment inequality models is to first evaluate all the moments,
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then eliminate the ones that are far from being binding (see Andrews and Soares, 2010, for the

unconditional case). Our second contribution is to provide a geometric selection procedure that

does not require us to evaluate all the moments and for which the computational cost is polynomial

in the dimension of the outcome space (2N). The idea is to recursively identify the extreme point

of the set that is the most relevant for demonstrating that our point, the true choice probability

vector, belongs to the polytope. We then test only the inequalities related to the facets of this

extreme point and do not evaluate the other inequalities. The number of relevant moments grows

at the rate 2N as in Ciliberto and Tamer (2009), but with a sharper characterization of the set.

This is a considerable improvement in terms of computational burden with respect to alternative

sharp characterization methods (such as the two step approaches of Andrews and Soares (2010)

and Romano et al. (2014)).

Furthermore, and more importantly, we develop a test procedure for the hypothesis of whether

the true choice probability vector belongs to this polytope that exploits the specific structure of the

test statistic. When we test whether a parameter θ belongs to the identified set, the feasible test

statistic depends on the support function of the polytope, which is fixed, and the choice probability

vector, which is estimated. The asymptotic distribution depends on θ in a specific manner. It allows

us to derive critical values for our test procedures that are calculated once and valid for any θ. This

is a tremendous simplification with respect to a general moment inequality model. Some of the

recommended test procedures can be conservative, but, one, which exploits the maximum number

of facets at any extreme point, is not. This maximum number can be determined by brute force

using the geometric structure of the set; we also provide an upper bound. Simulations highlight that

our method works well with the sample sizes that are usually considered in the empirical literature

(from 500 to 2000 observations) and outperforms existing inference procedures.

This paper belongs to the growing literature on set-identification and lies at the intersection

between the moment inequality literature and the literature on set-identification that exploits the

geometric structure. A model is generally set-identified when the data are incomplete because of

some missing information (a censorship mechanism, two-sample combination, or multiple equilibria).

In entry games, the unknown selection mechanism in regions of multiple equilibria is the missing

one, but it is naturally bounded between 0 and 1. These bounds lead to moment inequalities (see,
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for example, Ciliberto and Tamer (2009)). Moment inequality procedures are now well developed in

the partial identification literature, which includes contributions by, among others, Chernozhukov

et al. (2007), Rosen (2008), Andrews and Soares (2010), Bugni (2010), Canay (2010), Romano

and Shaikh (2008), Romano and Shaikh (2010), Chernozhukov et al. (2015), Andrews and Shi

(2013) or Aradillas-Lopez and Rosen (2017). However, in most cases, the structure of the missing

information is not exploited. Other contributions exploit this missing information by characterizing

the identified set directly or indirectly through a convex set, and, then, through the support function.

The support function provides a collection of moment inequalities, but these moment inequalities

have a particular structure and are exploited differently than in the general moment inequality

literature (see, in particular, the two surveys by Molchanov and Molinari (2015) and Bontemps

and Magnac (2017)).

Papers that have exploited the structure of the missing information either use random set theory

(introduced in econometrics by Beresteanu and Molinari, 2008), optimal transport (Galichon and

Henry (2011)) or complete the model, as in Bontemps et al. (2012). Fundamentally, all methods are

intended to provide a sharp characterization of the identified set and lead to a collection of moment

inequalities that are specifically determined using the tools of the approach considered. They all

lead to the same set of inequalities. In this spirit, they can be seen as equivalent. Redundant

ones are eliminated through the characterization of what Galichon and Henry (2011) call the core

determining class. In our case, we also characterize the core determining class, i.e. the collection

of facets of the convex set, by a necessary and sufficient condition. However, in addition to these

equivalences, our geometric approach is able to select the subsets of moments that are close to

binding without having to evaluate all of them and to determine the maximum number of moments

that are binding.

Section 2 considers the general entry game with N players and no explanatory variable. Ex-

planatory variables do not play a specific role in the procedure. We characterize the regions with

multiple equilibria and compute the support function of the polytope, i.e., the set of predicted

choice probability vectors for a given parameter value. The sequence of inequalities that need to

be verified is characterized. The aim of Section 3 is to more deeply exploit the geometry of the

polytope to propose a more efficient estimation procedure. We first provide a necessary and suffi-
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cient condition for eliminating any redundant inequalities. We then propose our geometric selection

procedure which consists of determining the local extreme point of the polytope and only testing

the inequalities relative to the facets at this extreme point. Section 4 calculates the asymptotic dis-

tribution of the test statistic used and proposes different calculations of the critical value that are

computed once for all. Section 5 proposes a few Monte Carlo simulations to assess the performance

of our inference procedure and compare it with existing procedures. Section 6 considers the case

with discrete explanatory variables, and Section 7 concludes the paper. The Supplemental Material

available online3 contains appendices that provide the proofs and the algorithms (Appendix A),

the specific details for the three player game (Appendix B) and an additional Monte Carlo analysis

(Appendix C).

2 Entry game with N players

We formalize the entry game with N players/firms. For exposition purposes, we first consider a

model without explanatory variables and then extend it in section 6. We first define some notations

before characterizing the identified set.

2.1 Setup and notations

2.1.1 The model

Let N denote the total number of firms that can enter any market. Following Berry (1992),

we introduce a model of market structure where the profit function πim of firm i in a market m is

assumed to be independent of the identity of the firm’s competitors. All firms decide simultaneously

whether to enter the market (the action is aim = 1) if, in a pure strategy Nash equilibrium, their

profit is positive (πim > 0). Otherwise, πim <= 0, and the action is aim = 0. The profit function is

assumed, without loss of generality, to be linear in the explanatory variables4

πim = βi + αi

(∑
j 6=i

ajm

)
+ εim,

aim = 1{πim > 0}.
(1)

3It can be downloaded, jointly with the full text, by following the link:
https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2018/wp tse 943.pdf
4Any (separable) parametric form πim = fi

(∑
j 6=i ajm;α

)
+ εim can be considered as long as the function fi(·; θ)

is strictly decreasing in its first argument.
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Following the literature on entry games, we assume that αi < 0, i.e., the presence of more com-

petitors decreases a firm’s profit.5 The unobserved components εim, i = 1, . . . , N are drawn from

a known distribution (up to some parameter vector γ). The econometrician does not observe their

values, whereas all firms within a market observe them before deciding whether to enter (complete

information case).

For identification, we first need a scale normalization, and thus, we assume that the variance

of each shock εim is equal to unity. We denote by F (·; γ) the cumulative distribution function

of εm = (ε1m, . . . , εNm)>, and we assume that the distribution is continuous with full support.

Henceforth, we use the notation θ for all the parameters in the model (θ ∈ Θ ⊆ Rl), 6 and we omit

the subscript m for notational convenience.

2.1.2 The multiplicity of pure strategy Nash equilibria

For a given market, an outcome y is the vector of actions (in {0, 1}N) taken by the firms. There

are obviously 2N possible outcomes from (0, . . . , 0)> to (1, . . . , 1)>. We denote by Y this set of

possible outcomes. YK denotes the subset of outcomes with K active firms in equilibrium, i.e. any

K firms playing action 1. There is 1 outcome with 0 active firms, N outcomes with 1 active firm

and dK =
(
N
K

)
outcomes with K active firms for K ≤ N . For each K, we label the outcomes as

y
(K)
j , j = 1, . . . , dK according to a predefined order.7 Globally, we order the outcomes in Y first by

their number of active firms, then according to the predefined order within each YK :

Y =

 y
(0)
1︸︷︷︸
Y0

, y
(1)
1 , . . . , y

(1)
d1︸ ︷︷ ︸

Y1

, . . . , y
(K)
1 , . . . , y

(K)
dK︸ ︷︷ ︸

YK

, . . . , y
(N)
1︸︷︷︸
YN

 .

It is well known that the model has multiple equilibria, i.e., there are regions of realizations of ε in

which we cannot uniquely predict each firm’s action. Consequently, there is no one-to-one mapping

between the collection of possible outcomes and the regions of ε given any parameter value θ.

What is missing from the model is the selection of a given equilibrium in the regions of multiple

equilibria. We define this selection mechanism η(·) as in Definition 2 of Galichon and Henry (2011).

5The case in which αi > 0 could be handled equivalently. Gualdini (2018) considers, in a network formation
game, these two cases.

6θ = (β1, . . . , βN , α1, . . . , αN , γ)>
7The order for K = 1 is ((1, 0, . . . , 0)>, (0, 1, 0 . . . , 0)> ... (0, . . . , 0, 1)>), and so forth.
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Definition 1 (Equilibrium selection mechanism) An equilibrium selection mechanism is a con-

ditional probability η(·|ε; θ) of y given ε such that the selected value of the outcome variable is actually

an equilibrium predicted by the game.

We denote by E the set of selection mechanisms and by P (θ, η) the predicted choice probability

vector when the parameter of the model is θ and the selection mechanism is η(·). We partition this

vector according to the partition of Y as8

P (θ, η) =

P (0)
1 (θ, η)︸ ︷︷ ︸
P (0)(θ,η)

, . . . , P
(K)
1 (θ, η), . . . , P

(K)
dK

(θ, η)︸ ︷︷ ︸
P (K)(θ,η)

, . . . , P
(N)
1 (θ, η)︸ ︷︷ ︸
P (N)(θ,η)


>

. (2)

One solution to the multiple equilibria problem consists of making assumption on this selection

mechanism like in Reiss (1996) or Cleeren et al. (2010), for example. The vector of predicted choice

probabilities is a point in [0, 1]2
N

and standard inference techniques can be used. This is, of course,

ad hoc and may lead to misspecification.

Another solution, ours, following the literature on set-identification, consists of characterizing all

the possible choice probabilities predicted by the model. The vector of predicted choice probabilities,

instead of being a point, belongs to a (convex) set that we characterize. Different sets of values

(θ, η) may generate the same point P (θ, η).9 Our goal is to characterize the ones which generate

the true choice probability vector. In the next subsection, we first characterize the set of choice

probabilities predicted by the model.

2.2 From the set of choice probabilities to the identified set

In this section, we want to characterize the set of predicted choice probabilities. To do so, we need

to understand the multiplicity structure and characterize it. Then, we derive a parametrization of

the set.

8In particular, P
(K)
i (θ, η) denotes Prob(y = y

(K)
i |θ, η).

9Observe that having multiple equilibria does not automatically guarantee to have set/partial identification. In
the following, our statistical procedure, which consists of inverting a test, is valid for point or set-identified models.
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2.2.1 The regions of multiple equilibria

Our specification ensures that multiple equilibria only involve outcomes with the same number of

active firms, i.e., within YK . Therefore, we focus on subsets of outcomes S ⊆ YK to characterize

the multiple equilibria regions. We say that a subset S ⊆ YK is in multiplicity if the prediction

of the game is all outcomes in S and no outcome outside S for ε in a non empty set, R(K)
S (θ).

R(K)
S (θ) is called a multiple equilibria region. We denote by S(K) the collection of subsets S of YK

in multiplicity.10

S(K) =
{
S ⊆ YK : |S| ≥ 2 and S is in multiplicity

}
.

Note that not all subsets of cardinality greater than two are elements of S(K). For example, when

N = 4 and K = 2, S1 =
{

(1, 1, 0, 0)>, (0, 0, 1, 1)>
}

is not in multiplicity whereas the subset

S2 =
{

(1, 1, 0, 0)>, (1, 0, 1, 0)>
}

is.

We now present a necessary and sufficient condition for S to be in multiplicity. Define N0 (resp.

N1) the set of indices of firms that always play action 0 (resp. 1) across S. n0 and n1 are their

cardinalities. N0 and N1 being fixed, there are
(
N−n0−n1

K−n1

)
possible outcomes in YK corresponding

to the remaining choice of the K − n1 firms which play action 1 among the N − n0 − n1 remaining

ones. S should contain all these possibilities to be in multiple equilibria and it is formalized in the

next proposition.

Proposition 1 A set S ⊆ YK is in multiplicity if and only if |S| =
(
N−n0−n1

K−n1

)
.

Observe that, for our particular examples above, S1 is not in multiplicity because n0 = n1 =

0 and, consequently, the subset should contain
(

4
2

)
= 6 outcomes with two active firms to be

in multiplicity. S2 is in multiplicity because n0 = n1 = 1 and it collects all possible outcomes

(
(

4−1−1
2−1

)
= 2). The proof of Proposition 1 characterizes also the region R(K)

S (θ) of ε.

Following Proposition 1, we count the number of multiple equilibria regions.

Proposition 2 The cardinality of S(K), i.e., the number of multiple equilibria regions predicting K

active firms, for 1 ≤ K ≤ N − 1 is equal to∣∣S(K)
∣∣ =

K−1∑
n1=0

N−K−1∑
n0=0

(
N

n1

)(
N − n1

n0

)
.

10Note that the maximum number of such subsets is equal to 2dK − dK − 1.
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When K = 1, the number of regions of multiple equilibria is
∑N

n=2

(
N
n

)
, i.e., all possible combi-

nations of more than two outcomes. However, as illustrated in Table I, the number of regions for

various values of N and K is generally far less from all the possible combinations. It means that

the parametrization of the set of predicted choice probabilities is of a much lower dimension than

one would have expected.

[Include Table I]

2.2.2 The set of predicted choice probabilities

We also define the subset of S(K) that contains one specific outcome y
(K)
j as

S
(K)
j =

{
S ∈ S(K) : y

(K)
j ∈ S

}
.

Following Berry and Tamer (2007) and Galichon and Henry (2011), we can calculate the prob-

ability of observing outcome y
(K)
j . This probability depends on the parameter vector θ and on the

unknown selection mechanism η that selects equilibrium y
(K)
j in the regions of multiple equilibria

that predicts this outcome. More specifically,

P
(K)
j (θ, η) =

∫
U

(K)
j (θ)

dF (ε; γ) +
∑

S∈S(K)
j

∫
R(K)
S (θ)

η
(
y

(K)
j |ε; θ

)
dF (ε; γ), (3)

where U
(K)
j (θ) is the region of ε ∈ RN which uniquely predicts the outcome y

(K)
j . Let us denote by

∆
(K)
j (θ) =

∫
U

(K)
j (θ)

dF (ε; γ) and ∆
(K)
S (θ) =

∫
R(K)
S (θ)

dF (ε; γ) for S ∈ S(K).

Let A(θ) (resp. BK(θ), for any K = 0, . . . , N) be the set of P (θ, η) (resp. P (K)(θ, η)) generated

by the variation of η in E

A(θ) =
{
P ∈ R2N : ∃η ∈ E , P = P (θ, η)

}
, BK(θ) =

{
PK ∈ RdK : ∃η ∈ E , PK = PK(θ, η)

}
.

Equation (3) is a parametrization of the sets A(θ) and BK(θ), K = 0, . . . , N . This parametriza-

tion is indexed by the regions R(K)
S (θ), counted in Table I.

10



2.2.3 A characterization of the identified set

Let P0 = P (θ0, η0) be the true choice probabilities generated by the true (unknown) parameter θ0

and the true (unknown) selection mechanism η0. The identified set ΘI is defined as the collection

of points θ such that P0 can be rationalized with a selection mechanism

ΘI =
{
θ ∈ Θ : such that ∃η ∈ E , P0 = P (θ, η)

}
. (4)

The following is easily verified:

θ ∈ ΘI if and only if P0 ∈ A(θ). (5)

We therefore need to be more precise about the structure of A(θ) to be able to verify the second

part. The following result holds:

Proposition 3 A(θ) is a convex set of R2N , and

A(θ) = B0(θ)×B1(θ)×B2(θ)× . . .×BN(θ),

where BK(θ) is a convex set in RdK .

The convexity of A(θ) is a general feature of an entry game and does not depend on our spec-

ification (see Beresteanu et al. (2011)). Its specific structure, i.e., the direct product of several

components, comes from our specification in Equation (1) which ensures the unicity of the number

of active firms in the regions of multiple equilibria. This structure simplifies some of the following

results of this section.

Also, BK(θ) is a point only when the number of active firms in equilibrium is 0 or N, because

there is no region of multiple equilibria involving these specific outcomes. Note that each BK(θ) is

strictly included11 in the cube, CubK , defined by

∆
(K)
j (θ) ≤ P

(K)
j ≤ ∆

(K)
j (θ) +

∑
S∈S(K)

j

∆
(K)
S (θ), ∀j = 1, . . . , dK (6)

It comes from the fact that η(·) in Equation (3) lies between 0 and 1.

11See Appendix B, Figure 7, for a visual illustration of the case with three players and K = 1.
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ΘI , the identified set, is not convex, but it can be characterized by verifying that a point, P0,

belongs to a convex set, A(θ). Using Proposition 3, we can decompose this condition into the

following sub-conditions:

P0 ∈ A(θ) iff ∀K ∈
{

0, 1, . . . , N
}
, P

(K)
0 ∈ BK(θ).

2.3 The support function and a first selection of moment inequalities

Following the convex literature, we introduce the support function of each convex set BK(θ). This

tool has, in particular, been used, in the set-identified literature, by Beresteanu and Molinari (2008)

and Bontemps et al. (2012). It helps in generating the set of inequalities satisfied by P0. We first

recall what the support function of a convex set is and how it generates the inequalities that are

the basis of our inference procedure. The support function of a convex set A ⊂ Rd is defined as:

δ∗(q;A) = sup
x∈A

q>x.

for all directions, q ∈ Rd. Its geometrical interpretation is illustrated in Figure 1. The support

function of a convex set in a given direction locates the supporting hyperplane in this direction. For

each direction q, it defines an inequality that is satisfied by any point of the convex set. The support

function implicitly gathers all the inequalities that define the convex set into a single function. If

the set is smooth, there is a continuum of such inequalities; if it is a polytope, only a finite number

of inequalities is necessary to characterize the set. Kaido and Santos (2014) show that, when the

set is convex, using the support function leads to an efficient estimator of the convex identified set.

Following Rockafellar (1970) and Proposition 3, the identified set is characterized by the fol-

lowing inequalities

θ ∈ ΘI ⇐⇒ P0 ∈ A(θ)

⇐⇒ ∀q ∈ R2N , q>P0 ≤ δ∗(q;A(θ)),

⇐⇒ ∀K, P (K)
0 ∈ BK(θ),

⇐⇒ ∀K, ∀qK ∈ RdK , q>KP
(K)
0 ≤ δ∗(qK ;BK(θ)).

(7)

We now turn to the calculation of the support function of BK(θ) for any K. Let qK ∈ RdK be

a given direction. We assume the following order among the coordinates of qK : qi1,K ≥ qi2,K ≥
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. . . ≥ qidK ,K . We also partition S(K), the collection of subsets of outcomes with K active firms in

multiplicity, as follows: we denote O(K)
i1

= S
(K)
i1

, the elements of S(K) which contain the outcome

y
(K)
i1

and by O(K)
i2

the subset of elements of S
(K)
i2

that are not in O(K)
i1

, i.e., S
(K)
i2
\S(K)

i1
and more

generally O(K)
ij

= S
(K)
ij
\ ∪k<j S(K)

ik
, for any j ≤ dK . Note that the construction of the outcomes

O(K)
j ’s is linked to the order of the components of qK . We now provide a closed-form expression for

the support function in this direction.

Proposition 4 Let qK ∈ RdK , and assume qi1,K ≥ qi2,K ≥ . . . ≥ qidK ,K. The support function in

the direction qK, δ∗ (qK ;BK(θ)), is equal to:

δ∗ (qK ;BK(θ)) =

dK∑
j=1

qj,K∆
(K)
j (θ) +

dK∑
j=1

qij ,K

 ∑
S∈O(K)

ij

∆
(K)
S (θ)

 . (8)

It is reached at the extreme point

E
(K)
i1,i2,...,idK

= vec
(

∆
(K)
1 (θ) +

∑
S∈O(K)

1

∆
(K)
S (θ), . . . ,∆

(K)
dK

(θ) +
∑

S∈O(K)
dK

∆
(K)
S (θ)

)
.

Consequently, BK(θ) is a polytope, and its vertices are included in the set of points E
(K)
i1,i2,...,idK

where the vector of indices (i1, . . . , idK ) is any permutation of the vector of indices (1, 2, . . . , dK) .

BK(θ) has at most dK ! vertices.

Each extreme point of BK(θ), and therefore its support function, can be calculated from the knowl-

edge of the non-zero values of ∆
(K)
S (θ), S ∈ S(K). This number of non-zero values is the number

of multiple equilibria regions and we saw in Proposition 2 that this number is much smaller than

2dK − dK − 1 (see table I). Consequently, the parametrization of BK(θ) is numerically tractable

for moderate values of N . Furthermore, each non-zero value ∆
(K)
S (θ) can easily be calculated or

simulated from the knowledge of the distribution of ε.

We can now extend this result to the calculation of the support function of the full set A(θ) for

any direction q ∈ R2N . We adopt the standard notation: q = vec
(
q0, q1, . . . , qN

)
, where qK is the

direction related to the set BK(θ) (i.e., qK ∈ RdK ) and vec(·) denotes the vertical concatenation.

13



Proposition 5 The support function of A(θ) in direction q is equal to

δ∗ (q;A(θ)) =
N∑
K=0

δ∗ (qK ;BK(θ)) . (9)

This results come from the specific characterization of A(θ) in Proposition 3. The last proposi-

tion, combined with Equation (7), is the basis of our inference procedure. It generates a continuum

of inequalities that have to be satisfied for any parameter of the identified set. However, since all

the BK(θ)’s and, therefore, A(θ), are polytopes, it is necessary and sufficient to test the inequalities

in a finite set of directions. We now explicit this set of directions, first for the BK(θ)’s than for

A(θ).

Let QK be the set of non-null directions of RdK with coordinates that are either one or zero.

There are 2dK − 1 directions in QK . The next proposition shows that it is sufficient to check the

inequalities in QK , for all K, to characterize the identified set.

Proposition 6

θ ∈ ΘI ⇐⇒ ∀K ∈ {0, 1, 2, . . . , N}, ∀qK ∈ QK , q>KP
(K)
0 ≤ δ∗(qK ;BK(θ)).

Remark We already mentioned that our specification ensures that the number of firms entering

the market is constant among outcomes in multiplicity. As a result, the sets BK(θ) belong to an

hyperplane because the sum of the components of P (K)(θ, η) is a constant which depends on θ only.

If we wanted to characterize one BK(θ) only, for one specific choice of K, we would need to consider

all the directions of QK combined with the direction (−1,−1, . . . ,−1) to ensure the equality of the

sum of all components. Here, due to the fact that we are considering A(θ), which is included in the

simplex (the sum of all the probabilities is equal to 1),12 we don’t need to consider this direction.

As a matter of fact, if all the inequalities are satisfied with (1, . . . , 1) for all K, they are equalities

and therefore are automatically satisfied for (−1,−1, . . . ,−1).

Optimal transport, random sets or completion of the model Our approach consists in

characterizing the set A(θ) (or, equivalently, the sets BK(θ)) through its support function and

12We thank one of the referees for highlighting this issue.
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extreme points. This is done after having completed the model with the unknown selection mech-

anism, η(·), and finding which selection mechanisms generate the extreme points. The geometric

structure induced by the multiplicities allows us to exhibit the inequalities that are satisfied by any

parameter of the identified set.

Galichon and Henry (2011) use the optimal transport theory and the notion of core determining

class to generate the relevant inequalities that characterize sharply the identified set. Beresteanu et

al. (2011) emphasize that an entry game is a model with convex predictions. They use random set

theory and, in particular, the Aumann expectation considered in their paper is our set A(θ). Both

methods are numerically challenging for a game with 6 players even when considering only pure

strategy equilibria. Following Proposition 6, there are, at maximum,
∑N

K=0(2dK − 1) inequalities.

However, this number is very large when N ≥ 6 ; we have more than 1 million of inequalities to

check for 6 players.

Ciliberto and Tamer (2009) bound the sets BK(θ) by the cubes CubK introduced above, which

are easier to characterize. Their approach can handle games with a moderate number of players

above 6, like our method, but bounding component by component makes the estimated set larger,

and sharpness is not attained.

Fundamentally, whether one uses random set theory and the capacity functional, the optimal

transport approach of Galichon and Henry (2011) or the approach presented in this paper, all these

methods are intended to derive a sufficient set of inequalities satisfied by the parameters in a specific

manner. Each method has its specificities. However, our approach allows us to go deeper into the

geometric analysis of the set A(θ) and this is the objective of the next section.

3 Using the geometry of A(θ) to select inequalities

The convex set BK(θ) can be characterized by at most 2dK − 1 inequalities. Due to its particular

geometry, it may be the case that some of these inequalities are redundant. In this section, we

present two strategies to reduce the number of inequalities. The first consists of calculating a core

determining class introduced by Galichon and Henry (2011) and later used in Chesher and Rosen

(2017). The second consists of exploiting further the geometry to propose a geometric selection

procedure of the inequalities without having to evaluate all of them.
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3.1 Deriving a core determining class of an entry game

The core determining class introduced by Galichon and Henry (2011) yields to a collection of

irredundant moment inequalities that are sufficient to sharply characterize the identified set ΘI .

We provide a characterization of the core determining class in an entry game from the geometric

study of the multiplicity structure of the model. For the text to be self-contained, we borrow some

definitions and concepts from Galichon and Henry (2011).

Definition 2 (Choquet capacity) A Choquet capacity L on the set Y is a set function L : C ⊆

Y → [0, 1] that is

• normalized, i.e., L(∅) = 0 and L(Y) = 1, and

• monotone, i.e., L(C) ≤ L(B), for any C ⊆ B ⊆ Y.

Definition 3 The smallest class Ω of subsets of Y is called core determining for the Choquet ca-

pacity L on Y if P(C) ≤ L(C) holds for all C ∈ Ω; then, P(C) ≤ L(C) holds for all C ⊆ Y.

The set A(θ) is characterized by its support function. Thus, we define the Choquet capacity for a

subset CK ⊆ YK as

L(CK) = δ∗
(
eCK ;BK(θ)

)
= max

η∈E

 ∑
j|y(K)

j ∈CK

Pj(θ, η)

 , (10)

where eCK ∈ {0, 1}dK with
(
eCK

)
j

= 1 if y
(K)
j ∈ CK and 0 otherwise. For a collection of subsets

C =
{
CK ⊆ YK : K ≤ N

}
, the Choquet capacity is defined as L(C) =

∑N
k=0 L

(
CK
)
. L is

monotone, as it is the sum of quantities that are positive and L(Y) = 1.

We define the concept of connectedness, which is useful for the exposition, introduced by Gali-

chon and Henry (2011). For a subset CK ⊆ YK , we define the (undirected) graph generated by CK

as ΓCK = (CK , E),13 where there is an edge between two vertices if they are in multiplicity with

eventually some additional outcomes that are only in CK (no outcome from YK \ CK). For any

graph Γ = (V,E), we say that C ⊆ V is connected in the graph Γ if there is a path of elements

of E connecting any pair of nodes of C.

13Recall that an undirected graph Γ = (V,E) is a collection of vertices/nodes V and edges/links E that link these
vertices. A graph Γ is connected if any pair of vertices are connected in Γ.
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Definition 4 (Well connectedness) A subset CK ⊆ YK is called well connected in YK if YK \CK
is connected in the graph ΓYK\CK .

Note that YK is in multiplicity. Therefore, the graph ΓYK is connected, and every CK ⊆ YK is

connected in the graph ΓYK . The notion of well connectedness extends the notion of connectedness

by imposing restrictions on the complementary of CK .

Note that the graph ΓY is not connected, as there is no multiplicity between YK and YK′ , for

K 6= K ′. Thus, ΓYK is a component of ΓY .14 We collect all well-connected subsets of YK as

ΩK =
{
CK ⊆ YK : CK well connected in YK

}
Galichon and Henry (2011) present some models in which the core determining class can be of

much lower cardinality than 2|Y| by exploiting the monotonicity property in certain supermodular

games. However, their approach does not provide a way to find a core determining class for a

general entry game. Chesher and Rosen (2017) provide a sufficient condition to characterize a

core determining class of set-identified models that can be written into what they call a generalized

instrument variable model. Our next proposition provides a complete characterization of a core

determining class for our entry model through a necessary and sufficient condition.

Proposition 7 A collection Ω of subsets of Y is core determining for L in (10) if and only if

Ω =
{

ΩK : K = 0, 1, . . . , N
}

.

Subsection A.7 in the Supplemental Appendix provides an algorithm to construct the core deter-

mining class from Proposition 7. It is applied for the particular examples of N = 4 and K = 2

in Subsection A.7.2. However, it does not significantly reduce the number of irredundant moment

inequalities in our entry game. For example, when N = 6 and K = 3, it eliminates fewer than

30, 000 inequalities from a total of 220 − 1 = 1, 048, 575.

3.2 A geometric selection procedure

The core determining class is a useful concept because we eliminate redundant inequalities. However,

it does not significantly reduce the number of inequalities in our entry game. We now present a

14Recall that for an undirected graph Γ = (V,E), components of Γ are subgraphs {Hi}ki=1 such that each Hi is
connected and Hi is not connected to Hj for i 6= j.
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geometric selection procedure that fully exploits the geometry of the sets BK(θ). The procedure

first selects the extreme point of the set that seems the closest to the vector P
(K)
0 and then evaluates

only the inequalities associated with this extreme point, i.e., tests the directions that are the outer

normal vector of the supporting hyperplanes of BK(θ) at this point, and this, for each K = 0, . . . , N .

Following Proposition 4, an extreme point is determined by an order in the coordinates (note that,

a priori, two different orders could lead to the same physical point). The first part of the algorithm

is intended to determine this order in a recursive manner by exploiting the position of P
(K)
0 with

respect to the cube CubK which contains BK(θ). We explain the steps in non-technical detail below

and formalize the algorithm in the Supplemental Appendix (Appendix A.8).

Local moment selection Our local moment selection procedure can be summarized as follows:

1. Determine the cube CubK that contains BK(θ) by calculating the minimum and maximum

of each coordinate. Then, determine which coordinate of P
(K)
0 is the furthest from the center

of the cube.

2. Assume this is the jth coordinate.

(a) If it is on the maximum side, the extreme point is of type E
(K)
j,?,...,?(θ), and we now have

to determine the next component. To do so, we project P
(K)
0 on the face, and we repeat

the previous calculation by taking into account that we are on the face that maximizes

the jth coordinate.

(b) If it is on the minimum side, we know that our extreme point will be of the form

E
(K)
?,...,?,j(θ), and we now have to determine the next component. To do so, we project

P
(K)
0 on this face, and we repeat the previous calculation by taking into account that we

are on the face that minimizes the jth coordinate.

3. Repeat the following steps until having found one order of coordinates.

4. Once the local extreme point E
(K)
i1,i2,...,idK

is determined, we can focus on the directions of the

local supporting hyperplanes. Let the dK directions, ei1 , ei1,i2 ,..., ei1,i2,...,id1−1
, ei1,i2,...,id1 , where

the components are equal to 1 when the indices are subscripts of e and 0 otherwise. This
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set of directions is included in the set of directions of the local supporting hyperplanes. Only

checking these directions doesn’t provide a sharp characterization of BK(θ) unless K = 1 or

N − 1 but, however, provides an important refinement with respect to the existing method

of Ciliberto and Tamer (2009). An algorithm is provided in the Supplemental Appendix to

derive the other directions to consider.15

Our procedure selects which moments among the 2dK −1 are potentially binding without having

to evaluate all of them. The selection is based on the spatial location of the point P (K) and exploits

the geometry of the set BK(θ). Proposition 8 shows that the procedure is sharp for N = 3.

Proposition 8 Our local moment selection procedure provides a sharp characterization of the iden-

tified set for N = 3.

However, it is difficult to prove sharpness with any number of players N due to the difficulty

of globally characterizing all the facets. We evaluate this procedure for N = 4 in the Monte Carlo

section and results highlight that we are sharp too.

4 Estimation and inference

Following the results derived above, we now adopt the approach developed in Beresteanu and

Molinari (2008) and Bontemps et al. (2012) for testing a point in a convex set:

θ ∈ ΘI(P)⇐⇒ P0 ∈ A(θ)

⇐⇒ ∀q ∈ G, T∞(q; θ) = δ∗(q;A(θ))− q>P0 ≥ 0

⇐⇒ min
q∈G

T∞(q; θ) ≥ 0.

P0 is the true choice probability. The set of directions G is defined as

G =
N⋃
K=0

{
vec
(

0∑K−1
i=0 di

, qK , 0∑N
i=K+1 di

)
: qK ∈ GK

}
,

15Intuitively, there are more facets at these extreme points because, due to the lower number of subsets in multi-

plicity, different orders of the indices i1, . . . , idK
lead to the same point E

(K)
i1,...,idK

(θ).
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where, either GK = QK as defined in Proposition 6 or GK = ΩK the core determining class

characterized in Proposition 7.16 The set G collects successively all the directions needed to sharply

characterize the identified set.

The test based on T∞(·) is infeasible because we do not observe P0. We now characterize the

feasible test statistic and its asymptotic distribution under the null and derive strategies to calculate

the critical values. Throughout this section, we assume that we observe a sample of M i.i.d. markets

in which the same N firms (known to the econometrician) compete.

4.1 The asymptotic distribution of the test statistic

Let TM(q; θ) be the empirical counterpart of T∞(q; θ):

TM(q; θ) = δ∗(q;A(θ))− q>P̂M ,

where P̂M =
1

M

M∑
m=1

[1(Ym = y1), . . . ,1(Ym = y2N )]> is the empirical frequency vector. Under the

assumption that the markets are i.i.d., we have:

√
M
(
P̂M − P0

)
d−→

M→∞
N (0,Σ0),

where Σ0 = diag(P0)−P0(P0)>. Note that the only random part in TM(·) comes from the estimation

of the choice probabilities. Consequently, for q and θ fixed, TM(q; θ) is asymptotically normal with

variance q>Σ0q. An empirical estimator, Σ̂, can be used by plugging in P̂M in place of P0 in the

expression of Σ0.

In this section, we want our asymptotic result to be valid not only for the true probability

but also uniformly in the neighborhood of the true probability. We impose the following uniform

integrability condition:

Assumption 1 (Uniform integrability) The class P satisfies

lim
λ→∞

sup
P∈P

sup
j∈{1,...,2N}

EP

( 1(Y = yj)− µj(P )√
µj(P )(1− µj(P ))

)2

1

{∣∣∣∣∣ 1(yj)− µj(P )√
µj(P )(1− µj(P ))

∣∣∣∣∣ > λ

} = 0, (UI)

16Observe that, if, for any K, q̃K = vec
(

0∑K−1
i=0 di

, qK , 0∑N
i=K+1 di

)
,

δ(q̃K ;A(θ)) = δ(qK ;BK(θ)).
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where µj(P ) = EP (Y = yj).

Assumption UI ensures the uniform convergence of our test statistic over the class of probability

distributions P . This condition is satisfied over the class of probability distributions such that

µj(P ) ≥ ε for each j and some ε > 0.

The literature on inference in partially identified models has largely focused on the construction

of confidence regions CM . There is an open debate about whether one should cover any point of

the identified set (and, in particular, the true value) or the identified set entirely. Unless stated

otherwise, we are mainly interested in covering any point in the identified set with some pre-specified

probability 1− α, i.e.,

lim inf
M→∞

inf
P∈P

inf
θ∈ΘI(P )

P (θ ∈ CM) ≥ 1− α.

Following Bontemps et al. (2012), our inference method is based on TM(q; θ), rescaled by
√
M and

normalized (see Chernozhukov et al., 2015):

ξM(θ) =
√
M min

q∈G

TM(q; θ)√
q>Σ̂q

.

A point θ belongs to the confidence region C if the test based on ξM(θ) is not rejected. We now

calculate the asymptotic distribution of the test statistics ξM(θ).

Proposition 9 Let Qθ be the set of minimizers of T∞(q; θ) in G. Let Z be a random vector of R2N

distributed according to the normal distribution with variance Σ0. We have ξM(θ)
d−→

M→∞
minq∈Qθ

q>Z√
q>Σq

if P0 ∈ A(θ),

ξM(θ)
a.s−→

M→∞
−∞ if P0 /∈ A(θ),

Under assumption UI, these results are uniformly valid over P ∈ P.

Observe that the asymptotic distribution depends on θ only through Qθ. It is an important remark

that we exploit in the next subsections to provide new critical values.

4.2 A global bound approach

We first propose conservative bounds. They have the advantage of being calculated simply and once

for all for any θ, thereby considerably simplifying the inference procedure. They can be used in a
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first step to locate the confidence region. This approach is based on the idea that we can trivially

define two outer sets of Qθ and, using these, bound the asymptotic distribution of ξM(θ). We thus

have:

Qθ ⊂ G ⊂ R,

where R is the set of all non null directions of R2N . Consequently,

min
q∈Qθ

q>Z√
q>Σq

≥ min
q∈G

q>Z√
q>Σq

≥ min
q∈R

q>Z√
q>Σq

.

We denote respectively by c(G, α) and c(R, α), the α quantile of the bounding distributions. First,

observe that

min
q∈R

q>Z√
q>Σq

= −min ‖Z∗‖ ,

where Z∗ is distributed as a standard multivariate normal variable of dimension 2N . Second, we

provide an algorithm in Section A.15 of the Supplemental Appendix to simulate the critical value

c(G, α) with a number of calculations polynomial in N . The confidence region is defined as the

collection of points for which the test statistic ξM(θ) is above a given threshold:

C(c) =
{
θ ∈ Θ : ξM(θ) ≥ c

}
(11)

Using the result of Proposition 9, we can show that the confidence regions built using our procedures

have, asymptotically and uniformly over P , the correct coverage rate for any point of the identified

set.

Proposition 10 Under Assumption UI, the following holds:

lim inf
M→∞

inf
P∈P

inf
θ∈ΘI

P (θ ∈ C(c(R, α))) ≥ lim inf
M→∞

inf
P∈P

inf
θ∈ΘI

P (θ ∈ C(c(G, α))) ≥ 1− α.

Observe that because we bound the asymptotic distribution of both ξM(θ) uniformly for θ ∈ ΘI ,

the confidence regions built from our global bounding strategy entirely cover the identified set. We

therefore have the following stronger result:

Corollary 11 Under Assumption UI,

lim inf
M→∞

inf
P∈P

P (ΘI ⊂ C(c(R, α))) ≥ lim inf
M→∞

inf
P∈P

P (ΘI ⊂ C(c(G, α))) ≥ 1− α.
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4.3 A local bound approach

The global approach above has a tremendous computational advantage because we calculate a

critical value once. However, it is quite conservative. We now consider a new bound for the

distribution of ξM(θ) based on a moderate deviation inequality for a self normalized sum used in

Chernozhukov et al. (2014). It is based on the calculation of an upper bound on the number of

facets of each set BK(θ), which gives the highest possible number of binding moments.

4.3.1 The number of facets of BK(θ) at any extreme point

We know from Proposition 4, that BK(θ) is included in an hyperplane of RdK . It is due to the fact

that the sum of the choice probabilities of all outcomes in YK is constant. Following the convex

literature, an exposed face is the intersection between a supporting hyperplane and the convex set.

Henceforth, we call facets of BK(θ) at any extreme point all dK−1 and dK−2-faces containing this

extreme point. Each facet is related to one supporting hyperplane which defines one irredundant

inequality.

From Proposition 4, the maximum number of extreme points of BK(θ) is dK !. We first consider

the case in which K = 1 as a benchmark (by symmetry, it also characterizes the case in which

K = N − 1) before considering the general case. Observe first that the geometry of a set BK(θ)

is the same as that of the set BN−K(θ). We characterize the geometry of the sets B1(θ) that will

serve as a benchmark for considering the other sets.

Proposition 12 The convex set B1(θ) has d1! extreme points. Each of them is the intersection of

d1 supporting hyperplanes.

See the proof in the Supplemental Appendix. Following Proposition 2, we know that any subset

of Y1 of cardinality greater than 2 corresponds to a multiple equilibria region. Consequently, ∆
(1)
S (θ)

for any subset S ⊆ Y1 is non-zero, and, following Proposition 4, any change in the order gives a

different point E
(1)
i1,i2,...,id1

.

For a general value of K, many collections of outcomes cannot be a prediction of a multiple

equilibria region. Consequently, there are fewer than dK ! extreme points. Intuitively, different

orders of the components of the direction qK may lead to the same physical extreme point (i.e., for
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example, E
(K)
i1,i2,i3...,idK

= E
(K)
i1,i3,i2...,idK

). More importantly, there are more than dK facets at these

extreme points. The question is now to determine what are the facets at these specific extreme

points and how many they are.

Proposition 13 Any extreme point of BK(θ) for 1 < K < N − 1 is the intersection of at most

2lmax + (dK − lmax − 1)2lmax−1 supporting hyperplanes, where lmax is the maximum cardinality of a

subset of
{
y

(K)
1 , . . . , y

(K)
dK

}
that cannot be in multiplicity. Furthermore, an algorithm is provided in

the Supplemental Appendix to determine the facets at each extreme point E
(K)
i1,i2,i3...,idK

.

The result of Proposition 13 gives an upper bound on the number of facets at each extreme

point and, therefore, on the number of binding moments. Observe that this number is exponentially

smaller than the total number of inequalities 2dK − 1. The upper bound on the number of facets

passing through any extreme point of BK(θ) can be improved further on a case-by-case basis. Table

II gives the maximum number of facets for N = 3 to 6.

4.3.2 Using the maximum number of facets to calculate a new critical value

The maximum number of facets of A(θ) at any extreme point is the sum of the maximum number

of facets of each BK(θ) calculated above. We call it L∗.

Following Chernozhukov et al. (2014), we can use this number to provide a new critical value

which is still conservative but much better than the ones derived in the global approach. Intuitively,

the critical value calculated in the global approach assumes that all inequalities calculated from the

direction in Q are binding whereas this new one only takes one of the existing extreme points as

the worst case. The critical value is equal to

cL∗ (α) =
Φ−1 (α/L∗)√

1− Φ−1 (α/L∗)2 /n
(12)

where Φ is the c.d.f. of the standard normal distribution, and Φ−1 its inverse. We have now the

following result:

Proposition 14 Under Assumption UI,

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (θ ∈ C(cL∗(α))) ≥ 1− α.
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Observe that the last procedure is not valid for covering the entire identified set because the set

of minimizers Qθ, despite uniformly bounding its cardinal, varies with the point tested.

5 Monte Carlo simulations

We now evaluate the performance of the different testing procedures proposed in Section 4 in a

simple game with N players, with N being equal to 3 and 4. The profit function is equal to:

πim = β + αi
∑
j 6=i

ajm + εim,

where we assume that the term β is the same across firms, and this is known to the econometrician.

εim, for i = 1, . . . , N , is drawn from a standard Normal distribution. We report the results for

m = 1000 independent markets. All the results displayed are based on 1000 replications, and the

level of the tests is α = 5%.

5.1 Experiments in a game with three players

We consider a model with three symmetric players where β = 0.35 and α1 = α2 = α3 = −0.4.

However, the econometrician only knows that β is the same for all players. Consequently, the

model is set-identified. The true selection mechanism gives an order of entry to firm 1, 2, 3 in this

order in the multiple equilibria regions. Thus, we have the following probabilities for the number of

active firms in equilibrium: P (K = (0, 1, 2, 3)) = (.048, .482, .435, .035). We also assume that the

profit shocks are independent. For inference, we first compare three different approaches: ”Bound”

means that we only use the minimum and maximum of the probability of each possible outcome,

as in (6), ”Ineq” means that we test any point θ by considering the full set of directions proposed

in Proposition 6. ”Local” means that we apply our geometric selection procedure and only test the

inequalities that define this local extreme point.

Critical values We display the results for the choice of two different critical values, c(G, α) and

cL∗(α) defined in subsections 4.2 and 4.3 (labeled ”G” and ”L” in the table). For the local approach,

we also compare our results with the exact critical value which can be computed, in this case, due

to the low dimensionality of the problem.
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Before turning to the results, we would like to compare our critical values with the ones which

would have been computed while using the moment inequality literature. We consider the one of

Andrews and Soares (2010) and its refinement by Romano et al. (2012).

First, it would lead to an increasing amount of computer time. This essentially comes from

the fact that the specific structure of the asymptotic distribution is not exploited and that the

GMS procedure of Andrews and Soares (2010) has to first evaluate all inequalities, select them and

bootstrap the test statistic for each point tested. The computation time drops from 11h to 4s on a

single processor (for approximately 2.5 million points tested) when one exploits the geometry and

computes the critical values proposed in the last section.

Second, the values are reported in Table III for two points, one on the boundary of the set

A(θ) and one in the interior of the set.17 For small sample, the GMS procedures do not perform

much better than the uniform approach suggested in our paper. One needs a very high sample size,

greater than 3, 000 to obtain better performances, and this is only true for the AS procedure for the

interior point. Our local approach is, of course, much more accurate for testing a point located at

the frontier, it is by construction more conservative for an interior point. Further results about the

mean rejection rate across simulations for a sequence of points containing points from the identified

set and outside this identified set are provided in the Supplemental Appendix and confirm the fact

that our procedure works well.

Simulation results Table IV displays the results of our simulations. We report the information

relative to the estimation of α1, α2, α3 and β. We test each point θ = (α1, α2, α3, β) on some

predefined grid (defined below each table) and retain those that are not rejected by the testing

procedures. The accepted points are then projected on each axis. We report the average of the

minimum and maximum values across all simulations. It would be possible to consider the recent

work of Kaido et al. (2018), who propose a procedure for subvector inference. However, here, we

are mainly interested in comparing the different strategies. We also report the average number of

points which pass the test normalized by the average number of points which pass the test in the

local approach with the exact critical value. We call it ”Vol. CR” in the Tables. This measure is a

17They are labeled respectively AS and RSW in the table.
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proxy for the relative sizes of the confidence regions.

We also propose different versions of the inequalities. There are many equivalent ways to write

inequalities and equalities sufficient to characterize the identified set. The small sample properties

of the different testing strategies may be different. This is the reason why we compare the four

equivalent sets of inequalities, 18 which all sharply characterize A(θ). ”Ineq1” considers the 16

directions in Q defined in Proposition 6; in ”Ineq2”, we replace the directions (1, 1, 0) in QK for

K = 1, 2 by the direction (0, 0,−1). It is based on the observation that testing the inequalities for

(1, 0, 0)>, (1, 1, 0)> and (1, 1, 1)> is equivalent to testing the inequalities for (1, 0, 0)>, (0, 0,−1)>

and (1, 1, 1)>. ”Ineq3” considers the whole set of inequalities and equalities which define B0(θ) to

B3(θ), dropping the equality related to B2(θ), because of redundancy. There are 18 inequalities

tested. Finally, ”Ineq4” applies to Ineq3 the replacement of (0, 0,−1) by (1, 1, 0) in QK for K = 1, 2.

[Include Tables IV ]

Obviously, a more conservative critical values leads to a larger confidence region. The conser-

vative critical value c(G, α) is not bad at all, even if a local analysis provides a better accuracy.

There are some differences between the different sets of inequalities, and the bound approach seems

competitive. It is worth noting that the DGP is in favor of the bounds because the independence

between the profit shocks make the multiple regions very small.

The most efficient combination is ”Ineq4”, whatever the choice of the critical value. The geo-

metric selection procedure is conducted with the set of inequalities ”Ineq4” and the critical value

cL∗ . Unsurprisingly, it leads to the same outcome which is very close to the optimal one when one

considers the exact critical value, a case difficult to consider when the number of players is higher.

Additional example We also report the results for a slight modification of the parameters ; it

changes the accuracy of the bound approach. With β = 0.6, α2 = −0.5 and α1 = α3 = −0.7, we

have the following probabilities for the number of active firms in equilibrium: P (K = (0, 1, 2, 3)) =

(.021, .499, .464, .016). The model is also set-identified and the sizes of B1(θ0) and B2(θ0) are now

larger. The results are displayed in Table V. The ratio between the bound approach and the

18The directions considered in these four cases are defined in subsection B.3 in the Supplemental Appendix.
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”sharp” inequality approach is more in favor of the sharp characterization. ”Ineq4” and our local

procedure are still the two best procedures.

[Include Tables V ]

5.2 A four player example

We finally consider a four player example. We conduct a similar experiment than for the three

player case with two different values of αi, i = 1, ..., 4. We have β = 0.38, α1 = α4 = −0.35

and α2 = α3 = −0.2. The order of entry of the firms in the multiple equilibria regions is purely

random. Thus, we have the following probabilities for the number of active firms in equilibrium:

P (K = (0, 1, 2, 3, 4)) = (.015, .237, .530, .207, .011). We assume that the econometrician knows that

the true values of α are equal two by two. The model is therefore point-identified. The different set

of directions considered are defined similarly as well as the critical values. We also report the results

relative to our geometric selection procedure (”Local”) in which we use cL∗ as the critical value.

All the results are displayed in Table VI. First, the size of the confidence region calculated with

the bound approach is much larger than the size of the same region calculated with our procedure.

When the dimension of Y increases, the ratio between the volume of the cube which contains A(θ)

and the volume of A(θ) increases too. A component wise bound approach selects much more points

than a local approach (the volume ratio is close to 2). Like, for N = 3, the same set of inequalities

can be tested differently. Combining equalities and inequalities seem to be better (the volume ratio

with respect to the most efficient combination are respectively equal to 1.5 for ”Ineq1” and 1.3 for

”Ineq3”). And, finally, following the results developed in the appendix, a brute force algorithm

would test 92 inequalities. A geometric selection procedure leads to the estimation of only 18

inequalities. It is still possible to compare this procedure with the brute force one for this value of

N . Observe that they lead to the same size of the confidence region, highlighting the efficiency of

our geometric selection procedure.

[Include Table VI]
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6 Extensions with explanatory variables

We now generalize our approach to the case with discrete explanatory variables Z ∈ Rl, whether

Z is genuinely discrete or discretized as in Ciliberto and Tamer (2009). Let the support of Z be

Z = {z1, . . . , zd}. The profit function in Equation (1) becomes

πim = βi + Z>imγi + αi

(∑
j 6=i

ajm

)
+ εim,

aim = 1{πim > 0}.
(13)

All the discussion in the previous sections can now be generalized conditional on Zm = (Z1m, . . . , ZNm) ∈

ZN . For any realization zm of Zm, the set Azm(θ) has exactly the same geometry as that described

above. Let P0(zm) be the true conditional choice probability vector. We obtain the following

characterization of the identified set (θ represents all α, β, γ for all firms i = 1, . . . , N):

θ ∈ ΘI ⇐⇒ ∀zm ∈ ZN , P0(zm) ∈ Azm(θ)

⇐⇒ ∀zm ∈ ZN , ∀q ∈ G, T∞(q, zm; θ) := δ∗(q;Azm(θ))− q>P0(zm) ≥ 0

⇐⇒ min
zm∈ZN

min
q∈G

T∞(q, zm; θ) ≥ 0

The only difference is to add minzm∈ZN to the procedure, i.e., augment the space over which we

take the minimum.

For the inference procedure, we first use a conditional frequency estimator to obtain the condi-

tional choice probabilities. For each y ∈ Y ,

P̂M(y|zm) =

∑M
m=1 1[Ym = y]1[Zm = zm]∑M

m=1 1[Zm = zm]
.

We define the stacked vector as P̂M(zm). This estimator is uniformly consistent, asymptotically

normal with a standard convergence speed.

The framework with conditioning variables is nearly the same as before. The only difference

comes from the fact that we have to minimize the quantity infq∈G T (q, zm; θ) over the discrete space.

The simulations of the critical values can be obtained equivalently.
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7 Conclusion

In this paper, we develop a new methodology to estimate games with multiple equilibria. The model

may be set-identified, and belonging to this identified set is equivalent to testing whether the vector

of choice probabilities belongs to a convex set. We characterize the full geometric structure of this

convex set without adding any restriction on the selection mechanism in the regions with multiple

equilibria. This approach has two advantages. First, it allows us to characterize all the moment

inequalities that are necessarily satisfied for a parameter value to be in the identified set. Second,

as the complexity of the problem grows exponentially with the number of players, we are able to

propose an algorithm that geometrically selects the locally relevant moments, without having to

evaluate all of them. The algorithm sequentially approaches the nearest vertex of the polytope,

and it requires only the computation of the support function for a number of directions that is

polynomial in N , the number of players.

This is a huge improvement in computational burden with respect to alternative methods, which

need to numerically evaluate all the moments before deciding which ones are binding and which

ones are not. This geometric understanding can easily be extended to other notions of equilibrium

proposed in literature, e.g., two-level rationality and social interaction games. We also propose

inference methods that for small and moderate sample sizes have better statistical properties than

existing methods and offer a considerable advantage in terms of computational burden. Our methods

exploit the specific structure of the test statistic, the variance of which does not depend on the

parameter tested.

Many pending questions remain. First, entry games generally impose strong restrictions on

the functional form of the profit function and on the distribution of the error terms. Adapting

our procedure to more general settings (greater heterogeneity or semi-parametric forms) is high on

the research agenda. Second, it would be worth investigating inference on subvectors, a question,

that has recently been addressed in the partial identification literature, as in Kaido et al. (2018).

Finally, we have thus far been agnostic about the (unobserved) selection mechanism, and we have

used natural bounds. It would be worth investigating how restrictions on the selection mechanism

could be incorporated into this framework.

30



Bibliography

Andrews, D., and G. Soares (2010). Inference for Parameters Defined by Moment Inequalities Using

Generalized Moment Selection. Econometrica 78 119-157.

Andrews, D., and X. Shi (2013). Inference Based on Conditional Moment Inequalities. Econometrica

81 609-666.

Aradillas-Lopez, A., and A. Rosen (2017). Inference in Ordered Response Games with Complete

Information. Working paper.

Aradillas-Lopez, A., and E. Tamer (2008). The Identification Power of Equilibrium in Simple Games.

J. Bus. Econ. Stat. 26(3) 261-283.

Bajari, P., H. Hong, and S. Ryan (2010). Identification and Estimation of Discrete Games of Com-

plete Information. Econometrica 78 1529-68.

Beresteanu, A., and F. Molinari (2008). Asymptotic Properties for a Class of Partially Identified

Models. Econometrica 76(4) 763-814.

Beresteanu, A., I. Molchanov and F. Molinari, (2011). Sharp Identification Regions in Models with

Convex Moment Predictions. Econometrica 79 1785-1821.

Berry, S. (1992). Estimation of a Model of Entry in the Airline Industry. Econometrica 60 889-917.

Berry, S.,and P. Reiss (2007). Empirical Models of Entry and Market Structure, In: M. Armstrong

and R. Porter, Editor(s), Handbook of Industrial Organization, Elsevier, 2007, Volume 3.

Berry, S., and E. Tamer (2007). Identification in Models of Oligopoly Entry, in Advances in Eco-

nomics and Econometrics: Theory and Applications, Ninth World Congress, vol. 2, R. Blundell,

W.K. Newey and T. Persson, eds., Cambridge Univ. Press.

Bjorn, P., and Q. Vuong (1984). Simultaneous equations models for dummy endogenous variables:

a game theoretic formulation with an application to labor force participation. Working Paper,

California Institute of Technology.

31



Bontemps, C. and T. Magnac (2017). Set Identification, Moment Restrictions and Inference. Annu.

Rev. Econ. forthcoming.

Bontemps, C., T. Magnac and E. Maurin (2012). Set Identified Linear Models. Econometrica 80

1129-1155.

Bresnahan, T., and P. Reiss (1991a). Entry and Competition in Concentrated Markets. Journal of

Political Economy 99(5) 977-1009.

Bresnahan, T., and P. Reiss (1991b). Empirical models of discrete games. J. Econometrics 48(1-2)

57-81.

Bugni, F. (2010). Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities.

Econometrica 78 735-754.

Canay, I. (2010). EL Inference for Partially Identified Models: Large Deviations Optimality and

Bootstrap Validity. J. Econometrics 156 408-425.

Chernozhukov, V., D. Chetverikov, and K. Kato (2014) Testing many moment inequalities.

arXiv:1312.7614

Chernozhukov, V., H. Hong, and E. Tamer (2007). Inference on Parameter Sets in Econometric

Models. Econometrica 75 1243-1284.

Chernozhukov, V., E. Kocatulum and K. Menzel (2015). Inferences on sets in finance. Quantitative

Economics 6 309-358.

Chesher A. and A. Rosen (2017). Generalized Instrumental Variable Model. Econometrica 85 959-

989.

Ciliberto, F., and E. Tamer (2009). Market Structure and Multiple Equilibria in Airline Markets.

Econometrica 77 1791-1828.

Cleeren, K., M. Dekimpe, K. Gielens, and F. Verboven (2010). Intra- and Inter-format Competition

among Discounters and Supermarkets. Marketing Science 29(3) 456-473.

32



Galichon, A., and M. Henry (2011). Set Identification in Models with Multiple Equilibria. Rev.

Econ. Stud. 78 1264-1298.

Grieco, P.(2014). Discrete games with flexible information structures: an application to local grocery

markets. RAND Journal of Economics 45 303-340.

Gualdini C. (2018). An Econometric Model of Network Formation with an Application to Board

Interlocks between Firms. TSE Working Paper 17-898, Toulouse School of Economics.

Kaido, H., F. Molinari, and J. Stoye (2018). Confidence Intervals for Projections of Partially Iden-

tified Parameters. Working paper.

Kaido, H., and A. Santos (2014). Asymptotically efficient estimation of models defined by convex

moment inequalities. Econometrica 82(1) 387-413.

Khan S. and E. Tamer (2010). Irregular Identification, Support Conditions, and Inverse Weight

Estimation. Econometrica 78(6) 20212042.

Mazzeo M. (2002). Product Choice and Oligopoly Market Structure. Rand Journal of Economic

33(2) 1-22.

Menzel, K. (2014). Inference for Games with Many Players. Rev. Econ. Stud. 83(1) 306-337.

Molchanov, I., and F. Molinari (2015). Applications of random set theory in econometrics. Annu.

Rev. Econ. 6(1) 229-251.

de Paula A. (2013). Econometric Analysis of Games with Multiple Equilibria. Annu. Rev. Econ. 5

107-131.

Reiss, P. (1996). Empirical Models of Discrete Strategic Choices. American Economic Review 86

421-426.

Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press.

Romano, J.P., and A.M. Shaikh (2008). Inference for Identifiable Parameters in Partially Identified

Econometric Models. J. Statist. Plann. Infer. 138 2786-2807.

33



Romano, J.P., and A.M. Shaikh (2010). Inference for the identified set in partially identified econo-

metric models. Econometrica 78(1) 169-211.

Romano, J.P., and A.M. Shaikh (2012). On the Uniform Asymptotic Validity of Subsampling and

the Bootstrap. Ann. Stat., 40(6) 2798-2822.

Romano, J., A. Shaikh, and M. Wolf (2014). A Practical Two-Step Method for Testing Moment

Inequalities. Econometrica 82(5) 1979-2002.

Rosen, A. (2008). Confidence sets for partially identified parameters that satisfy a finite number of

moment inequalities. J. Econometrics 146 107-117.

Sampaio R. (2007). Competition Between Low-Cost Carriers and Traditional Airlines: An Empirical

Entry Model. TSE working paper.

Tamer, E. (2003). Incomplete simultaneous discrete response model with multiple equilibria. Rev.

Econ. Stud. 70(1) 147-165.

34



Appendix

A Figures and Tables

A

q

δ∗(q;A)

δ∗(q;A) = sup
x∈A

q>x.

Figure 1: The support function

N K dK |S(K)| 2dK − dK − 1
3 1 3 4 4

2 3 4 4
4 1 4 11 11

2 6 21 59
3 4 11 11

5 1 5 26 26
2 10 71 1018
3 10 71 1018
4 5 26 26

6 1 6 57 57
2 15 198 32761
3 20 283 1048569
4 15 198 32761
5 6 57 57

Table I: Counting the number of multiple equilibria regions
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B1(θ) B2(θ) B3(θ) B4(θ) B5(θ)

N = 4 4 10 4
N = 5 5 18 18 5
N = 6 6 52 136 52 6

Table II: Upper bound on the number of facets at any extreme point for N = 4, 5, 6.

Extreme point Interior point
True G L AS RSW True G L AS RSW

500 -2.555 -2.747 -2.562 -2.695 -2.771 -2.386 -2.747 -2.562 -2.715 -2.778
1000 -2.555 -2.747 -2.562 -2.655 -2.738 -2.386 -2.747 -2.562 -2.690 -2.774
2000 -2.555 -2.747 -2.562 -2.629 -2.697 -2.386 -2.747 -2.562 -2.630 -2.743
3000 -2.555 -2.747 -2.562 -2.617 -2.677 -2.386 -2.747 -2.562 -2.555 -2.705

10000 -2.555 -2.747 -2.562 -2.581 -2.634 -2.386 -2.747 -2.562 -2.394 -2.455
We compare the critical values of different procedures with the DGP of the set-identified model with 3
players, for two particular points tested. One point is an extreme point, i.e. 8 inequalities are binding in
this point. One is an ”interior” point, i.e. no inequality is binding but the ones related to the number of
players.

Table III: Critical values for different procedures.

Type Test Crit. α1 α1 α2 α2 α3 α3 β β Vol.
value min max min max min max min max CR

Bound G -0.657 -0.166 -0.715 -0.227 -0.684 -0.197 0.253 0.492 1.49
L -0.631 -0.184 -0.688 -0.243 -0.658 -0.214 0.263 0.479 1.06

Ineq1 G -0.714 -0.118 -0.755 -0.165 -0.743 -0.152 0.120 0.488 2.02
L -0.693 -0.134 -0.731 -0.180 -0.721 -0.167 0.132 0.478 1.59

Ineq2 G -0.655 -0.094 -0.713 -0.155 -0.683 -0.121 0.109 0.491 1.76
L -0.630 -0.114 -0.688 -0.175 -0.658 -0.141 0.126 0.478 1.29

Ineq3 G -0.721 -0.176 -0.762 -0.232 -0.750 -0.208 0.255 0.491 1.77
L -0.704 -0.185 -0.742 -0.241 -0.732 -0.217 0.258 0.483 1.45

Ineq4 G -0.655 -0.165 -0.716 -0.228 -0.682 -0.196 0.252 0.495 1.36
L -0.634 -0.179 -0.695 -0.240 -0.661 -0.209 0.258 0.483 1.05

Local L -0.634 -0.179 -0.695 -0.240 -0.661 -0.209 0.258 0.483 1.05
Exact -0.630 -0.181 -0.692 -0.242 -0.658 -0.212 0.259 0.481 1.00

Note: the test statistic is ξM (θ) calculated on a grid of points (α1, α2, α3, β): [−1.5; 0[ for the alpha’s with a tick
of 0.03 and [0; 1.2] for β with a tick of 0.02. The level is equal to 5%. We display the mean across one thousand
simulations of the minimum and maximum of each parameter. ”Vol. CR” is the mean volume of the confidence
regions normalized by the mean volume of the confidence regions computed with the local procedure with the exact
critical value. The true values are β = 0.35 and α1 = α2 = α3 = −0.4, the selection mechanism gives priority to firm
1 than to firm 2 to enter in the multiple equilibria regions; the econometrician does not assume that the α′s are the
same. The model is set-identified.

Table IV: The confidence region - 3 players, set-identified case, 1000 markets.
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Type Test Crit. α1 α1 α2 α2 α3 α3 β β Vol.
value min max min max min max min max CR

Bound G -1.146 -0.429 -0.973 -0.233 -1.150 -0.434 0.484 0.843 1.92
L -1.097 -0.446 -0.922 -0.250 -1.101 -0.450 0.492 0.809 1.36

Ineq1 G -1.156 -0.299 -0.986 -0.115 -1.160 -0.302 0.243 0.823 1.85
L -1.124 -0.315 -0.954 -0.130 -1.129 -0.318 0.257 0.803 1.49

Ineq2 G -1.137 -0.281 -0.955 -0.102 -1.141 -0.285 0.231 0.835 1.75
L -1.092 -0.301 -0.909 -0.122 -1.096 -0.305 0.252 0.803 1.30

Ineq3 G -1.172 -0.440 -1.002 -0.253 -1.175 -0.444 0.487 0.835 1.58
L -1.143 -0.449 -0.973 -0.261 -1.147 -0.453 0.489 0.816 1.31

Ineq4 G -1.133 -0.431 -0.943 -0.238 -1.137 -0.435 0.483 0.838 1.33
L -1.099 -0.443 -0.908 -0.252 -1.102 -0.448 0.489 0.816 1.04

Local L -1.099 -0.443 -0.908 -0.252 -1.102 -0.448 0.489 0.816 1.04
Exact -1.093 -0.446 -0.904 -0.254 -1.097 -0.451 0.491 0.814 1.00

Note: the test statistic is ξM (θ) calculated on a grid of points (α1, α2, α3, β): [−1.5; 0[ for the alpha’s with a tick
of 0.03 and [0; 1.2] for β with a tick of 0.02. The level is equal to 5%. We display the mean across one thousand
simulations of the minimum and maximum of each parameter. ”Vol. CR” is the mean volume of the confidence
regions normalized by the mean volume of the confidence regions computed with the local procedure. The true values
are β = 0.6, α2 = −0.5 and α1 = α3 = −0.7 the selection mechanism gives priority to firm 1 than to firm 2 to enter
in the multiple equilibria regions; the econometrician does not assume that α1 and α3 are the same. The model is
set-identified.

Table V: The confidence region - 3 players, set-identified case, 1000 markets.

Test Crit. α1 α1 α2 α2 β β Vol.
value min max min max min max CR

Bound G -0.602 -0.232 -0.455 -0.062 0.253 0.682 2.60
L -0.576 -0.240 -0.430 -0.072 0.260 0.648 2.04

Ineq1 G -0.573 -0.242 -0.421 -0.095 0.176 0.631 2.21
L -0.542 -0.254 -0.394 -0.106 0.197 0.593 1.55

Ineq3 G -0.575 -0.247 -0.423 -0.097 0.259 0.633 1.80
L -0.547 -0.258 -0.399 -0.108 0.271 0.600 1.30

Ineq4 G -0.561 -0.243 -0.417 -0.083 0.250 0.645 1.55
L -0.525 -0.259 -0.381 -0.101 0.267 0.598 1.00

Local L -0.526 -0.258 -0.381 -0.100 0.267 0.598 1.00

Note: the test statistic is ξM (θ) calculated on a grid of points (α1, α2, β): [−1.5; 0[ for the alpha’s and [0; 1.2] for β
with a tick of 0.01. The level is equal to 5%. We display the mean across one thousand simulations of the minimum
and maximum of each parameter. ”Vol. CR” is the mean volume of the confidence regions normalized by the mean
volume of the confidence regions computed with the local procedure. The true values are β = 0.38, α1 = α4 = −0.35
and α2 = α3 = −0.2, the order of entry of the firms in the multiple equilibria regions is random. The model is
point-identified.

Table VI: The confidence region - 4 players, point-identified case, 1000 markets.
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Supplemental Material

Supplement to ”A Geometric Approach to Inference in

Set-Identified Entry Games”

by Christian Bontemps and Rohit Kumar

A Proofs and algorithms

A.1 Proof of Proposition 1

First, observe that, by a revealed preference argument, the region of ε that corresponds to an

outcome y
(K)
j with K active firms in equilibrium is included in the region:

R(y
(K)
j ) =

{
ε = (ε1, . . . , εN) :

εi ≤ −βi −Kαi if y
(K)
j,i = 0

εi > −βi − (K − 1)αi if y
(K)
j,i = 1

}
.

Without loss of generality, assume S = {y(K)
1 , . . . , y

(K)
m } is a collection of outcomes in multiplicity.

We first characterize the region of ε that generates this set of outcomes. First, we define three

subsets of {1, . . . , N}. N0 is the set of indices for which the action of player i is 0 for all outcomes

in S, and N1 is the set of indices i for which the action of player i is 1 for all outcomes in S. The

remaining set Ns corresponds to the players who play actions 0 or 1 across the outcomes of S.

Without loss of generality, we assume that N0 = {1, 2, . . . , n0}, N1 = {n0 + 1, n0 + 2, . . . , n0 + n1},

and Ns = {n0 + n1 + 1, . . . , N}. We now prove that R(K)
S (θ), the region of ε that predicts all

outcomes in S, is defined as follows:

R(K)
S (θ) =

ε =

 ε1
...
εN

 :

 εi ≤ −βi − (K − 1) · αi i ≤ n0

εi > −βi −K · αi n0 < i ≤ n0 + n1

−βi − (K − 1) · αi < εi ≤ −βi −K · αi i > n0 + n1


 .

First, take ε in the region defined by the right hand side. Each firm 1 to n0 is only profitable when

it has K − 2 competitors, each firm n0 + 1 to n0 + n1 is profitable with K competitors, and each of

the remaining firms is profitable with K− 1 competitors. In a situation with complete information,

firms n0 + 1 to n0 + n1 enter the market, firms 1 to n0 do not enter, and K − n1 firms out of the

last ns = N − n0 − n1 enter. There are therefore
(
N−n0−n1

K−n1

)
possibilities.
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Conversely, consider ε in R(K)
S (θ), i.e. assume that there is a region which predicts all the

outcomes in S as possible equilibria. Obviously, this region is contained in
⋂

1≤j≤m

R(y
(K)
j ). If, for

i ≤ n0, one of the profit shocks εi were between −βi−(K−1) ·αi and −βi−K ·αi, the corresponding

firms could enter to replace one of the last ns firms, which is in contradiction with the fact that the

model predicts all the outcomes in S only. Thus, in fact, εi ≤ −βi− (K − 1) · αi, i ≤ n0. Similarly,

εi > −βi −K · αi for n0 < i ≤ n0 + n1. This proves the reverse inclusion. The cardinality of S is

therefore
(
N−n0−n1

K−n1

)
.

A.2 Proof of Proposition 2

Following Proposition 1, any set S = {y(K)
1 , . . . , y

(K)
m } of outcomes in multiplicity is such that there

are n0 firms that never enter, n1 firms that always enter and ns = N − n0 − n1 that enter in some

outcomes and do not in others, with there being in total K − n1 entering among these ns firms for

each outcome (thus, ns > K−n1). Obviously, n1 ≤ K− 1 because S contains at least two different

outcomes. There are
(
N
n1

)
choices for these n1 firms. Among the remaining N − n1, n0 never enter

and ns = N − n0 − n1 “switch” across outcomes. For each value of n0, there are
(
N−n1

n0

)
choices for

each choice of the n1 firms. As ns ≥ K −n1 + 1, n0 is therefore bounded above by N −K − 1. The

number of multiple equilibria regions is equal to:

sK =
K−1∑
n1=0

N−K−1∑
n0=0

(
N

n1

)(
N − n1

n0

)
.

A.3 Proof of Proposition 3

The convexity of the set A(θ) can be easily proved from the expression of the P
(K)
j (θ, η)’s in Equation

(3) for any K = 0, . . . , N and any j = 1, . . . , dK . Let λ ∈ [0, 1], η1(·) and η2(·) two selection

mechanisms and P1 = P (θ, η1) and P2 = P (θ, η2), two vectors of choice probabilities. First, η(·) =

λη1(·) + (1 − λ)η2(·) is also a selection mechanism. Second, for any K = 0, . . . , N and any j =

1, . . . , dK ,

P
(K)
j (θ, η) = P

(K)
j (θ, λη1 + (1− λ)η2) = λP

(K)
j (θ, η1) + (1− λ)P

(K)
j (θ, η2).

Consequently, P (θ, η) = λP1 + (1− λ)P2.
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For the cartesian product, consider two different ε1 and ε2 inR(K1)
S (θ) andR(K2)

S′ (θ), for K1 6= K2;

the equilibrium selection mechanism is equal to zero when y ∈ YK1 and ε = ε2 or when y ∈ YK2

and ε = ε1.

A.4 Proof of Proposition 4

We introduce some useful additional notation. For any S ∈ S(K) and any j ≤ dK , we define

uj(S) =

∫
R(K)
S (θ)

η(y
(K)
j |ε, θ)dF (ε; θ)∫

R(K)
S (θ)

dF (ε; θ)

and set uj(S) = 0 when S /∈ S(K). Note that for all j such that y
(K)
j /∈ S, uj(S) = 0 because a ε in

R(K)
S (θ) does not predict y

(K)
j as a potential outcome. By construction, 0 ≤ uj(S) ≤ 1 and∑

j| y(K)
j ∈S

uj(S) = 1.

for any S ∈ S(K). We also define the possibility set for uj(S), j = 1, . . . , dK as

U (K)(S) =

uj(S) ∈ [0; 1], j = 1, . . . , dK , such that
∑

j| y(K)
j ∈S

uj(S) = 1 and uj(S) = 0, if y
(K)
j /∈ S

 ,

and

U (K) =
{
U (K)(S), S ∈ S(K)

}
.

Based on this additional notation, we can define the set BK(θ) as

BK(θ) =

P (K) : P
(K)
j = ∆

(K)
j (θ) +

∑
S∈S(K)

j

uj(S)∆
(K)
S (θ), uj(S) ∈ U (K)(S), j = 1, . . . , dK , S ∈ S(K)

 .

(A.1)

Following the definition of the support function:

δ (qK ;BK(θ)) = sup
P (K)∈BK(θ)

q>KP
(K)

=

dK∑
j=1

qj,K∆
(K)
j (θ) + sup

uj(S)∈U(K)

dK∑
j=1

qj,K ∑
S∈S(K)

j

uj(S)∆
(K)
S (θ)
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=

dK∑
j=1

qj,K∆
(K)
j (θ) + sup

uj(S)∈U(K)

dK∑
j=1

qj,K ∑
S∈S(K)

uj(S)∆
(K)
S (θ)

 .

The last equality (the sum is indexed by S ∈ S(K) instead of S ∈ S
(K)
j ) is true because uj(S) is

equal to zero when S /∈ S(K)
j .

Consequently,

sup
uj(S)∈U(K)

dK∑
j=1

qj,K ∑
S∈S(K)

uj(S)∆
(K)
S (θ)

 = sup
uj(S)∈U(K)

∑
S∈S(K)

∆
(K)
S (θ)

(
dK∑
j=1

qj,Kuj(S)

)

=
∑

S∈S(K)

∆
(K)
S (θ) sup

uj(·)∈U(K)(S)

(
dK∑
j=1

qj,Kuj(S)

)

=
∑

S∈S(K)

∆
(K)
S (θ)

(
max

j|y(K)
j ∈S

qj,K

)

Thus,

δ (q;BK(θ)) =

dK∑
j=1

qj,K∆
(K)
j (θ) +

∑
S∈S(K)

∆
(K)
S (θ)

(
max

j|y(K)
j ∈S

qj,K

)

We can therefore reorder according to the new partition O(K)
i1
,O(K)

i2
, . . . ,O(K)

idK
.

δ (q;BK(θ)) =

dK∑
j=1

qj,K∆
(K)
j (θ) +

dK∑
j=1

qij ,K


∑

S∈O(K)
ij

∆
(K)
S (θ)

 .

A.5 Proof of Proposition 6

We only need to prove the following result:

∀K ∈ {0, 1, 2, . . . , N}, ∀qK ∈ QK , q>KP
(K)
0 ≤ δ∗(qK ;BK(θ)) =⇒ ∀q ∈ R2N , q>P0 ≤ δ∗(q;A(θ)).

Let qK be a direction of RdK and assume that its components are ranked in the following order

qi1,K ≥ qi2,K ≥ . . . ≥ qidK ,K .

Let the dK directions of RdK , e
(K)
i1

, e
(K)
i1,i2

,..., e
(K)
i1,i2,...,idK−1

, e
(K)
i1,i2,...,idK

, where the components are

equal to 1 when the indices are subscripts of e(K) and 0 otherwise. Obviously, these directions
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belong to QK .19 We can write qK as a function of these directions with non-negative weights:

qK = (qi1,K − qi2,K)e
(K)
i1

+ (qi2,K − qi3,K)e
(K)
i1,i2

+ . . .+ (qidK−1,K − qidK ,K)e
(K)
i1,i2,...,idK−1

+ qidK ,Ke
(K)
1,2,...,dK

.

Assume that the inequalities q̃>KP
(K)
0 ≤ δ∗(q̃K ;BK(θ)) are satisfied for any direction q̃K ∈ QK .

We have:

q>KP
(K)
0 = (qi1,K − qi2,K)(e

(K)
i1

)>P
(K)
0 + (qi2,K − qi3,K)(e

(K)
i1,i2

)>P
(K)
0 + . . .+ qidK ,K(e

(K)
1,2,...,dK

)>P
(K)
0 (A.2)

≤ (qi1,K − qi2,K)δ∗(e
(K)
i1

;BK(θ)) + (qi2,K − qi3,K)δ∗(e
(K)
i1,i2

;BK(θ)) + . . .+ qidK ,Kδ
∗(e

(K)
1,2,...,dK

;BK(θ))

(A.3)

≤ δ∗((qi1,K − qi2,K)e
(K)
i1

;BK(θ)) + δ∗((qi2,K − qi3,K)e
(K)
i1,i2

;BK(θ)) + . . .+ δ∗(qidK ,Ke
(K)
1,2,...,dK

;BK(θ))

(A.4)

≤ δ∗((qi1,K − qi2,K)e
(K)
i1

+ (qi2,K − qi3,K)e
(K)
i1,i2

+ . . .+ qidK ,Ke
(K)
1,2,...,dK

;BK(θ)) = δ∗(qK ;BK(θ))

(A.5)

Inequality (A.3) comes from the fact that the directions e
(K)
i1,...

belong to QK ; inequality (A.4) holds

because the support function is positive homogeneous; inequality (A.5) is due to the subadditivity

of the support function. Consequently:

q>P0 =
N∑
K=0

q>KP
(K)
0 ≤

N∑
K=0

δ∗(qK ;BK(θ)) = δ∗(q;A(θ)).

A.6 Proof of Proposition 7

Note that YK is well connected (the empty set is connected). Thus, YK ∈ ΩK for K = 0, 1, . . . , N .

If the inequality holds for all well-connected subsets, then

P(YK) ≤ L(YK) (A.6)

However, we also know that

L(YK ∪ YK′) = L(YK) + L(YK′)

because ΓYK is a component of ΓY , i.e., there is no multiplicity between YK and YK′ . As L(Y) = 1,

we have
N∑
K=0

L(YK) = 1 (A.7)

19Observe that e
(K)
i1,i2,...,idK

= e
(K)
1,2,...,dK

.
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From Equations (A.6) and (A.7), we have

P(YK) = 1−
∑
i 6=K

P(Yi)

≥ 1−
∑
i 6=K

L(Yi) = L(YK),

where the second line uses Inequality (A.6) and the last equality comes from (A.7). Finally, we

have

P(YK) = L(YK), (A.8)

for K = 0, 1, . . . , N .

•We first show that if the inequality holds for all well connected subset, then for any subset C ⊂ Y ,

P(C) ≤ L(C).

Assume that C = ∪NK=1CK , where CK ⊂ YK . Following Corollary 9, L(C) =
∑N

K=1 L(CK).

Thus, if the inequality holds for each CK , then it clearly holds for C. Without loss of generality,

we now assume that there is one K such that C ⊂ YK .

If C is not well connected, then YK \C is not connected in ΓYK\C . Therefore, YK \C is a disjoint

union of p components {Wi}pi=1 of the graph ΓYK\C . Define, for each i in 1, . . . , p

Bi = C ∪W1 ∪ . . . ∪Wi−1 ∪Wi+1 ∪ . . . ∪Wp

YK\Bi = Wi is connected in ΓYK\Bi = ΓWi
because Wi is a component of the graph ΓYK\C . Bi is

therefore well connected, and thus, Bi ∈ ΩK . Therefore, by definition,

P(Bi) ≤ L(Bi).

We can now impose a lower bound on P(Wi) using P(Wi) + P(Bi) = P(YK).

P(Wi) ≥ L(YK)− L(Bi),

because P(YK) = L(YK) from Equation (A.8) and the inequality above.

We can now impose an upper bound on P(C):

P(C) = P(YK)− P(YK\C)
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= P(YK)−
k∑
i=1

P(Wi)

≤ L(YK)−
p∑
i=1

[
L(YK)− L(Bi)

]
We finally prove that the last term is L(C). For each i, following the definition of the Choquet

capacity, L(YK) − L(Bi) is the sum of probabilities of the unique regions of outcomes of Wi and

multiplicity regions only involving outcomes of Wi. Since Wi is not connected to Wj in ΓYK\C ,∑p
i=1

[
L(YK)−L(Bi)

]
is the probability of the unique region of outcomes of YK\C and multiplicities

only involving outcomes of YK\C. Hence, L(YK)−
∑p

i=1

[
L(YK)−L(Bi)

]
is the sum of probabilities

of unique regions of outcomes in C and multiplicity regions involving only outcomes in C. This is

L(C). We therefore have

P(C) ≤ L(C).

• We now prove that if a well-connected subset B of YK is not part of ΩK , we can define a DGP

where all inequalities P(C) ≤ L(C) hold except in B, thus violating the assumption that Ω is core

determining for L.

Assume that there are p elements in B, y1, . . . , yp. We omit in the proof the superscript (K)

for ease of exposition. For a given ε > 0, we consider the following probability outcome. It is an

outcome in which we reallocate some of the predictions in the multiple equilibria regions from the

first outcome y1 and yp+1 to the p− 1 outcomes y2, . . . , yp.

P(y1) = L(y1)− (p− 2)ε

P(y2) = L({y1, y2})− L(y1) + ε

...

P(yp−1) = L({y1, . . . , yp−1})− L({y1, . . . , yp−2}) + ε

P(yp) = L({y1, . . . , yp})− L({y1, . . . , yp−1}) + ε

−−−−−−−−−−−−−−−−−−−−−

P(yp+1) = L({y1, . . . , yp+1})− L({y1, . . . , yp})− ε

P(yp+2) = L({y1, . . . , yp+2})− L({y1, . . . , yp+1})
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...

P(y|YK |) = L({y1, . . . , y|YK |})− L({y1, . . . , y|YK |−1})

Our goal is to show that the inequalities P(C) ≤ L(C) are satisfied for all elements of YK but B for

some adequate choice of ε.

First, note that the violation of the inequality for B is obvious because:

P(B) =

p∑
i=1

P(yi)

=

p∑
i=2

[
L({y1, . . . , yi})− L({y1, . . . , yi−1}) + ε

]
+ L(y1)− (p− 2)ε

= L({y1, . . . , yp}) + ε

= L(B) + ε

Now, we show that no other inequality is violated for this constructed probability under some

condition on ε.

(i) Find r such that y2, . . . , yr ∈ B are directly connected to y1 in the graph ΓYK (this is pos-

sible because ΓYK is connected). y2, . . . , yr can be divided into two subgroups: the subgroup

y2, . . . , yr1 of elements such that each element of yr+1, . . . , yp is directly connected to some

element of this subgroup and subgroup y1+r1 , . . . , yr, which is not connected to any element

from y1+r, . . . , yp as shown in Figure 2. Note that y2, . . . , yr1 and y1+r1 , . . . , yr may have some

connections. Henceforth, we assume that r > r1. It is easy to adapt the proof to the case in

which r = r1. Note further that it may be the case that some elements of yr+1, . . . , yp are not

directly connected to any element of y2, . . . , yr1 . As B is well connected, they are connected to

some elements of yr+1, . . . , yp, and we can also adapt the proof to this case by adding a layer

on our tree, as shown in the right part of Figure 2. We assume henceforth that this is not the

case, but again, the proof is similar.

(ii) If S contains y1, it is easy to prove that P(S) ≤ L(S) because we simply subtract some ε.

(iii) We have to prove it now for the subset S that does not contain y1.
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y1

y2, . . . , yr1 y1+r1 , . . . , yr

y1+r, . . . , yp

y1

y2, . . . , yr1 y1+r1 , . . . , yr

y1+r, . . . , yr2 y1+r2 , . . . , yr3

y1+r3 , . . . , yp

Figure 2: Construction of a tree from elements of B starting from y1 and an additional layer in the
tree if all y1+r, . . . , yp may not be connected directly to some element y2, . . . , y1+r1 .

Let z2 be an element of {y2, . . . , yr1}, z3 be an element of {y1+r1 , . . . , yr} and z4 be an element

of {y1+r, . . . , yp}. First, y1 and z2 are connected. This means that there is at least one region of

multiple equilibria that predicts y1 and z2 among other outcomes. We call ∆2 the area of this

region. Obviously, we have ∆2 > 0. Similarly, we have L({y1, z2}) ≤ L({y1}) + L({z2})−∆2

because ∆2 is counted in both L({y1}) and L({z2}) (and there may be other regions of multiple

equilibria than the one considered here that predict these outcomes). We do the same for y1

and z3 with ∆3 and the same for z4 and one element of {y2, . . . , yr1} that we call z′2 with ∆4.

z′2 may be z2 or not. The construction is described in Figure 3.

(a) We have

P(z2) ≤ L({z2})−∆2 + ε.

If z2 = y2, the inequality expressed above yields the following:

P({y2}) = L({y1, y2})− L({y1}) + ε

≤ L({y1}) + L({y2})−∆2 − L(y1) + ε.

If z2 = y3, we can prove it similarly:

P(y3) = L({y1, y2, y3})− L({y1, y2}) + ε
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≤ L({y1, y2}) + L({y3})−∆2 − L({y1, y2}) + ε.

and so forth (the last inequality holds because there is at least the region of area ∆2 in

multiplicity between z2 = y3 and y1 ∈ {y1, y2}).

(b) Similarly, P(z3) ≤ L({z3})−∆3 + ε and P(z4) ≤ L({z4})−∆4 + ε

(c) Again P(z2, z3) ≤ L({z2, z3})−min(∆2,∆3)+2ε, P(z3, z4) ≤ L({z3, z4})−min(∆3,∆4)+

2ε, P(z2, z4) ≤ L({z2, z4})−min(∆2,∆4)+2ε and P(z2, z3, z4) ≤ L({z2, z3, z4})−min(∆2,∆3,∆4)+

3ε.

(d) Therefore, if 3ε < mini∈{2,3,4}∆i, then P(S) ≤ L(S) for every S ⊂
{
z2, z3, z4

}
.

It is straightforward to extend the argument for any subset that contains elements of the type

(z2, z3, z4). We need to choose ε such that (p− 1)ε < minS∈S(K) ∆
(K)
S (θ).

We therefore have P(S) ≤ L(S) for every S ⊂ B.

(iv) As P(S) ≤ L(S) for every S ⊂ B, it is easy to see that this is also satisfies for any union S∪C,

where C ⊆ YK\B. We still have to prove that the inequalities P(S) ≤ L(S) are satisfied for

S = B ∪C, where C ⊆ YK\B. We will build a similar tree for YK\B. Select yp+1 ∈ YK\B. If

C contains yp+1, checking the inequality is straightforward. Now, we have to prove this when

C does not contain yp+1. The proof is similar to that above.

(v) Find s such that yp+1 is directly connected to each yp+2, . . . , ys ∈ YK\B in graph ΓYK\B (this is

possible because YK\B is connected in ΓYK\B). yp+2, . . . , ys can be divided into two subgroups:

the subgroup yp+2, . . . , ys1 such that each outcome y1+s, . . . , ydK is directly connected to some

element of this subgroup and the subgroup y1+s1 , . . . , ys, which is not connected to any element

from y1+s, . . . , ydK . Note further that not all y1+s, . . . , y|YK | may be connected directly to some

element yp+2, . . . , ys1 , but if not, then we will only have an additional layer in the tree, and

the proof can easily be modified to any additional layer. Two alternative, simplified trees are

also built similar to the construction above (see Figure 4). If ε < minS∈S(K) ∆
(K)
S (θ), a similar

argument to that above proves that the inequalities are satisfied for any C.
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y1

z2z′2 z3

z4

∆2 ∆3

∆4

y1

z2 z3

z4

∆2 ∆3

∆4

Figure 3: Two simplified trees.

yp+1

yp+2, . . . , ys1 y1+s1 , . . . , ys

y1+s, . . . , y|YK |

yk+1

z5 z6

z7

∆5 ∆6

∆7

yp+1

z5z′5 z6

z7

∆5 ∆6

∆7

Figure 4: Construction of a tree from elements of YK\B starting from yp+1 and two simplified trees.
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A.7 Constructing the Core Determining Class

Proposition 7 permits to build an algorithm to construct the core determining class. The algorithm

is decomposed in four steps:

1. First, we collect the subsets B ⊆ YK such that B is not connected in ΓB. We call this

collection DK .

2. Second, we define D∗K =
{
YK\C : C ∈ DK

}
, which is the collection of non well connected

subsets of YK . As a matter of fact, for any B ∈ D∗K , there exists C ∈ DK , such that B = YK\C

and C, due to the first step, is not connected in ΓC .

3. Third, we define ΩK = P∗(YK)\D∗K , which gathers all well connected subsets of YK .

4. Finally, we define Ω =
{

ΩK : K = 1, . . . , N
}

, the well connected subsets of Y .

A.7.1 The algorithm details of the first step.

The first step is the one which needs more details.

Find DK =
{
B ⊆ YK : B is not connected in ΓB

}
. For simplification, we denote by P∗(C),

for any set C, the collection of all non empty subsets of C and by an abuse of notation P∗(C),

for any collection of sets C, the collection of P∗(C) for all the elements of C. We also define the

concatenation ⊕ of two collections C and B is defined as

C ⊕B =
⋃
c∈C

{
c ∪ b : b ∈ B

}
For example,

{{
y

(K)
1

}
;
{
y

(K)
2

}}
⊕
{{
y

(K)
3

}
;
{
y

(K)
4

}}
=
{{
y

(K)
1 , y

(K)
3

}
;
{
y

(K)
1 , y

(K)
4

}
;
{
y

(K)
2 , y

(K)
3

}
;
{
y

(K)
2 , y

(K)
4

}}
.

We denote by S(K)(h), the elements of S(K) with h outcomes. The intuition behind the algorithm

is to start from the pairs which are not in multiple equilibria and to extend the sequence by

sequentially increasing the set with k tuples k increasing from 3 to dK .
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• For any j, consider the set C
(K)
j of outcomes which are not in multiple equilibria with y

(K)
j

and call C+
j

(K)
the union of {y(K)

j } and C
(K)
j . We now prove that C+

j
(k)

is the largest subset

of YK such that y
(K)
j is an isolated node in the graph generated by itself.

Proof. If y
(K)
j would be connected to one another node in the graph generated by C+

j
(k)

, there

would exist outcomes y
(K)
i1
, . . . , y

(K)
im
∈ C

(K)
j such that y

(K),
j y

(K)
i1
, . . . , y

(K)
im

are in multiplicity.

Following the characterization of the multiple equilibria in Proposition 1, we define the values

n1 of indices where firms always play 1 across all the outcomes, n0 the indices of the firms which

always play 0, and ns the indices of firms which switch. The series of outcomes gathering all the

possible switching values, there exist at least one outcome y
(K)
ip

among y
(K)
i1
, . . . , y

(K)
im
∈ C(K)

j

which differentiate from y
(K)
j only from two switcher firms, one switching from 0 to 1 and

one switching from 1 to 0 when going from y
(K)
j to y

(K)
ip

. This is in contradiction with the

definition of C
(K)
k which collects all outcomes which can’t be in multiplicity with y

(K)
j .

There y
(K)
j is isolated in C+

j
(k)

and any other outcome outside this set being in multiple

equilibria with y
(K)
j can’t be added to this set.

Therefore, we initialize our construction of the set DK by collecting across j all subsets of YK
which contain y

(K)
j and any part of C

(K)
j :

SK,1 =

dK⋃
j=1

{
y

(K)
j ⊕ P∗

(
C

(K)
j

)}
.

• Now, we extend the construction. We first consider any pair
{
y

(K)
i , y

(K)
j

}
in multiplicity. We

can show that C =
{
y

(K)
i , y

(K)
j

}
∪
{
C

(K)
i ∩C(K)

j

}
, is not connected in ΓC . The proof is similar

than above. We can therefore augment SK,1 by all the possible combinations of the previous

type:

SK,2 = SK,1 ∪


⋃

i,j s.t. {y(K)
i ,y

(K)
j }∈SK(2) and C

(K)
i ∩C(K)

j 6=∅

{
{y(K)

i , y
(K)
j } ⊕ P∗

(
C

(K)
i ∩ C(K)

j

)} .

• and so on, with triples, ...until h = dK .
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SK,h = SK,h−1 ∪


⋃

{
a∈P∗(SK(h))\P∗(SK(h−1)):

⋂
j,y

(K)
j
∈a
C

(K)
j 6=∅

}
a⊕ P∗

 ⋂
j,y

(K)
j ∈a

C
(K)
j



 .

Now SK,dK = DK . Take any set B not connected in ΓB. There exists a component C of B in

ΓB. Define n1, n0 and ns like above (see Proposition 1), this set is picked in step h =
(

ns
K−n1

)
.

A.7.2 The Core Determining Class for N = 4

We now apply the previous construction for the entry game with four players. First, for K 6= 2,

any subset of YK is in the core determining class because all series of outcomes are in multiplicity.

Therefore, we only detail the case K = 2. There are six outcomes in B2(θ).

y
(2)
1 = (1, 1, 0, 0)>,

y
(2)
2 = (1, 0, 1, 0)>,

y
(2)
3 = (1, 0, 0, 1)>,

y
(2)
4 = (0, 1, 1, 0)>,

y
(2)
5 = (0, 1, 0, 1)>,

y
(2)
6 = (0, 0, 1, 1)>.

First, we apply proposition 1 to find all the elements of S(2), the outcomes in multiple equilibria

S(2) =
{{
y

(2)
1 , y

(2)
2

}
,
{
y

(2)
1 , y

(2)
3

}
,
{
y

(2)
1 , y

(2)
4

}
,
{
y

(2)
1 , y

(2)
5

}
,
{
y

(2)
2 , y

(2)
3

}
,
{
y

(2)
2 , y

(2)
4

}
,
{
y

(2)
2 , y

(2)
6

}
,
{
y

(2)
3 , y

(2)
5

}
,{

y
(2)
3 , y

(2)
6

}
,
{
y

(2)
4 , y

(2)
5

}
,
{
y

(2)
4 , y

(2)
6

}
,
{
y

(2)
5 , y

(2)
6

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
3

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
4

}
,
{
y

(2)
1 , y

(2)
3 , y

(2)
5

}
,{

y
(2)
1 , y

(2)
4 , y

(2)
5

}
,
{
y

(2)
2 , y

(2)
3 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
4 , y

(2)
6

}
,
{
y

(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y

(2)
4 , y

(2)
5 , y

(2)
6

}
,{

y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}}

• It happens that, for any j, y
(2)
j and y

(2)
7−j are never in multiplicity. So, following our algorithm,

we have

S2,1 =
6⋃
j=1

{
y

(2)
j ⊕ P∗

(
y

(2)
7−j

)}
=
{{
y

(2)
1 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
5

}
,
{
y

(2)
3 , y

(2)
4

}}
.
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• For h = 2, there is no pair
{
y

(2)
i , y

(2)
j

}
in S(2)(2) such that

{
C

(2)
i ∩ C

(2)
j

}
6= ∅.

• For h = 3, this is the same ; there is no 3-tuple
{
y

(2)
i , y

(2)
j , y

(2)
l

}
in S(2)(3) such that

{
C

(2)
i ∩

C
(2)
j ∩ C

(2)
l

}
6= ∅.

• For h = 4 or 5, there is no element in S(2)(h).

• Finally for h = 6, there is only one element,
{
y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
. But the intersection

of the C
(2)
j for all these elements is empty.

Therefore

D2 =
{{
y

(2)
1 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
5

}
,
{
y

(2)
3 , y

(2)
4

}}
and

D∗2 =
{{
y

(2)
1 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
5

}
,
{
y

(2)
3 , y

(2)
4

}
\D,D ∈ D2

}
,

=
{{
y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y

(2)
1 , y

(2)
3 , y

(2)
4 , y

(2)
6

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
5 , y

(2)
6

}}
.

Among all the non empty subparts of Y2, i.e. 63 sets, only 3 are not in the core determining class.

For example, Figure 5 draws the graph (V{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}, E{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}) from the knowledge

of S2 (there is no link between y
(2)
3 and y

(2)
4 because they don’t occur in multiplicity involving only

outcomes
{
y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
). This graph is clearly connected, so

{
y

(2)
1 , y

(2)
2

}
is well connected

and is part of the core determining class. A contrario,
{
y

(2)
3 , y

(2)
4

}
is not connected in Γ{

y
(2)
3 ,y

(2)
4

}
because these outcomes are not in multiplicity. Therefore

{
y

(2)
1 , y

(2)
2 , y

(2)
5 , y

(2)
6

}
is not well connected

and is not part of the core determining class.

y
(2)
3 y

(2)
4

y
(2)
5 y

(2)
6

Figure 5: Graph (V{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}, E{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}) from the multiplicity.
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The core determining class is{{
y
(2)
1

}
,
{
y
(2)
2

}
,
{
y
(2)
3

}
,
{
y
(2)
4

}
,
{
y
(2)
5

}
,
{
y
(2)
6

}
,
{
y
(2)
1 , y

(2)
2

}
,
{
y
(2)
1 , y

(2)
3

}
,
{
y
(2)
1 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
6

}
{
y
(2)
2 , y

(2)
3

}
,
{
y
(2)
2 , y

(2)
4

}
,
{
y
(2)
2 , y

(2)
5

}
,
{
y
(2)
2 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
4

}
,
{
y
(2)
3 , y

(2)
5

}
,
{
y
(2)
3 , y

(2)
6

}
,
{
y
(2)
4 , y

(2)
5

}
,
{
y
(2)
4 , y

(2)
6

}{
y
(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
5

}{
y
(2)
1 , y

(2)
3 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
4

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
5

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
6

}{
y
(2)
2 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
2 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
3 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
4 , y

(2)
5 , y

(2)
6

}{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4 , y

(2)
6

}{
y
(2)
1 , y

(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
5 , y

(2)
6

}{
y
(2)
2 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
6

}{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}}

A.8 The geometric selection procedure

The geometric selection procedure consists in, first determining the local extreme point and, then,

deriving the supporting hyperplanes at this extreme point. We adopt the convention of es1i1,...,skik

is the vector where the component ij is 1 if sj = +1 and -1 if sj = −1.

Determining the local extreme point The procedure to determine the local extreme point is

the following:

(1) Pick K and select the subvector P
(K)
0 . This is a vector in a space of dimension dK .

(2) For each component i, i = 1, . . . , dK , calculate the support function in direction ei and

e−i. Calculate the width in direction ei, i.e. Di = δ∗(ei;BK(θ)) + δ∗(e−i;BK(θ)). Cal-

culate the distance to the center point of the cube along the axis of component i: xi ={
e>i P

(K)
0 − δ∗(ei;BK(θ)) + Di

2

}
.

(3) Pick the coordinate i1 of the highest values of |xi|. If it is xi1 > 0, i1 is the highest index of the

local extreme point, i.e. the local vertex is related to the order i1? . . .? where the remaining

indices need to be found ; otherwise i1 is the lowest index, i.e. the local vertex is related to

the order ? . . .?i1.
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(a) Assume xi1 > 0. Pick ei1 , and construct the orthogonal projection of P
(K)
0 , P

(K)
i1

, onto

the facet Fi1 , xi1 = δ∗(ei1 ;BK(θ)). Then restart Step 2 with now the second index, i′.

For each i′ 6= i1, take ei1,i′ and ei1,−i′ . Compute the width of the intersection of the facet

and the set BK(θ):

Di1,i′ = δ∗(ei1,i′ ;BK(θ))− δ∗(ei1 ;BK(θ)) + δ∗(ei1,−i′ ;BK(θ))− δ∗(ei1 ;BK(θ)).

Calculate the distance to the center of the new cube which contains this intersection:

xi1,i′ =

(
e>i1,i′P

(K)
i1
− δ∗(ei1,i′ ;BK(θ)) +

Di1,i′

2

)
.

Pick the coordinate i2 of the highest values of |xi1,i′|.

(b) If now xi1 ≤ 0. Pick ei1 , and construct the orthogonal projection of P
(K)
0 , P

(K)
i1

, onto the

facet F−i1 , xi1 = −δ∗(e−i1 ;BK(θ)). Then restart Step 2 with now the second index, i′.

For each i′ 6= i1, take e−i1,i′ and e−i1,−i′ . Compute the width of the intersection of the

facet and the set BK(θ):

D−i1,i′ = δ∗(e−i1,i′ ;BK(θ))− δ∗(e−i1 ;BK(θ)) + δ∗(e−i1,−i′ ;BK(θ))− δ∗(e−i1 ;BK(θ)).

Calculate the distance to the center of the new cube which contains this intersection:

x−i1,i′ =

(
e>−i1,i′P

(K)
i1
− δ∗(e−i1,i′ ;BK(θ)) +

D−i1,i′

2

)
.

Pick the coordinate i2 of the highest values of |x−i1,i′ |.

(4) Repeat loop 2 and 3 until determining i1i2 . . . idK . This is our local extreme point.

(5) Do this procedure for all the values K. Collect the local extreme points accordingly.

Finding the facets at one extreme point Assume the extreme point is E
(K)
i1,i2,...,idK

(θ). We

now want to determine the facets of BK(θ) at this extreme point. The algorithm, detailed below,

is based on the idea that, when multiple equilibria does not exist between a series of outcomes, the

corresponding indices can be swapped if they are in consecutive ranks without changing the point

E
(K)
i1,i2,...,idK

(θ) in the space. It increases the number of inequalities that are binding at this extreme

point.
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1: Start with LK =
{
{y(K)

i1
}
}

and set k = 2.

k: Find the largest m such that
{
y

(K)
ik
, y

(K)
ik+1

, . . . , y
(K)
im

}
are not in multiplicity with elements in{

y
(K)
ij

}
, j ≥ k. Note

{
y

(K)
ik
, y

(K)
ik+1

, . . . , y
(K)
im

}
can be in multiplicity with elements in

{
y

(K)
ij

}
,

j ≤ k − 1.

LK = LK ∪
{{
y

(K)
i1
, y

(K)
i2
, . . . , y

(K)
ik−1

}
⊕ P∗

{
y

(K)
ik
, y

(K)
ik+1

, . . . , y
(K)
im

}}
.

Then, update to k + 1.20

R: Repeat the previous step for k = 2, . . . , dK steps and find

LK = LK ∩ ΩK .

LK can be converted into equivalent support directions. Any element CK of LK yields to the

direction eCK following Equation (10).

We provide a simple illustration of this algorithm in section A.9. The local geometry of set A(θ)

in the extreme point considered is

L =
{
LK : K = 0, 1, . . . , N

}
. (A.9)

Note that the composition of L is specific to each extreme point.

A.9 Determining the number of facets for B2(θ) when K=4

Following the previous section, we now illustrate how to determine the number of facets in a given

extreme point. Consider, for example, the extreme point E
(2)
1,2,3,4,5,6(θ) of B2(θ). We now determine

the number of facets. We know that it is at least 6 but, due to the fact that some outcomes are not

in multiplicity, we know that this point is also the same point than E
(2)
1,2,4,3,5,6(θ). The procedure

determines that. We show that, for this point:

20We define the concatenation ⊕ of two collections C and B as

C ⊕B =
⋃
c∈C

{
c ∪ b : b ∈ B

}
and P∗ is defined in Appendix A.7.1.
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LK =
{
{y(2)

1 }, {y
(2)
1 , y

(2)
2 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 }, {y

(2)
1 , y

(2)
2 , y

(2)
4 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 },

{y(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6 }
}

It means that the inequalities which are binding in E
(2)
1,2,3,4,5,6(θ) are based on the following directions

(that should be completed by zeros accordingly to give direction in R24): e1 = (1, 0, 0, 0, 0, 0)>,

e1,2 = (1, 1, 0, 0, 0, 0)>, e1,2,3 = (1, 1, 1, 0, 0, 0)>, e1,2,4 = (1, 1, 0, 1, 0, 0)>, e1,2,3,4 = (1, 1, 1, 1, 0, 0)>,

e1,2,3,4,5 = (1, 1, 1, 1, 1, 0)> and e1,2,3,4,5,6 = (1, 1, 1, 1, 1, 1)>.

We now follow the steps of the algorithm introduced in section 4.3.1.

(1) Set LK =
{
{y(2)

1 }
}
.

(2) At step 2, find the largest m such that
{
y

(2)
2 , y

(2)
3 , . . . , y

(2)
m

}
are not in multiplicity even with

outcomes in
{
y

(2)
2 , y

(2)
3 , . . . , y

(2)
6

}
. Since y

(2)
2 and y

(2)
3 are in multiplicity, m = 2.

LK =
{{
y

(2)
1

}}
∪
{{{

y
(2)
1

}
⊕ P∗(y(2)

2 )
}∖
D∗2
}

=
{{
y

(2)
1

}}
∪
{{
y

(2)
1 , y

(2)
2

}}
=
{{
y

(2)
1

}
,
{
y

(2)
1 , y

(2)
2

}}
(3) At step 3, we look for the largest m such that

{
y

(2)
3 , . . . , y

(2)
m

}
are not in multiplicity even with

outcomes in
{
y

(2)
3 , . . . , y

(2)
6

}
. Since y

(2)
3 and y

(2)
4 are not in multiplicity, but y

(2)
3 and y

(2)
5 are,

m = 4.

LK =
{{
y

(2)
1

}
,
{
y

(2)
1 , y

(2)
2

}}
∪
{{{

y
(2)
1 , y

(2)
2

}
⊕ P∗

{
y

(2)
3 , y

(2)
4

}}∖
D∗2
}

=
{{
y

(2)
1

}
,
{
y

(2)
1 , y

(2)
2

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
3

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
4

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4

}}
(4) At step 4, we look for the largest m such that

{
y

(2)
4 , . . . , y

(2)
m

}
are not in multiplicity even with

outcomes in
{
y

(2)
4 , . . . , y

(2)
6

}
. Since y

(2)
4 and y

(2)
6 are in multiplicity, m = 5.

LK =
{
{y(2)

1 }, {y
(2)
1 , y

(2)
2 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 }, {y

(2)
1 , y

(2)
2 , y

(2)
4 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 },

{y(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 }
}
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(5) Finally, add Y2 =
{
{y(2)

1 , y
(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6 }
}

.

Observe that this does not correspond to the extreme point with the maximum number of facets.

This happens in E
(2)
1,3,4,2,5,6(θ). In this case, we can start again the algorithm to determine that

there are 8 facets defined by the following directions: e1 = (1, 0, 0, 0, 0, 0)>, e1,3 = (1, 0, 1, 0, 0, 0)>,

e1,4 = (1, 0, 0, 1, 0, 0)>, e1,3,4 = (1, 0, 1, 1, 0, 0)>, e1,2,3,4 = (1, 1, 1, 1, 0, 0)>, e1,3,4,5 = (1, 0, 1, 1, 5, 0)>,

e1,2,3,4,5 = (1, 1, 1, 1, 1, 0)> and e1,2,3,4,5,6 = (1, 1, 1, 1, 1, 1)>.

A.10 Proof of Proposition 8

We do the proof for K = 1 and it is similar for K = 2, which proves the global result.

Fix θ. The goal is to proof that, if a point P
(1)
0 does not belong to B1(θ), a local selection

procedure would detect it.

First, observe that any extreme point is linked to an order between the three possible equilibria.

Each extreme point E
(1)
i1,i2,i3

(θ) has supporting hyperplanes with outer normal vectors, e
(1)
i1

, e
(1)
i1,i2

and

e
(1)
i1,i2,i3

= (1, 1, 1)>.

There are three cases:

• If P
(1)
0 is outside the cube which contains B1(θ). It means at least one of the values xi is outside

a bounded interval [−Di/2, Di/2], where Di = is the width in direction ei. The highest value

of |x1|, |x2|, |x3| selects a face which separates B1(θ) and P
(1)
0 . Assume this is |x1| and that

x1 > 0. The first component of P
(1)
0 is above the largest value of the first component of any

point of B1(θ). The local extreme point is E
(1)
1??(θ). Whatever the next choice, the direction

e
(1)
1 defines a supporting hyperplane of B1(θ) at this extreme point which separates B1(θ) and

P
(1)
0 . Consequently, T∞(e

(1)
1 ; θ) < 0.

• If P
(1)
0 is in the cube but not in B1(θ). Whatever the choice of the extreme point of B1(θ),

the third direction (1, 1, 1)> defines a supporting hyperplane which separates B1(θ) and P
(1)
0 .

Consequently, T∞(e
(1)
1,2,3; θ) < 0. And, so forth for the other possibilities.

• If P
(1)
0 ∈ B1(θ), any choice of local extreme point is valid because, for any direction q,

T∞(q,K; θ) ≥ 0.
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When P
(1)
0 ∈ B1(θ), the procedure does not reject θ. When P

(1)
0 /∈ B1(θ), the procedure does.

It is therefore a valid and sharp characterization of B1(θ).

A.11 Proof of Proposition 9

Under condition UI, following Lemma 3.1 of Romano and Shaikh (2008), we have

sup
P∈P

sup
S∈L

∣∣∣P(√M (
µ(P )− P̂M

)
∈ S

)
− ΦΣ(P )(S)

∣∣∣ −→
M→∞

0,

where ΦΣ(·) is the cumulative distribution function of the centered multivariate normal distribution

with variance Σ, µ(P ) = EP (Y ) and Σ(P ) = diag(µ(P )) − µ(P )µ(P )> and L is a collection of

convex sets with zero boundary.

Consider the directions q of G and relabel them q1, . . . , qm. Then, define m convex sets in R2N ,

D1, ...,Dm such that,

∀U ∈ Di,
q>i U√
q>i Σqi

≤ min
j 6=i

q>j U√
q>j Σqj

.

Now, we can define, for a given x ∈ R the sets S1, ..., Sm (Si ⊂ Di) such that

∀U ∈ Si, x ≤ q>i U√
q>i Σqi

≤ min
j 6=i

q>j U√
q>j Σqj

.

Now, we have

P

(
inf
q∈G

(
√
M
q>(µ(P )− P̂M)√

q>Σq

)
≥ x

)
=

m∑
i=1

P
(√

M(µ(P )− P̂M) ∈ Si
)

−→
M→∞

m∑
i=1

ΦΣ(P ) (Si) =
m∑
i=1

P(Z ∈ Si),

uniformly over P ∈ P , for Z ∼ N (0,Σ(P )). Moreover,

m∑
i=1

P(Z ∈ Si) =P

(
Z ∈

m⋃
i=1

Si

)

=P

(
inf
q∈G

q>Z√
q>Σq

≥ x

)
.
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So, uniformly over P ∈ P ,

inf
q∈G

(
√
M
q>(µ(P )− P̂M)√

q>Σq

)
d−→

M→∞
inf
q∈G

q>Z√
q>Σq

. (A.10)

Following, Bontemps et al. (2012), proof of Proposition 10, we can now consider the two different

cases:

• If P0, the true choice probability vector belongs to A(θ), the set of minimizers of TM(q; θ)

tends to Qθ, the set of minimizers of T∞(q, θ). This set may not be reduced to a singleton if

P0 is at the intersection of at least two facets. Therefore,

ξM(θ) =
√
M min

q∈G

TM(q; θ)√
q>Σq

=
√
M inf

q∈G

TM(q; θ)− T∞(q; θ) + T∞(q; θ)√
q>Σq

= inf
q∈G

√
M(q>(P0 − P̂M)) +

√
MT∞(q; θ)√

q>Σq

= inf
q∈Qθ

√
M(q>(P0 − P̂M))√

q>Σq

The last equality holds because for any q ∈ Qθ, T∞(q; θ) = 0 and q /∈ Qθ, T∞(q; θ) > 0. So

asymptotically, the argmin belongs to Qθ (remember that G is discrete). We conclude using

the uniform convergence of Equation (A.10).

• If P0 /∈ A(θ), the value T∞(q, θ) is negative for any direction q. TM(q, θ) converges uniformly

in q, on the unit sphere, toward a strictly negative value and is therefore bounded away from

zero uniformly. The rescaling by
√
M makes the limit −∞.

Now, we need to consider the fact that Σ is estimated. We need to use the following additional

result to replace Σ by Σ̂ in the proofs above:

sup
P∈P

∥∥∥Σ̂(P )− Σ(P )
∥∥∥ P−→ 0

where ‖.‖ is the component-wise maximum of absolute value of each element. This follows from

lemma S.7.1 in supplement to Romano and Shaikh (2012).
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A.12 Proof of Corollary 11

In the proof of Proposition 9, we show that uniformly over P ∈ P ,

ξM(θ)
d−→

M→∞
inf

(q)∈Qθ
N (0, q>Σ(P ) q)

if P0 ∈ A(θ). Observe that the distribution depends on θ only through the minimizing set Qθ, but

θ doesn’t affect the covariance of the distribution. Define

S = ∪θ∈ΘIQθ

Since S ⊆ G the result follows.

A.13 Proof of Proposition 12

Following Proposition 2, we know that any subset of Y1 of cardinality greater than 2 corresponds to

a multiple equilibria region. Consequently, ∆
(1)
S (θ) for any subset S ⊆ Y1 is non-zero, and, following

Proposition 4, any change in the order gives a different point. Let i1, i2, . . . , id1 be an order of the

coordinates that defines an extreme point E
(1)
i1,i2,...,id1

(θ) and C(1)
i1,...,id1

be the cone of directions q such

that δ∗(q;B1(θ)) = q>E
(1)
i1,...,id1

(θ). Each direction defines a supporting hyperplane (or facet) of B1(θ)

at E
(1)
i1,...,id1

(θ).

Any direction q in the cone can be written as

q = (qi1 − qi2)ei1 + (qi2 − qi3)ei1,i2 + . . .+ (qid1−1
− qid1 )ei1,i2,...,id1−1

+ qid1ei1,i2,...,id1 .

All the coefficients except the last one are positive. The cone is therefore generated by ei1 , ei1,i2 ,...,

ei1,i2,...,id1−1
, ei1,i2,...,id1 or −ei1,i2,...,id1 .21

In other words, there are only d1 supporting hyperplanes of B1(θ) at this point, and it is sufficient

to check the inequalities related to these hyperplanes/facets for a point locally around E
(1)
i1,...,id1

(θ).

A.14 Proof of Proposition 13

To find the upper bound on the number of facets in any extreme point for 1 < K < N − 1, we first

have to pack the indices which correspond to outcomes which are not in multiplicity.

21Remark that ei1,i2,...,id1 = (1, 1, . . . , 1)>.
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• Let us first define lmax the cardinality of the maximal subset S ∈ YK such that any pair of S is

not in multiplicity. If we collect these indices from the second one, we can switch their order

and still have the same point. For example, if y
(K)
i2

and y
(K)
i3

are not in multiplicity, the point

E
(K)
i1,i2,i3,??? is the same point than E

(K)
i1,i3,i2,??? when the next orders don’t change. Consequently,

it defines at most one additional outer normal vector following the construction we used earlier

in the case K = 1. The first outer normal vectors are e
(K)
i1

, e
(K)
i1,i2

, e
(K)
i1,i3

, e
(K)
i1,i2,i3

, etc. These series

of indices are related to 2lmax−1 outer normal vector corresponding to all e
(K)
i1,ij

, j = 2..lmax +1,

e
(K)
i1,ij ,ik

, j, k between 2 and lmax + 1 up to e
(K)
i1,i2,...,ilmax+1

.

• Then we add indices according to the following rule. At each step k, starting from 3, the next

index im is such that, if possible, y
(K)
ik
, . . . , y

(K)
im

are not in multiplicity even with all remaining

outcomes YK\{y(K)
i1

. . . , y
(K)
ik−1
}. Otherwise, we pick a random index and we go on. It adds

at the maximum (if the added index is not in multiplicity with anybody before) 2lmax−1 new

supporting hyperplanes (as you can switch all orders between k and k + lmax − 1, and count

only those where the last index is not the last value, i.e. 2lmax − 2lmax−1 = 2lmax−1). See figure

6 below.

• After Step 1, it remains dK − lmax − 1 points after having chosen i1, i2, . . . , ilmax+1.

• The maximum number of facets is therefore L∗max = 1 + 2lmax − 1 + (dK − lmax− 1)(2lmax−1) =

2lmax + (dK − lmax − 1)(2lmax−1).

Observe that this bounds is a loose bound and can always be refined by brute force on a case

to case basis. Nevertheless, it gives a sufficiently precise estimate of c(L∗) the true cut off value.

When N = 4 and K = 2, dK = 6 and lmax = 2 (see Section A.7.2). Applying the formula above we

obtain, L∗max = 10. The true L∗ is equal to 8. However the two cut off values for a level of 5% (see

Section 4.3) are c(8) = −2.51 and c(10) = −2.58. When N = 5 and K = 2, dK = 10 and lmax = 2.

L∗max = 18 whereas L∗ = 15.
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i1 il+3 . . . idKi2 i3 il+1 il+2

Step 2

Step 3

Max dK − lmax − 1 indices.

. . .

Step 2: we can switch any of these indices. 2lmax − 1 facets.

Order:

Step 3: at max, we can switch any of these indices. 2lmax−1 additional facets.
Note: l denotes lmax in the circles related to the order.

Figure 6: Counting the maximum number of facets at E
(K)
i1,i2,...,idK

(θ).

K N = 5 N = 6 N = 7 N = 8 N = 9
2 2 3 3 4 4
3 2 4 7 8 10
4 1 3 7 14 14
5 1 3 8 14
6 1 4 10
7 1 4
8 1

Table VII: Value of lmax for N ≤ 9
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A.15 The simulation of the critical values

We propose an algorithm to simulate the critical values c(G, α) of Section 4.2. Observe that:

min
q∈G

q>Z√
q>Σ̂q

= min
q∈G

(Σ̂1/2q)>Σ̂1/2Z̃√
(Σ̂1/2q)>(Σ̂1/2q)

+ 0p(1),

where Z̃ ∼ N(0, Σ̂−1). The matrix Σ̂1/2 rotates the quantities of interest but the direction q which

minimizes the quantity are still the same.

1. Draw Z̃ from the normal distribution N (0, Σ̂−1). Cut Z̃ in subvectors Z̃(0), Z̃(1), . . . , Z̃(N).

2. For each K ∈ {0, 1, . . . , N}, order Z̃
(K)
i , i = 1, . . . , dK in the increasing order Z̃

(K)
i1

, Z̃
(K)
i2

, etc.

The direction qK which minimizes q>KΣ̂Z̃(K)/
√
q>KΣ̂qK is among the direction e

(K)
i1

, e
(K)
i1,i2

, ...,

e
(K)
i1,i2,...,idK

. Calculate all the values q>KΣ̂Z̃(k)/
√
q>KΣ̂qK for all the potential candidates and

take the minimum one, called mK .

3. Take m = minK=0,...,N mK .

4. Repeat the previous steps, S − 1 times to get S realizations of the distribution of the lower

bound and take the α-quantile of this distribution. This is c(G, α).

B The entry game with three players

In this section, we consider our entry game with three firms. The profit of firm i in market m, πim

is modeled as:

πi = βi + αi

(∑
j 6=i

aj

)
+ εi, (B.11)

where a1 (resp. a2, a3) is equal to 1 when π1 > 0 (resp. π2 > 0, π3 > 0), 0 otherwise. The

joint distribution of (ε1, ε2, ε3), F (·; γ), is assumed to be known up to parameter and θ denote all

parameters in the model. We also assume that α’s are negative.

B.1 Multiple equilibria regions

There are, in this setup, eight regions of multiple equilibria, which correspond to the set of outcomes

expressed in Table VIII. First note that S(1) =
{
S1, S2, S3, S4

}
and S(2) =

{
S5, S6, S7, S8

}
.
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N = 1 S1 =

(
0, 0, 1
0, 1, 0

)
S2 =

(
0, 0, 1
1, 0, 0

)
S3 =

(
0, 1, 0
1, 0, 0

)
S4 =

 0, 0, 1
0, 1, 0
1, 0, 0


N = 2 S5 =

(
0, 1, 1
1, 0, 1

)
S6 =

(
0, 1, 1
1, 1, 0

)
S7 =

(
1, 0, 1
1, 1, 0

)
S8 =

 0, 1, 1
1, 0, 1
1, 1, 0


Table VIII: All multiplicities in pure strategy Nash equilibrium of entry game with 3 players.

B.2 The set of predicted choice probabilities

Recall that the probability of each outcome can be written with the unknown selection mechanism

η(·). For example,

P001 = P
(1)
1 (θ, η) = ∆

(1)
1 (θ) +

∑
S∈{S1,S2,S4}

∫
R(K)
S (θ)

η((0, 0, 1)>|ε, θ)dF (ε; γ),

Let uj(Sk) be defined like in Section A.4. The set A(θ) is the collection of points in R8 that can be

written, for some specific choice of weights uj(Sk):



P000

P001

P010

P100

P011

P101

P110

P111


=



∆
(0)
1 (θ)

∆
(1)
1 (θ) + u1(S1)∆

(1)
S1

(θ) + u1(S2)∆
(1)
S2

(θ) + u1(S4)∆
(1)
S4

(θ)

∆
(1)
2 (θ) + u2(S1)∆

(1)
S1

(θ) + u2(S3)∆
(1)
S3

(θ) + u2(S4)∆
(1)
S4

(θ)

∆
(1)
3 (θ) + u3(S2)∆

(1)
S2

(θ) + u3(S3)∆
(1)
S3

(θ) + u3(S4)∆
(1)
S4

(θ)

∆
(2)
1 (θ) + u1(S5)∆

(2)
S5

(θ) + u1(S6)∆
(2)
S6

(θ) + u1(S8)∆
(2)
S8

(θ)

∆
(2)
2 (θ) + u2(S5)∆

(2)
S5

(θ) + u2(S7)∆
(2)
S7

(θ) + u2(S8)∆
(2)
S8

(θ)

∆
(2)
3 (θ) + u3(S6)∆

(2)
S6

(θ) + u3(S7)∆
(2)
S7

(θ) + u3(S8)∆
(2)
S8

(θ)

∆
(3)
1 (θ)


, (B.12)

with the constraint
∑

j|y(K)
j ∈S uj(S) = 1, 0 ≤ uj(S) ≤ 1 for S ∈ S(K). The partition here refers

to different K (number of active firm in any outcome). This partition is very useful as the convex

set decomposes into cartesian product of smaller dimension convex set. This convex set only need

18 directions to characterize it.

Figure 7 displays the set B1(θ), its outer cube and the inequalities (in red) which are tested in

our geometric selection procedure.

B.3 The directions used in the Monte Carlo experiment

Following Proposition 4, we have a closed-form expression for the support function. It is equal to:
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E
(1)
1,2,3

E
(1)
1,3,2

E
(1)
2,1,3

E
(1)
2,3,1

E
(1)
3,2,1

E
(1)
3,1,2

P

max P (0, 0, 1)

max P (1, 0, 0)

max P (0, 1, 0)

U

Figure 7: The geometric selection procedure for B1(θ).
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δ∗ (q;A(θ)) = q>∆(θ)

+ max(q2, q3)∆
(1)
S1

(θ) + max(q2, q4)∆
(1)
S2

(θ) + max(q3, q4)∆
(1)
S3

(θ) + max(q2, q3, q4)∆
(1)
S4

(θ)

+ max(q5, q6)∆
(2)
S5

(θ) + max(q5, q7)∆
(2)
S6

(θ) + max(q6, q7)∆
(2)
S7

(θ) + max(q5, q6, q7)∆
(2)
S8

(θ),

where q = (q1, . . . , q8)> and

∆(θ) =
(
∆

(0)
1 (θ),∆

(1)
1 (θ),∆

(1)
2 (θ),∆

(1)
3 (θ),∆

(2)
1 (θ),∆

(2)
2 (θ),∆

(2)
3 (θ),∆

(3)
1 (θ)

)>
.

The identified set can be estimated by testing that the point P0 belongs to A(θ) or, equivalently,

by testing that

min
q∈G

δ∗ (q;A(θ))− q>P0 ≥ 0.

The following sets of directions considered for G are given below. For ”Ineq1”, we consider 16

inequalities derived from these 16 directions. Each direction is a column of the following set:

G1 =



1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
0
1
1
0
0
0
0

0
1
1
1
0
0
0
0

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
0
1
1
0

0
0
0
0
1
1
1
0


.

Similarly, for ”Ineq2” we consider also 16 directions:

G2 =



1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

0
0
0
−1

0
0
0
0

0
0
−1

0
0
0
0
0

0
−1

0
0
0
0
0
0

0
1
1
1
0
0
0
0

0
0
0
0
0
0
−1

0

0
0
0
0
0
−1

0
0

0
0
0
0
−1

0
0
0

0
0
0
0
1
1
1
0


.

”Ineq3” takes the whole set of inequalities and equalities which define B0(θ) B1(θ) and B3(θ)
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(the equality related to B2(θ) being redundant is dropped):

G3 =



1
0
0
0
0
0
0
0

−1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
0
1
1
0
0
0
0

0
1
1
1
0
0
0
0

0
−1
−1
−1

0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
−1


.

”Ineq4” replaces the directions e
(K)
ij in ”Ineq3 by the directions −e(K)

l

G4 =



1
0
0
0
0
0
0
0

−1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
−1

0
0
0
0

0
0
−1

0
0
0
0
0

0
−1

0
0
0
0
0
0

0
1
1
1
0
0
0
0

0
−1
−1
−1

0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
−1

0

0
0
0
0
0
−1

0
0

0
0
0
0
−1

0
0
0

0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
−1


.

C Additional Monte Carlo simulations

We compare our procedure with the results of the GMS procedure proposed by Andrews and Soares

(2010) and its refinement by Romano et al. (2012). We use the DGP of the example with three

player considered in table IV, i.e, β = 0.35 and α1 = α2 = α3 = −0.4. Table IX displays the mean

rejection rate across simulations for a sequence of points on a curve displayed in Figure 8. The

sequence of points contains points from the identified set and outside this identified set. First, for

M = 1000, all rejection rates are fine with values close to 5% at the boundary. Second, the power

of our local procedure is better than the GMS procedures because the critical value is smaller.
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M=1000 M=2000
G L AS RSW G L AS RSW

0.889 0.923 0.914 0.899 0.998 0.999 0.999 0.999
0.826 0.881 0.865 0.841 0.995 0.997 0.997 0.996
0.756 0.820 0.802 0.773 0.984 0.992 0.990 0.988
0.679 0.750 0.731 0.698 0.964 0.978 0.975 0.971
0.595 0.675 0.656 0.616 0.927 0.952 0.950 0.941
0.512 0.594 0.571 0.532 0.875 0.913 0.907 0.897
0.434 0.516 0.492 0.453 0.797 0.854 0.844 0.826
0.365 0.442 0.419 0.383 0.718 0.775 0.764 0.742
0.304 0.375 0.353 0.315 0.625 0.694 0.681 0.657
0.246 0.316 0.294 0.257 0.522 0.603 0.589 0.559
0.196 0.259 0.240 0.206 0.413 0.494 0.479 0.446
0.155 0.209 0.193 0.163 0.319 0.392 0.378 0.351
0.121 0.170 0.157 0.128 0.241 0.300 0.289 0.265
0.095 0.135 0.125 0.101 0.180 0.229 0.218 0.200
0.077 0.112 0.102 0.082 0.127 0.172 0.161 0.145
0.066 0.095 0.086 0.069 0.095 0.124 0.118 0.107
0.056 0.083 0.076 0.057 0.070 0.094 0.088 0.078
0.048 0.073 0.065 0.049 0.052 0.071 0.067 0.060
0.045 0.065 0.059 0.045 0.042 0.058 0.054 0.048
0.043 0.062 0.054 0.043 0.035 0.048 0.045 0.040
0.040 0.059 0.053 0.040 0.033 0.043 0.040 0.036
0.038 0.057 0.049 0.038 0.031 0.041 0.038 0.035
0.037 0.054 0.048 0.037 0.030 0.039 0.036 0.033
0.036 0.054 0.046 0.036 0.030 0.038 0.035 0.031
0.036 0.053 0.045 0.035 0.030 0.038 0.035 0.031
0.036 0.052 0.044 0.035 0.029 0.038 0.035 0.030
0.035 0.052 0.044 0.035 0.029 0.038 0.035 0.030
0.035 0.052 0.043 0.035 0.029 0.038 0.035 0.029
0.035 0.052 0.043 0.035 0.029 0.038 0.035 0.029
0.035 0.052 0.043 0.035 0.029 0.038 0.035 0.028
0.035 0.052 0.044 0.035 0.029 0.038 0.035 0.029
0.035 0.052 0.045 0.035 0.029 0.038 0.035 0.030
0.035 0.052 0.046 0.035 0.029 0.038 0.035 0.030
0.036 0.054 0.048 0.036 0.030 0.038 0.036 0.032
0.043 0.064 0.058 0.044 0.039 0.052 0.048 0.043
0.050 0.075 0.069 0.051 0.056 0.079 0.071 0.064
0.069 0.103 0.094 0.072 0.103 0.140 0.132 0.118
0.152 0.208 0.189 0.158 0.316 0.390 0.375 0.346
0.104 0.145 0.133 0.108 0.196 0.244 0.236 0.215
0.223 0.289 0.269 0.235 0.468 0.541 0.527 0.504
0.300 0.382 0.355 0.314 0.600 0.680 0.669 0.641
0.394 0.471 0.449 0.410 0.729 0.793 0.781 0.758
0.491 0.569 0.548 0.512 0.836 0.882 0.874 0.856
0.600 0.676 0.656 0.618 0.921 0.947 0.945 0.934
0.708 0.774 0.754 0.722 0.963 0.976 0.974 0.970
0.800 0.855 0.841 0.812 0.988 0.993 0.992 0.990
0.877 0.916 0.905 0.888 0.996 0.997 0.997 0.996
0.933 0.958 0.952 0.940 0.998 1.000 0.999 0.999
0.968 0.979 0.976 0.972 1.000 1.000 1.000 1.000
0.985 0.993 0.991 0.988 1.000 1.000 1.000 1.000
0.996 0.998 0.997 0.997 1.000 1.000 1.000 1.000
0.999 1.000 0.999 0.999 1.000 1.000 1.000 1.000

The rejection rates for the points in the iden-
tified set are colored in grey.

Table IX: Rejection frequencies for points tested according to different inference methods. See
Figure 8 for a plot of the points in the space (α1, α2).
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Figure 8: Sequence of points tested (the points of the identified set are colored).
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