Quentin Baert
email: quentin.baert@univ-lille.fr

Anne-Cécile Caron
email: anne-cecile.caron@univ-lille.fr

Maxime Morge
email: maxime.morge@univ-lille.fr

Jean-Christophe Routier
email: jean-christophe.routier@univ-lille.fr

Kostas Stathis
email: kostas.stathis@rhul.ac.uk

Adaptive Multi-agent System for Situated Task Allocation

Keywords:

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Multi-agent scheduling [1, 2, 4, 8, 10-17, 20, 22-25] has received significant attention in tackling the problem of load balancing and task allocation in distributed systems. Apart from dividing the work through decentralization, we consider dynamicity because allocation of tasks must be concurrent with their execution, and adaptation because tasks must be reallocated when a disruptive event is performed. We will assume that agents are fully distributed and cooperative in order to optimize the global runtime, i.e a systemcentric metric rather than user-centric metrics [10-13, 20, 24]. We will also assume that a task can be performed by any single agent without preemption and precedence order. Moreover, tasks have no deadlines, are indivisible and not shareable.

We follow a market-based approach [10-13, 20, 24] to tackle the multi-agent situated task allocation problem. In order to improve load balancing, agents adopt a locality-based strategy in concurrent one-to-many negotiations for task delegations. The task reallocation is dynamic since the negotiation process is iterated and concurrent with the tasks processing. Moreover, the system is adaptive to disruptive events, e.g. task consumptions. As a practical application, we consider the distributed deployment of the MapReduce design pattern for processing large datasets [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF]. Our preliminary empirical results show that, for such an application, the locality-based strategy improves the runtime.

NEGOTIATION PROCESS

In a multi-agent situated task allocation problem, tasks have different costs (runtime) for different agents due to the resource locality. A task allocation is evaluated by considering the maximum completion time (makespan). In order to locally improve the task allocation, agents consider socially rational task delegations that strictly decrease the local makespan until a stable allocation is reached.

Decentralized task delegation process. Agents operate in concurrent, one-to-many and single-round negotiations for task delegations. Each negotiation, which is based on the Contract Net Protocol [START_REF] Smith | The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver[END_REF], is divided in three steps: 1) the choice of the task to negotiate by the strategy of the initiator; 2) the refusals/bids from the peers based on the social rationality of the task delegation; 3) the selection of the winning bid by the initiator, e.g. the bidder with the smallest workload. Several negotiations may concurrently occur as in [START_REF] Alrayes | Concurrent bilateral negotiation for open e-markets: the CONAN strategy[END_REF] and the responsiveness of the task reallocation can be improved [START_REF] Baert | Negotiation Strategy of Divisible Tasks for Large Dataset Processing[END_REF]. Even if the computation of the local makespan by the initiator of a negotiation is based on its beliefs, that can be inaccurate, a successful negotiation can only reach a socially rational task delegation, and so it tends to improve the makespan.

Concurrent consumptions and delegations. Task delegations and task consumptions are concurrent. Fig. 1 represents their impact on the allocation until all of the tasks are performed (T final = ∅). Starting from the initial allocation P 0 , agents perform socially rational task delegations to improve the makespan (e.g. the path from P 0 to P k) until a task consumption (e.g. the edge from P k to P ′ 0), which eventually interrupts the path toward a stable allocation (e.g. the path from P k to P stable shown in gray). A task consumption may occur when the agents have reached a stable allocation (e.g. P ′ stable) or not (e.g. P k). Even if task delegations and task consumptions are concurrent and the two of them tend to decrease the makespan, these processes are complementary since a task removal may allow new socially rational task delegations.

Locality-based strategy. According to a trivial strategy, an agent can perform the largest task in its bundle and negotiate the smallest one in the set of potential socially rational delegations. By contrast, we build the strategy upon the locality since resource fetching consumes time. Intuitively, an agent should perform first the tasks which may cost more for its peers and it should negotiate first the tasks which may cost less for its peers. For this purpose, we define the local availability ratio of an agent for a task as the ratio between the number of local resources for this task with respect to the agent and the total number of resources for the task. According to our strategy, an agent performs first the large local tasks and it negotiates first the large distant ones based on its local beliefs and knowledge, i.e. the local availability ratios and the task costs. This strategy is built on a composite task bundle, called locality-based bundle which is divided in three subbundles as follows.

• The maximum locality bundle contains the tasks s.t. agent owns at least one resource and there is no other agent which owns more resources for this task. The tasks are sorted in decreasing order of cost.

• The intermediate locality bundle contains the tasks which are partially local. The tasks are sorted in decreasing order of local availability ratio and the tasks with the same local availability ratio are sorted in decreasing order of cost.

• The distant bundle contains the tasks which are distant. The tasks are sorted in increasing order of cost.

When an agent looks for a task to perform, it starts from the top of the maximum locality bundle, i.e. the largest local task. When an agent looks for a task to negotiate, it starts from the bottom of the distant bundle (i.e. the largest distant task) and it selects the first one which is a potential socially rational delegation according to its beliefs.

EMPIRICAL VALIDATION

We have implemented a multi-agent system which deploys the MapReduce design pattern in a distributed system setting [START_REF] Baert | Fair multi-agent task allocation for large datasets analysis[END_REF]. Our agents negotiate the reduce tasks during the job in order to improve the poor load balancing due to data skews [START_REF] Chen | SAMR: A self-adaptive MapReduce scheduling algorithm in heterogeneous environment[END_REF][START_REF] Kwon | Skewtune: mitigating skew in mapreduce applications[END_REF][START_REF] Liroz-Gistau | FP-Hadoop: efficient execution of parallel jobs over skewed data[END_REF], and so the job execution time.

Our experiments1 are based on a 8 Gio dataset (82, 283 keys, i.e. tasks) which has been generated such that the initial task allocation (cf. Fig. 2) is poorly load balanced in order to check that the locality has an impact on the makespan and thus on the job runtime.

We compare the median job execution times when the agents adopt the trivial strategy or the locality-based one with 10 runs for each configuration. We observe that the locality-based strategy significantly improves the runtime, around -7.6%. When there is no negotiation, it corresponds to the Hadoop behaviour where the initial task allocation is never challenged. For comparison, in this case the job runtime is 853 seconds (around +100%). We deduce that the price of the negotiation can be neglected regarding the impact of the load balancing. Moreover, the negotiation allows to decrease the job execution time and even more with the locality-based strategy.

Fig. 2 compares the task allocation when all the tasks have been performed whatever they have been negotiated (or not) between the 16 agents in accordance with the trivial strategy or the localitybased one. We observe that the makespan of the initial allocation is approximately 3.3 10 8 , around 2.5 10 8 (-24%) for the negotiation with the trivial strategy and 2 10 8 (-30.7%) for the locality-based one. We deduce that the negotiation, in particular with the localitybased strategy, allows to improve the load balancing.

CONCLUSION

We have introduced a task reallocation mechanism which is dynamic, since it is concurrent with the tasks processing, and adaptive to disruptive events, i.e. task consumptions. In this context, we have proposed a locality-based strategy adopted by the agents operating in concurrent one-to-many negotiations for task delegations. According to their local beliefs and knowledge, the agents perform first large local tasks and they negotiate first large distant ones. In order to validate our approach, we have developed a proof-of-concept prototype where agents negotiate reduce tasks of the MapReduce design pattern in a distributed setting. Our preliminary empirical results show that, for such an application, the locality-based strategy can improve the load balancing and so the job execution time.

As part of our future work we are currently evaluating our prototype with numerous and representative experiments with real-word datasets in various settings.

Figure 1 :

 1 Figure 1: Concurrent task consumptions (vertical edges) and task delegations (horizontal edges).

Figure 2 :

 2 Figure 2: Initial and ex-post task allocation with the trivial strategy and the locality-based one.

Our experiments have been performed on 16 PCs with 4 cores Intel(R) i7 and 16GB RAM each.