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Monitoring of Three-Phase Signals based on
Singular-Value Decomposition

V. Choqueuse, Member, IEEE, P. Granjon, A. Belouchrani, Senior Member, IEEE, F. Auger, Senior
Member, IEEE, and M. Benbouzid, Senior Member, IEEE,

Abstract—In this paper, a new approach for the analysis of
three-phase electrical signals is considered. While most of the
existing techniques are based on fixed transforms such as the
Clarke transform, this paper investigates the use of a data-driven
approach called the Singular Value Decomposition (SVD). As
compared to other transforms, this study shows that the SVD
has the distinct advantage of clearly separating the contributions
of the phasor configuration and signal instantaneous parameters.
Under additive white Gaussian noise, this paper also describes
several algorithms based on the SVD for signal monitoring. The
first algorithm can detect unbalanced systems and classify them
into two categories: system with an off-nominal subspace and
systems with ellipticity. The second algorithm can estimate the
angular frequency based on the periodogram of the right singular
vectors. As compared to other existing approaches, simulations
show that the proposed techniques give a good compromise
between computational complexity and statistical performance.

Index Terms—Three-phase signals, Singular-Value Decompo-
sition, Generalized Likelihood Ratio Test, Frequency Estimation.

I. INTRODUCTION

Three-phase electrical signals play a key role in power
electronic applications at the generation, transmission and
distribution side. Under nominal conditions, each phase signal
has a sinusoidal shape with a constant magnitude and a
fundamental frequency equal to 60Hz (or 50Hz) [1], [2].
Moreover, balanced three-phase signals have equal magnitude
and are ideally 2π/3 apart in terms of phase angles. In
practice, three-phase signals are seldom stationary and the
phasor configuration may deviate significantly from the bal-
anced case [3]. In a smart grid, these deviations are monitored
using synchronized devices called Phasor Measurement Units
(PMU) [4]–[6]. In particular, two signal parameters are of
main interest: the signal fundamental frequency [7]–[10] and
the phasor configuration [11], [12]. This has motivated the
development of new low-complexity algorithms for frequency
estimation and unbalanced detection in PMU devices.

Numerous studies have addressed the frequency estimation
problem for electrical signals [6]. A commonly used approach
for frequency estimation is based on the Discrete Time Fourier
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Transform (DTFT) [13], [14] and its extension such as the
Interpolated Discrete Fourier Transform (IpDFT) [15]–[17].
Nevertheless, as recently pointed out in [18], these single-
phase techniques usually require a large number of cycles
and Signal to Noise Ratio (SNR) to meet the requirements
of the IEEE Standard C37.118-2011 dealing with PMU speci-
fications. To improve the estimator performance, one possible
solution is to exploit the multi-dimensional nature of three-
phase signals. For balanced signals, a conventional approach
is based on the Clarke transform [19], [20]. After Clarke
transform, the so-called αβ components can be further pro-
cessed to estimate the signal frequency [7], [8], [21]–[25]
and other parameters of interest [23], [25]. For unbalanced
signals, several authors have also investigated the use of the
αβ components for frequency estimation [7], [24]. However,
this strategy has two major drawbacks. First, under unbalanced
conditions, the use of the αβ components usually requires so-
phisticated approaches since the signal trajectory depends both
on the phasors configuration and on the signal instantaneous
parameters. Then, while the Clarke transform is perfectly well-
suited for the analysis of balanced three-phase signals, this
technique is inherently suboptimal under unbalanced condi-
tions [10]. Departing from this approach, some authors have
also investigated the use of a data-driven approach called the
Principal Component Analysis (PCA) for signal analysis [10],
[23]. As compared to the Clarke transform, the PCA has the
distinct advantage of extracting two orthogonal components
directly from the covariance matrix of the multi-dimensional
signal whatever the unbalance configuration [26].

Regarding the unbalance detection problem, conventional
approaches are based on the computation of the voltage
unbalance factors [27] or the analysis of the αβ compo-
nents [28]. To improve the detection performance, some
authors have investigated the use of parametric approaches.
These include the Generalized Likelihood Ratio Test (GLRT)
[29], the Generalized Locally Most Powerful Test (GLMP)
[30], or Information Theoretical Criteria techniques [31], [32].
While these techniques are based on the raw three-phase
signal, a GLRT-based approach has also been proposed for
the challenging case where only the native PMU outputs
are available for detection purpose [33]. As compared to
non-parametric approaches, parametric techniques have better
statistical performance but are less robust to model mismatch.
In particular, theses parametric detectors assume perfectly
sine-wave signals and their performance degrades quickly in
the presence of time-varying amplitude and/or frequency.

In this paper, we propose a new approach for the analysis of
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three-phase signals based on a Singular-Value Decomposition
(SVD). As compared to other multi-dimensional tools such
as the Clarke transform or the PCA, the main advantage of
the SVD is that it gives a better insight into the structure of
the three-phase signal. Specifically, by decomposing the three-
phase signal into a product of three matrices, the SVD allows
to clearly distinguish between the contribution of the phasors
and signal instantaneous parameters. In particular, contrary
to the PCA which has been previously used for estimation
purpose [10], [23], the proposed technique can be used both for
unbalance detection and frequency estimation. In this context,
the contribution of this paper is twofold:
• First, we show how the SVD is related to the structure

of the three-phase signal.
• Second, under Gaussian noise assumption, we show how

to process the SVD to detect different types of off-
nominal conditions and to estimate the signal frequency.

The paper is organized as follows. Section II introduces
the signal model and the assumptions made in the study.
Section III presents the expression of the SVD of the three-
phase signal. Section IV shows how to detect off-nominal
conditions from the SVD and how to estimate the signal
frequency. Finally, Section V reports on the performance of
the proposed techniques with simulation signals.

II. SIGNAL MODEL

A. Three-phase Signal Model

Unbalanced three-phase signals can be described under
noiseless condition by the following scalar-form model [34]

xk[n] = dka[n] cos(φ[n] + ϕk), (1)

where the quantities a[n] and φ[n] correspond to the instanta-
neous amplitude and phase respectively, while dk ≥ 0 and
ϕk ∈ [0, 2π] correspond to the scaling factor and initial
phase-angle on phase k = 0, 1, 2. Using complex notations,
the three-phase signal can be expressed more compactly as
zk[n] = <e(ckz[n]) where the complex stationary phasors ck
(k = 0, 1, 2) and the complex signal z[n] are given by

ck , dke
jϕk (2a)

z[n] , a[n]ejφ[n]. (2b)

In practice, note that three-phase signal can also contains other
frequency components such as harmonics or inter-harmonics.
In this study, we assume that these high-frequency components
have been removed in a pre-processing stage by using a digital
low-pass filter1.

The goal of this study is to analyse the complex phasors
ck and the complex signal z[n] from N samples of the three-
phase signal xk[n] (k = 0, 1, 2). By using matrix notations,
the three-phase signal of Eq. (1) can be expressed as

X = CZT , (3)

where (.)T denotes the matrix transpose, and

1It should be noted that the use of a digital low-pass filter introduces a
phase shift and can increases the computation time.

• X is a 3×N matrix which is defined as

X =



x0[0] · · · x0[N − 1]
x1[0] · · · x1[N − 1]
x2[0] · · · x2[N − 1]


 , (4)

• Z is a N × 2 matrix containing the real and imaginary
parts of the complex signal z[n] and is defined as

Z ,
[
<e(z) =m(z)

]
, (5)

where z ,
[
z[0] · · · z[N − 1]

]T
,

• C is a 3× 2 matrix which is defined as

C ,
[
<e(c) =m(c∗)

]
, (6)

where (.)∗ denotes the complex conjugate and c ,[
c0 c1 c2

]T
.

B. Assumptions
In Eq. (1), the signal model cannot by uniquely identified.

Indeed, as xk[n] = <e(ckz[n]), it can be easily checked that
xk[n] = <e(cbkzb[n]) where cbk = βck and zb[n] = z[n]/β
with β ∈ C∗. In this study, we assume a particular normalisa-
tion on the stationary phasors and complex signal in order to
obtain simple expressions for the SVD.

Assumption 1. The energy of z[n], denoted εz , is equal to

εz , zHz =

N−1∑

n=0

|z[n]|2 = 2. (7)

Assumption 2. The sum of the squared phasors, denoted qc,
is a positive real number i.e. Arg (qc) = 0 where

qc , cT c =

2∑

k=0

c2k. (8)

It is important to note that these two assumptions are
not restrictive. Indeed, it is always possible to preserve the
two requirements εz = 2 and Arg (qc) = 0 by making
the substitution ck → βck and z[n] → z[n]/β with β =√
εz/2e

−jArg(qc)/2. To obtain simple expressions for the SVD,
we also make the classical assumption that z[n] is an analytic
signal, at least asymptotically. Mathematically, a signal is said
to be analytic if its Discrete Time Fourier Transform (DTFT),
Z(ω), satisfies [35]

Z(ω) ,
N−1∑

n=0

z[n]e−jωn = 0 for − π < ω < 0. (9)

By using the Parseval Identity, this assumption implies that

qz ,
N−1∑

n=0

z2[n] =
1

2π

∫ π

−π
Z(ω)Z(−ω)dω = 0. (10)

By using Assumptions 1 and 2 and Eq. (10), we obtain the
following proposition.

Proposition 1. The matrices ZTZ and CTC can be decom-
posed as

ZTZ = I2 (11a)

CTC =
1

2

[
εc + qc 0

0 εc − qc

]
, (11b)
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where I2 is the identity matrix of size 2× 2, and εc , cHc =∑2
k=0 |ck|2.

III. SINGULAR-VALUE DECOMPOSITION OF THE
THREE-PHASE SIGNAL

As C in (3) is a 3 × 2 matrix, the Singular-Value Decom-
position of X presents at most two non-zero singular values.
Therefore, the ”compact” SVD can be expressed as

X = UxSxV
T
x (12)

• Ux is a 3×2 semi-orthogonal matrix (UT
xUx = I2) that

contains the left singular vectors of X,
• Sx = diag(σ2, σ1) is a 2×2 diagonal matrix that contains

the singular values of X with σ2 ≥ σ1,
• Vx is a N × 2 semi-orthogonal matrix (VT

xVx = I2)
that contains the right singular vectors of X.

In the following subsections, we show how the SVD matrices
are related to the complex phasors ck and analytic signal z[n].

A. General case

Proposition 2. Using Proposition 1, the SVD of X can be
expressed as X = UxSxV

T
x , where

Ux = CS−1x (13a)

Sx =



√

εc+qc
2 0

0
√

εc−qc
2


 (13b)

Vx = Z (13c)

with εc =
∑2
k=0 |ck|2 and qc =

∑2
k=0 c

2
k.

Proof. Using Eq. (13a) to (13c), one can check that
UxSxV

T
x = CS−1x SxZ

T = CZT = X. Then, we have
to verify that Ux and Vx are semi-orthogonal matrices.
Proposition 1 and Eq. (13b) lead to CTC = S2

x and so
UT

xUx = S−1x CTCS−1x = I2. Then, Proposition 1 and
Eq. (13c) show that VT

xVx = ZTZ = I2.

Remark 1. For the particular case where qc = 0, the SVD
of X is not unique since X can also be decomposed as X =
UxQSxQ

TVT
x where Q is an 2× 2 orthogonal matrix.

The previous proposition gives the structure of the ”com-
pact” SVD. From a geometrical point of view, it is also
interesting to analyse the full SVD, which is given by

X =
[
Ux u0

]


σ2 0 0
0 σ1 0
0 0 0



[
VT

x

vT0

]
, (14)

where u0 and v0 are the left and right singular vectors
associated with the null singular value of X. Regarding the left
singular vector, u0 can be obtained from the solution of the
equation CTu0 = 0 under the unit-norm constraint uT0 u0 = 1.
By imposing the unit-norm constraint, u0 can be decomposed
as u0 = g/‖g‖ where g is the vector cross-product between
the two columns of C, i.e. g = <e(c) ∧ =m(c∗). Therefore,
we obtain the following proposition2.

2Note that this proposition constitutes a generalization of a previous result
obtained in [36] for purely stationary three-phase signals.

Proposition 3. The normal vector perpendicular to the signal
subspace is given by

u0 =
g

‖g‖ , (15)

where g = =m
([
c1c
∗
2 c2c

∗
0 c0c

∗
1

])T
.

B. Nominal condition
Under nominal condition, the three-phase signal is balanced

and the corresponding complex phasors can be expressed as

ck = c0e
−2kjπ/3. (16)

It follows that qc = 0 and εc = 3|c0|2 and we obtain the
following decomposition.

Proposition 4. Under nominal condition, the SVD of X can
be expressed as X = UxSxV

T
x where Ux = αC, Sx = 1

αI2,
Vx = Z, and α =

√
2

3|c0|2 .

Regarding u0, it can be checked that c1c∗2 = c2c
∗
0 = c0c

∗
1 =

|c0|2e2jπ/3. Therefore, we obtain the following result.

Proposition 5. Under nominal condition, the normal vector
perpendicular to the signal subspace i.e.

u0 = n =
1√
3

[
1 1 1

]T
. (17)

C. Geometrical interpretations
Several studies have shown the advantage of plotting the

three-phase signal in the 3D Euclidean space [36]. As an
example, Figure 1 presents the 3D trajectory for the case of
an off-nominal modulated three-phase signal. The quantities
defined through the SVD of Eq. (12) may be interpreted with
a geometric point of view, and sheds some highlights on the
3D trajectory of X.
• From Eq. (5) and (13c), it is clear that the right singular

vectors Vx contain the real and imaginary parts of
the analytic signal z[n], which correlation matrix is the
identity matrix (see Eq. (11a)). This indicates that the real
and imaginary parts of z[n] are uncorrelated and have the
same energy, or equivalently that the scatter plot of z[n]
in the complex plane has a global circular shape.

• The diagonal matrix Sx containing the two singular
values of X can be interpreted as a scaling matrix applied
to the previous complex-valued signal, where σ2 is the
scaling factor applied to <e(z[n]) and σ1 is applied
to =m(z[n]). Consequently, these two positive factors
contain the information on the global ellipticity of the
trajectory followed by X, σ2 being related to its semi-
major axis and σ1 to its semi-minor axis.

• The left singular vectors Ux form an orthonormal basis
for the three-phase signal X, and therefore give the
orientation of the plane containing the trajectory of the
whole three-phase signal, as well as the orientation of
its minor and major axes. Equivalently, the 3× 3 matrix[
Ux u0

]
appearing in the full SVD of X in Eq. (14)

is an orthogonal matrix, and can also be interpreted as a
3D rotation matrix applied to the previous plane elliptic
trajectory.
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Fig. 1: Geometrical analysis of the trajectory of the three-phase
signal (c0 = 1, c1 = 0.8e−2.2jπ/3 and c2 = 1.9e−3.9jπ/3,
amplitude-modulated sine wave signals).

IV. ESTIMATION / DETECTION OF OFF-NOMINAL
CONDITIONS UNDER GAUSSIAN NOISE

In practice, the signal is usually corrupted by an additive
noise i.e. yk[n] = xk[n] + wk[n]. Using a matrix form, the
noisy signal can be expressed as

Y ,



y0[0] · · · y0[N − 1]
y1[0] · · · y1[N − 1]
y2[0] · · · y2[N − 1]


 = X+W, (18)

where X = CZT is the noiseless signal defined in Eq. (3) and
W contains the additive noise. In the following, we assume
that the element of W located in the uth row and vth column,
denoted w[u, v], has a Gaussian distribution with zero-mean
and variance equal to σ2, i.e. w[u, v] ∼ N (0, σ2) [3]. More-
over, this noise is assumed to be white in the time domain
(regarding v) and uncorrelated from phase to phase (regarding
u). Note that because of the additive noise, the SVD of Y
is generally different from that of X. The SVD of Y can be
expressed as

Y = ÛŜV̂T , (19)

• Û = [û2, û1, û0] is a 3× 3 orthogonal matrix,

• Ŝ = diag(σ̂2, σ̂1, σ̂0) is a 3 × 3 diagonal matrix with
σ̂2 ≥ σ̂1 ≥ σ̂0 ≥ 0,

• V̂ = [v̂2, v̂1, v̂0] is a N × 3 semi-orthogonal matrix.
In this section, we propose to detect unbalance systems

from the structure of Û and Ŝ, and to estimate the angular
fundamental frequency from the right singular vectors V̂.

A. Off-nominal subspace detection test

As stated in Prop. 5, the noiseless three-phase signal belongs
to a plane with normal vector u0 = n under nominal condition.
To detect a off-nominal signal subspace, we therefore propose
to address the following hypothesis testing problem:
• H0: u0 = n
• H1: u0 6= n;

where n is defined in (17). Then, we propose to use a
GLRT detector for choosing between the two hypothesis. This
detector chooses H1 if

Tn(Y, σ2) = 2ln

(
L(Y; Ẑ, σ2,H1)

L(Y; Ẑ, σ2,H0)

)
> τ, (20)

where L(Y;Z, σ2,Hk) corresponds to the likelihood function
of Y [37, Section 6.5]. It is demonstrated in appendix A that

Tn(Y, σ2) =
1

σ2
(‖nTY‖2F − σ̂2

0). (21)

This detector relies on the difference between two positive
terms normalized by the noise variance. Obviously, Tn(Y, σ2)
is close to zero under nominal condition, and positive oth-
erwise. Moreover, under assumption H0, it is known that
the GLRT follows a chi-squared distribution with r degrees
of freedom, where r corresponds to the number of free
parameters under H0 [37, Section 6.5]. As u0 is a 3 unit-
norm column vector, it follows that the criterion follows under
H0 a chi-squared distribution with 2 degrees of freedom,
i.e. Tn(Y, σ2) ∼ χ2

2. Note that the evaluation of Tn(Y, σ2)
requires the knowledge of the noise variance. When the
noise variance is unknown, we propose to replace it by the
following estimator σ̂2 =

σ̂2
0

N . For large N , as the variance of
σ̂2 is negligible as compared to the variance of Tn(Y, σ2),
the distribution of Tn(Y, σ̂2) can be approximated by the
distribution of Tn(Y, σ2). Using this approximation, we obtain
the following proposition.

Proposition 6. The GLRT detector chooses hypothesis H1 if

Tn(Y) =
N

σ̂2
0

(‖nTY‖2F − σ̂2
0) = N

(‖nTY‖2F
σ̂2
0

− 1

)
(22)

is greater than a threshold τm. Furthermore, under H0,
Tn(Y) follows, asymptotically, a chi-squared distribution with
2 degrees of freedom.

In practice, the test threshold τm can be set according to the
desired probability of false alarm, pfa , 1−

∫ τm
0

p(Tn(Y) =
x|H0)dx. Indeed, by using Proposition 6, we obtain

p(Tn(Y) = x|H0) =

{
1
2e
− 1

2x x > 0
0 x < 0

(23)

and so τm = −2 ln(pfa).
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B. Ellipticity detection test

Under nominal conditions the two largest singular values of
the three-phase signal are equal. Then, we propose to address
the following ellipticity detection test:
• H0: the signal is globally circular i.e. σ2 = σ1,
• H1: the signal is not globally circular i.e. σ2 6= σ1,

The GLRT detector chooses H1 if

Tσ(Y, σ2) = 2ln

(
L(Y; X̂, σ2,H1)

L(Y; X̂, σ2,H0)

)
> τ. (24)

It is demonstrated in the Appendix B that

Tσ(Y, σ2) =
1

2σ2
(σ̂2 − σ̂1)2 . (25)

This equation shows that the GLRT approach leads to a
simple intuitive criterion that is equal to the weighted squared
difference of the two largest singular values. This criterion can
also be viewed as the weighted squared difference between the
semi-major and semi-minor axes of the ellipse approximating
the signal 3D trajectory. Under assumption H0, the two singu-
lar values are nearly equal and their difference is close to 0 i.e.
Tσ(Y, σ2) ≈ 0. Under assumption H0 and additive Gaussian
noise, thank’s to the properties of the GLRT, the decision
statistic follows asymptotically a chi-squared distribution with
2 degrees of freedom, i.e. Tσ(Y, σ2) ∼ χ2

2. When the noise
variance is unknown, we propose to replace σ2 by σ̂2 =

σ̂2
0

N
using similar arguments as in section IV-A.

Proposition 7. The GLRT detector chooses hypothesis H1 if

Tσ(Y) =
N

2σ̂2
0

(σ̂2 − σ̂1)2 (26)

is greater than a threshold τm. Furthermore, under hypothesis
H0, Tσ(Y) follows, asymptotically, a chi-squared distribution
with 2 degrees of freedom.

C. Estimation of the angular frequency

The analytic signal z can be estimated from the 2 principal
right-singular vectors V̂x = [v̂2, v̂1] as ẑ = v̂2 + jv̂1. It is
demonstrated in Appendix C that the estimated analytic signal
ẑ = [ẑ[0], · · · , ẑ[N − 1]]T can be approximated by

ẑ[n] ≈ a[n]ej(ρφ[n]+ϕ) + b[n], (27)

where b[n] contains the additive noise, ϕ corresponds to an
unknown phase-shift and ρ ∈ {1,−1}. Regarding the additive
noise, as w[u, v] ∼ N (0, σ2), b[n] follows a complex zero-
mean noncircular white Gaussian distribution. Note that the
additive noise becomes circular if and only if σ̂2

1 = σ̂2
2 . In

the following, we show how to accurately estimate the signal
angular frequency from ẑ[n] for the particular case where the
instantaneous amplitude is constant, i.e. z[n] = c0e

jω0n. To
estimate the unknown signal parameters, a natural approach is
to minimize the sum of squared residuals between ẑ[n] and
c0e

jω0n. Mathematically, the Least-Squares (LS) estimator is
then given by

{ρ̂, ω̂0, ĉ} = arg min
r,ω,c

N−1∑

n=0

|ẑ[n]− cejrωn|2, (28)

where r ∈ {1,−1}, ω ∈ [0, π[ and c ∈ C. In the follow-
ing, instead of minimizing the LS cost-function directly, we
propose an alternative low-complexity technique based on the
decoupled estimation of ρ, ω0, and c.

1) Estimation of ρ: As z[n] is an analytic signal, its
Discrete Time Fourier Transform is equal to 0 for −π < ω < 0
(modulo 2π). In order to estimate ρ, a simple solution is to
compare the energy of ẑ[n] in the frequency band 0 < ω < π
to the one in the band π < ω < 2π. Specifically, let us define
the DTFT of the truncated signal ẑ as

Zm ,
M−1∑

n=0

ẑ[n]e−j
2πnm
M , (29)

where M < N is the truncated signal length. Then, a simple
estimator of ρ is given by

ρ̂ =





1 if
M/2−1∑

m=0

|Zm|2 ≥
M−1∑

m=M/2

|Zm|2

−1 elsewhere

. (30)

2) Estimation of c and ω0: In (28), it can be checked
that the LS cost-function is minimized when c =
1
N

∑N−1
n=0 ẑ[n]e

−jrωn [38]. Then, by replacing c and ρ by their
estimate, the angular frequency estimator can be obtained from
the maximizer of the direction-corrected Periodogram of ẑ i.e.

ω̂0 = argmax
ω

1

N

∣∣∣∣∣
N−1∑

n=0

ẑ[n]e−jρ̂ωn

∣∣∣∣∣

2

. (31)

D. Algorithms Summary

Under additive Gaussian noise, we have proposed two
techniques for the detection of unbalanced systems: the first
one is described by the Algorithm 1 and can be used to
detect an off-nominal signal subspace, the second one is
described by the Algorithm 2 and can be used to detect an
elliptic signal trajectory. The proposed frequency estimator is
described by the Algorithm 3. Figure 2 shows how to combine
these algorithms for the analysis of three-phase signals. From
a physical viewpoint, it should be mentioned that the proposed
detectors can distinguish between two classes of unbalanced
systems. Specifically, the first class corresponds to the case
where the zero-sequence is not equal to 0 while the second
one corresponds to the case where the signal is not circular
in the 2D plane. If a three-phase signal belongs, at least, to
one of these classes, then the system is unbalanced. Note that
these two classes are not exclusive since some unbalanced
systems may have a non-null zero-sequence component and
be non-circular in the 2D plane.

V. SIMULATION RESULTS

To highlight the interest of this study, this section reports on
the performance of the proposed techniques with Monte Carlo
simulations. In each simulation, the three-phase signal is de-
scribed by the signal model in (18) where w[u, v] ∼ N (0, σ2).
Concerning the analytic signal, z[n] = cejω0n where the
(normalized) angular frequency is given by ω0 = 2πf0/Fs =
120π/Fs, f0 = 60 Hz corresponds to the signal frequency, and
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Fig. 2: Analysis of three-phase signals using SVD

Algorithm 1 Blind Off-nominal subspace detection test

Input: Three Phase Signal Y, threshold τm.
Output: detected (True or False)

1: Compute the SVD of Y = ÛŜV̂T

2: Extract the smallest singular value σ̂0 from Ŝ
3: Compute ‖nTY‖2F
4: Compute the test criterion Tn(Y) in (22).
5: if (Tn(Y) > τm) then
6: detected ← True
7: else
8: detected ← False
9: end if

10: return detected

Algorithm 2 Blind Ellipticity detection test

Input: Three Phase Signal Y, threshold τσ .
Output: detected (True or False)

1: Compute the SVD of Y = ÛŜV̂T

2: Extract the three singular values σ̂2 ≥ σ̂1 ≥ σ̂0 from Ŝ
3: Compute the test criterion Tσ(Y) in (26).
4: if (Tσ(Y) > τσ) then
5: detected ← True
6: else
7: detected ← False
8: end if
9: return detected

Algorithm 3 Angular frequency Estimator

Input: Three Phase Signal Y, truncated signal length M
Output: Angular frequency ω0

1: Compute the SVD of Y = ÛŜV̂T

2: Estimate the analytical signal with ẑ = v̂2 + jv̂1

3: Compute the DTFT of the truncated signal z[n] (n =
0, · · · ,M − 1).

4: Estimate the rotating direction ρ using (30).
5: Estimate ω0 by maximizing the direction-corrected peri-

odogram of ẑ in (31) using an optimisation algorithm.
6: return ω̂0

Fs = 60 × 24 = 1440 Hz is the sampling rate. Using these
parameters, the cycle duration is equal to N = 24 samples.
For the considered signal, it should be mentioned that the
requirement in (10) is only satisfied when N = kπ/ω0 = 12k
(k ∈ N) or asymptotically when N � π

ω0
. The values of ck are

set according to one of the configurations in Table I, where the
four configurations refer respectively to a perfectly balanced

TABLE I: Phasor Configuration

Phasor c0 c1 c2
Configuration 1 1 e−j2π/3 e−j4π/3

Configuration 2 1 0.9× e−j2π/3 0.95× e−j4π/3

Configuration 3 1 0.95× e−j2π/3 0.95× e−j4π/3

Configuration 4 1 0.8× e−j2π/3 0.3× e−j4π/3

signal (u0 = n and σ2 = σ1), a signal with off-nominal
subspace (u0 6= n), a non-circular signal (σ2 6= σ1), and a full
unbalanced signal. In the following simulations, the Signal to
Noise Ratio (SNR) is defined as SNR = 10 log(‖c‖2/(6σ2))
and the performance is estimated from 104 Monte Carlo trials.

A. Off-nominal subspace detection

This subsection presents the performance of several detec-
tors for the discrimination of phasor configurations 1 and 2
in Table I. In each simulation, three detectors are considered:
the clairvoyant detector that requires a perfect knowledge of
σ2 (denoted clair.), the blind detector (denoted blind), and
the GLRT detector proposed by Sun that requires a perfect
knowledge of σ2 and ω0 [29]. Mathematically, the clairvoyant
and blind detectors are based on the GLRT expressions given
by Eqs.(21) and (22), respectively.

Figure 3a gives the probabilities of detection, Pd, and false
alarm, Pfa, versus the signal length N when the test threshold
is computed as τm = −2 ln(pfa) with pfa = 0.1. We
observe that the three detectors allow to detect the off-nominal
subspaces with high probability when N > 80 samples.
In particular, the proposed blind and clairvoyant detectors
perform well even if the condition qz = 0 is not perfectly
fulfilled. Moreover, we note that the experimental probability
of false alarm is close to its theoretical value, pfa = 0.1, from
N = 100 samples. Figure 3b shows the Receiver Operating
Characteristic (ROC) curve i.e. the probability of detection
versus the probability of false alarm for different values of the
test threshold τm. The ROC curves are evaluated for N = 48
samples and different SNRs. We observe that the clairvoyant
and blind detectors have similar performance whatever the
SNR. We also note that the Sun detector clearly outperforms
the two proposed detectors whatever the SNR. Nevertheless, it
should be mentioned that the performance of the Sun detector,
which has been designed for perfectly sine-wave signals,
significantly degrades in the presence of dynamic conditions.
To illustrate this behavior, Fig 3c presents the evolution of
the experimental probability of false alarm in presence of
amplitude modulation. We see that Sun detector is not able to
maintain the probability of false alarm to pfa = 0.1 when the
modulation index increases, while the two proposed detectors
are insensitive to the presence of amplitude modulation.

B. Ellipticity detection

This subsection reports on the performance of several de-
tectors for the discrimination of phasor configurations 1 and 3
in Table I. In each simulation, three detectors are considered:
the proposed clairvoyant detector, the proposed blind detector,
and the Sun detector [29]. The two proposed detectors are
based on the equations (25) and (26), respectively. Figure 4a
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Fig. 3: Off-nominal subspace detection (phasor configurations
1 and 2 in Table I, ω0 = 120π/Fs)

shows the values of Pd and Pfa versus the signal length
N when pfa = 0.1. We observe that the probabilities of
detection and false alarm exhibit strong oscillations for the
two proposed detectors. These oscillations are caused by the
fact that the assumption qz = 0 is not fulfilled for small
values of N . We also note that the experimental probability
of false alarm seems to be exactly equal to its expected value
when N = 12k (k ∈ N). Figure 4c presents the Receiver
Operating Characteristic (ROC) for the two detectors when

N = 48 samples. We observe that a large SNR is required
to guarantee satisfying performance. Figure 4 reports on the
ability for the three detectors to maintain the probability of
false alarm in presence of amplitude modulation. We see that
the performance of the considered techniques critically depend
on the number of samples. Indeed, we observe that the three
detectors are not able to maintain the probability of false alarm
when N = 48 samples, but lead to satisfactory results when
N = 288 samples. As compared to the proposed techniques,
we observe that the Sun detector clearly outperforms the
proposed approaches for ellipticity detection. Nevertheless, it
should be emphasized that this detector requires a perfect
knowledge of the fundamental frequency and noise variance,
while our techniques can be used without a priori information
about these parameters.

C. Angular frequency estimation

In this section, we focus on the angular frequency estimation
problem. Specifically, this section compares the performance
of the following techniques for frequency estimation.
• The proposed SVD-based estimator described in subsec-

tion IV-C (SVD).
• The DTFT algorithm obtained by maximizing the peri-

odogram of the signal on the first phase x0[n] [13].
• The Maximum Likelihood Estimator (ML) [10].
• The Maximum Likelihood Estimator under balanced as-

sumption (ML-bal) [25],
• The Clarke-based approximate Maximum Likelihood Es-

timator (ML-Clarke) [7],
For these techniques, the frequency estimate is obtained by
maximizing a cost-function whose evaluation requires the
computation of several DTFTs. These cost-functions are max-
imized by using the Nelder-Mead optimisation algorithm with
an initial value ωinit = 120π/Fs [39]. For the proposed
estimator, the SVD has been implemented using the svd()
subroutine of Python/Numpy and the rotating direction has
been estimated from (30) with M = 8. To assess the estimator
performances, the Mean Square Error MSE , E[(ω0− ω̂0)

2]
has been evaluated using several Monte Carlo trials. Note that
the MSE can be decomposed as MSE(ω̂0) = var(ω̂0) +
bias2(ω0, ω̂0) where var(ω̂0) is the estimator variance and
bias(ω0, ω̂0) = E(ω̂0) − ω0 corresponds to the estimator
bias [38]. In each trial, the angular frequency is set to
ω0 = 2π × 65/Fs (f0 = 65Hz) and the phasors are given by
the configuration 4 in Table I. The approximate Cramér-Rao
Bound CRB = 24σ2

N3‖c‖2 is also reported for comparison [10].
Figure 5a presents the evolution of the MSE versus N . We

observe that the ML estimator achieves optimal performance
for N > 20 samples. Concerning the ML-Clarke and ML-bal
techniques, we note that the MSE exhibits a strong oscillation
with period N ≈ 12 samples. To explain this behavior, Fig. 5b
reports on the estimator bias for the considered techniques. We
see that the oscillations of the MSE for the DTFT, ML-Clarke
and ML-bal techniques are due to the estimator bias. We also
note that the contribution of the bias seems to be negligible
for the proposed and ML techniques. Finally, Figure 5c shows
the influence of the SNR on the MSE. Except for the ML
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Fig. 4: Ellipticity detection (phasor configurations 1 and 3 in
Table I, ω0 = 120π/Fs)

technique, we observe that the estimators exhibit an error floor
at SNR > 30dB. This error floor seems to be caused by the
estimator bias for finite N .

To evaluate the estimator performance, the IEEE Standard
C37.118.1-2011 has introduced a criterion called the Fre-
quency Error (FE) which is defined as FE = |f0 − f̂0| [40].
To be compliant with this standard, the frequency error must
be bounded by FE < 0.005. As pointed out in [10], when
the signal is corrupted by an additive noise, this criterion is
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Fig. 5: Angular Frequency Estimation (phasor configuration 4
in Table I, ω0 = 2π × 65/Fs).

not well suited for the analysis of the estimation performance
since the frequency error becomes a random variable. In this
context, a natural extension is to evaluate the probability of
Frequency Error compliance, i.e. PFE , P [|f0−f̂0| < 0.005].
Figure 6 presents the evolution of PFE versus N . It shows
that the performance of the proposed estimator is closed to
the one of the ML technique, and that the performance of the
other estimators are strongly affected by the presence of the
estimator bias.
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TABLE II: Average Computation time per trial versus N
Technique N = 50 N = 100 N = 150

Proposed 0.78ms 0.91ms 1.07ms
DTFT [13] 0.65ms 0.71ms 0.79 ms

ML-bal [25] 0.65ms 0.73ms 0.82 ms
ML-Clarke [7] 0.85ms 1.00ms 1.13 ms

ML [10] 5.35ms 2.82ms 19.5ms

Table II reports on the average computational time for
the considered estimators. These estimators have been imple-
mented using Python and the simulations have been run on
an MacOS machine with on an Intel Core i3-8100 quadcore
processor (CPU at 3.6 Ghz). We observe that the proposed
technique has a lower computational complexity than the
recently proposed ML-Clarke technique. This result is not
surprising since the ML-Clarke cost-function is composed of
2 DTFTs while the proposed cost-function only requires the
computation of 1 DTFT.

VI. CONCLUSION

In this paper, we have proposed a new approach for the
analysis of three-phase signals based on the SVD. Instead of
using a fixed transform for signal analysis, the SVD directly
exploits the content of the three-phase signal for dimensional
reduction and gives a better insight into the signal structure.
Under additive white Gaussian noise, we have developed two
Generalized Likelihood Ratio Tests for the detection of off-
nominal condition based on the SVD: the off-nominal sub-
space detector aiming at detecting u0 6= n, and the eccentricity
detector aiming at detecting σ2 6= σ1. Furthermore, we have
derived a new low-complexity angular frequency estimator
based on the Periodogram of the right-singular vector. Simu-
lation results have shown that the proposed detectors perform
well even for a small number of samples and that the proposed
angular frequency estimator gives a good compromise between
statistical performance and computational complexity.

APPENDIX A
DERIVATION OF Tn(Y, σ2)

As w[u, v] ∼ N (0, σ2), we obtain

L(Y;Z, σ2,Hk) = βe−
1

2σ2
‖Y−CZT ‖2F (32)

where ‖.‖2F corresponds to the Frobenius norm and β =(
1

2πσ2

) 3N
2 . In practice, the matrix ZT is unknown and can

be replaced by its Maximum Likelihood estimate ẐT =(
CTC

)−1
CTY [38, Chapter 7]. Let us introduce P⊥C ,

I − C(CTC)−1CT , the orthogonal projector into the null
space of C. As C is a 3 × 2 matrix, this projector can be
decomposed as P⊥C = u0u

T
0 [14, Result R17]. Therefore,

L(Y; Ẑ, σ2,Hk) = βe−
1

2σ2
‖P⊥

CY‖2F = βe−
1

2σ2
‖uT0 Y‖2F

where u0 = n under assumption H0. Under assumption H1,
u0 is given by û0 [41, Section 4.2]. As ‖ûT0 Y‖2F = σ̂2

0 ,
Eq. (20) can be simplified as in Eq. (21).

APPENDIX B
DERIVATION OF Tσ(Y, σ2)

As w[u, v] ∼ N (0, σ2), we obtain

L(Y;X, σ2,Hk) = βe−
1

2σ2
‖Y−X‖2F . (33)

To evaluate the likelihood-function, X must be replaced by its
MLE. Two cases must be distinguished. Under H1, the MLE
of X is found by minimizing the Frobenius norm ‖Y− X̂‖2F
where X̂ is a rank-2 matrix. The Eckart-Young theorem states
that this norm is minimized for X̂ = ÛŜ1V̂

T where

Ŝ1 =



σ̂2 0 0
0 σ̂1 0
0 0 0


 . (34)

Under H0, the MLE of X is found by minimizing the
Frobenius norm ‖Y − X̂‖2F , where X̂ is a rank-2 matrix
with equal singular values. Then, the estimator of X can be
decomposed as X = ÛŜ0V̂

T where

Ŝ0 = σ̂ ×



1 0 0
0 1 0
0 0 0


 . (35)

The singular value σ̂ is found by minimizing ‖Y −
ÛŜ0V̂

T ‖2F = ‖Ŝ − Ŝ0‖2F with respect to σ̂. After some
computations, we obtain σ̂ = 1

2 (σ̂1 + σ̂2).
By using these two results, Eq. (33) can be expressed as

L(Y; X̂, σ2,Hk) = βe−
1

2σ2
‖Y−ÛŜkV̂

T ‖2F = βe−
1

2σ2
‖Ŝ−Ŝk‖2F .

Then, by using the fact that σ̂ = 1
2 (σ̂1 + σ̂2), we obtain

Tσ(Y, σ2) =
1

σ2

(
‖Ŝ− Ŝ0‖2F − ‖Ŝ− Ŝ1‖2F

)
=

1

2σ2
(σ̂2 − σ̂1)2 .

APPENDIX C
EXPRESSION OF ẑ[n]

The analytic signal z is estimated from the 2 principal
right-singular vectors V̂x = [v̂2, v̂1]. These vectors can be
computed as V̂T

x = Ŝ−1x ÛT
xY where Ŝx and Ûx correspond

to the 2 largest singular values of Y and their associated left
singular vectors.
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For large N and small σ2, Ĉ = ÛxŜx ≈ CQ where Q
is an orthogonal matrix containing the SVD indeterminations.
By using this property, it follows that

V̂T
x = Ŝ−1x ÛT

xY = Ŝ−1x ÛT
xCZT + Ŝ−1x ÛT

xW

≈ QTZT + Ŝ−1x ÛT
xW.

As Q is an 2× 2 orthogonal matrix, Q ∈ {Q1,Q2} where

Q1 ,

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, Q2 ,

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
.

Then, the estimator of the analytic signal can be obtained as

ẑ , V̂x

[
1
j

]
≈
{
e−jθz+ b if Q = Q1

ejθz∗ + b if Q = Q2
, (36)

where b is an additive white complex noise. Finally, using the
definition of z, Eq. (36) can be expressed as in Eq. (27).
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