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Abstract. Two recent advances in statistical decision and estimation theory are
presented. These results concern the detection of signals whose amplitudes are
above or equal to some bound and that are less present than absent in a background
of white Gaussian noise. The first result describes the non parametric detection of
such signals when the noise standard deviation is known whereas the second result
affords to perform the detection when this standard deviation is unknown. For both
results, the role played by thresholding tests on the observation norms is crucial.
The detection of radar targets is a typical field of application of these results.
Keywords: Estimation theory, Likelihood theory, Limit theorem, Non parametric
decision, Thresholding test.

1 A sharp upper-bound for the probability of error of

the MPE decision scheme and the MPE suboptimal

test.

Albeit simple, a reasonable model for observations performed by sensors is
that of signals randomly present or absent in additive and independent white
Gaussian noise (WGN). In contrast with the simplicity of this model, the
detection of such signals on the basis of a set of observations can be intri-
cate. Actually, in many applications of most importance, very little is known
about the observations or most of their parameters ([Kailath and Poor, 1998,
section I]). In such situations, the detection of signals of interest cannot be
achieved by standard likelihood theory based on the usual Bayes, minimax
and Neyman-Pearson criteria for these ones require full knowledge of the sig-
nal distributions. Nonparametric and robust detection ([Poor, 1994, section
III.E]), as well as Generalized Likelihood Ratio Tests ([Kay, 1998]), are then
alternative formulations affording to deal with such cases. For instance, Con-
stant False Alarm Rate (CFAR) systems standardly used in radar processing
for detecting targets with a specified false alarm rate typically derive from
such alternative approaches ([Minkler and Minkler, 1990]).
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In [Pastor et al., 2002], we investigate how far we can get if we assume
only two hypotheses on the signal to detect. First, the signal is supposed to
be less present than absent in the sense that its prior is less than or equal to
one half; second, the norm of this same signal is assumed to be larger than or
equal to some positive real number A. The purpose of such assumptions is to
bound our lack of prior knowledge. The following theorem is then established
in [Pastor et al., 2002]. In the statement of this theorem, In stands for the
identity matrix with size n × n; by thresholding test with threshold height
T , we mean the binary hypothesis test whose decision is that some signal is
present if the observation norm exceeds T and whose decision is that noise
only is present otherwise; finally, we remind the reader that the so-called
MPE decision scheme is basically the likelihood ratio test that yields the
least probability of error amongst all possible binary hypothesis tests ([Poor,
1994]).

Theorem 1 Let U, Λ, X : Ω → Rn be three random vectors and let ε : Ω →
{0, 1} be a random variable defined on the same probability space (Ω,B, P )
such that Λ, X and ε are independent, X ∈ N (0, σ2

0In) and U = εΛ + X.

Let V (ρ) be the function of the positive real variable ρ

V (ρ) =
e−ρ2/2

2n/2Γ (n/2)

∫ ξ(ρ)

0

e−t2/2tn−1
0F1(n/2 ; ρ2t2/4)dt

+
1

2

[

1 − 21−n/2

Γ (n/2)

∫ ξ(ρ)

0

e−t2/2tn−1dt

]

. (1)

where ξ(ρ) is the unique positive solution for x in the equation

0F1(n/2; ρ2x2/4) = eρ2/2. (2)

Then, given any positive real number A > 0, for any Λ less present than

absent with norm almost surely larger than or equal to A, V (A/σ0) is an

upper-bound for the probability of error of both the MPE decision scheme and

the threshold test with threshold height σ0ξ(A/σ0). This bound is reached by

both tests when the prior P ({ε = 1}) equals 1/2 and Λ is uniformly distributed

on the sphere with radius A centred at the origin.

The thresholding test with threshold height σ0ξ(A/σ0) is hereafter called
the MPE suboptimal test. It is basically nonparametric in the sense given
by [Poor, 1994] since V (A/σ0) is the constant performance measurement this
test guarantees over the whole class of those signals less present than absent
with norms larger than or equal to A.

2 Detection of relatively big signals in WGN with

unknown level: the Essential Supremum Test.

The thresholding test introduced by theorem 1 is workable in practice only if
the noise standard deviation is known. On the basis of theorem 2 stated in
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subsection 2.2 below, subsection 2.3 then introduces an algorithm named the
Essential Supremum Test (EST) and aimed at detecting signals of interest
even if the noise standard deviation is unknown. Beforehand, we need some
appropriate notations and pieces of terminology.

2.1 Some notations.

The characteristic function of a set K will be denoted by XK : XK(x) = 1
if x ∈ K and XK(x) = 0 otherwise. A real number x (resp. an integer k)
is said to be positive if x > 0 (resp. k > 0). The real number x (resp. the
integer k) is said to be non negative if x ≥ 0 (resp. k ≥ 0).

Only one probability space (Ω,M, P ) is considered in what follows.
Given any positive integer n, ‖ · ‖ : Rn → [0,∞) will stand for the usual

euclidean norm on Rn. Given any n-dimensional random vector Y : Ω → Rn,
‖Y ‖ will stand for the random variable ‖Y ‖ : Ω → [0,∞) that assigns the
non negative real number ‖Y (ω)‖ to every given ω ∈ Ω.

Let S henceforth stands for the set of all the sequences of n-dimensional
real random vectors defined on Ω. Given some positive real number σ0 and
some natural number n, an element X = (Xk)k∈N of S will be called an
n-dimensional WGN with standard deviation σ0 if the random vectors Xk,
k ∈ N, are mutually independent and identically Gaussian distributed with
null mean vector and covariance matrix σ2

0In (XksimN (0, σ2
0In)).

As usual, we denote by L2(Ω,Rn) the Hilbert space of those n-
dimensional real random vectors Y : Ω → Rn such that E[‖Y ‖2] < ∞. We
will hereafter deal with the set of those elements Λ = (Λk)k∈N of S such that
Λk ∈ L2(Ω,Rn) for every k ∈ N and supk∈N

E[‖Λk‖2] is finite. According
to standard notations, we denote this subset of S by `∞(N, L2(Ω,Rn)).

2.2 A limit theorem

The subsequent theorem derives from a more general result established in
[Pastor, 2004] and suffices for achieving our purpose, that is introducing the
EST.

Theorem 2 Let U = (Uk)k∈N be some element of S such that U = εΛ + X
where Λ = (Λk)k∈N, X = (Xk)k∈N and ε = (εk)k∈N are respectively an

element of S, some n-dimensional WGN with standard deviation σ0 and a

sequence of random variables valued in {0, 1} .

Assume that

(H1) for every k ∈ N, Λk, Xk and εk are mutually independent;

(H2) the random vectors Uk, k ∈ N, are mutually independent;

(H3) the set of priors {{P ({εk = 1}) : k ∈ N} has a maximum p in [0, 1)
and the random variables εk, k ∈ N, are mutually independent;
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(H4) Λ ∈ `∞(N, L2(Ω,Rn)) and there exists A ∈ (0,∞) such that, for every

k ∈ N, ‖Λk‖ ≥ A almost surely.

Then, σ0 is the only strictly positive real number σ, such that, for every

β0 ∈ (0, 1],

lim
A→∞
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uniformly in β ∈ [β0, 1] where, for every non negative real value x,

Gn(x) =

∫ x

0

tne−t2/2dt
∫ x

0

tn−1e−t2/2dt

.

2.3 The Essential Supremum Test

Let L be some natural number and set β` = `/L for every ` ∈ {1, . . . , L}. On
the basis of theorem 2, given some elementary event ω ∈ Ω and m vectors
U1(ω), . . . , Um(ω), the idea is then to estimate σ0 by an eventually local
minimum σ̂0(m, ω) of

sup
`∈{1,...,L}
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, (4)

when σ runs through the search interval (0, σmax(m, ω)] where

σmax(m, ω) = sup
k∈{1,...,m}

{‖Uk(ω)‖}/√n.

When σ runs through the search interval proposed above, the discrete cost
(4) is a scalar bounded nonlinear function of σ. We thus seek an eventual
local minimum of the discrete cost (4) by means of a standard minimiza-
tion routine such as the golden section search and parabolic interpolation
([Forsythe et al., 1976] and [Press et al., 1992]). Given k ∈ N, the deci-
sion on the value of εk is then achieved by replacing, in the expression of
the MPE suboptimal test, the exact value of σ0 by its estimate. The re-
sulting binary hypothesis test is then the map of Ω into {0, 1} defined by
T̂k = X[0,∞) (‖Uk‖ − σ̂0(m, ω)ξ(A/σ̂0(m, ω))) .
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Our choice for the search interval upper bound is then justified as follows.
If σ̂0(m, ω) might be larger than σmax(m, ω), we would take the risk to get
an estimate larger than every ratio ‖Uk(ω)‖/ξ(A/σmax(m, ω)), when k ∈
{1, . . . , m}. Indeed, ξ(ρ) ≥ √

n ([Pastor et al., 2002]) for all non negative
real value ρ. Thereby, the outcome of the test T̂k could be that no signal is
present whereas the full absence of signals of interest amongst m observations
is hardly probable when m is large.

2.4 Some experimental results

The performance of the EST should be less than that of the MPE subop-
timal test. However, when m and A increase, we also can expect that the
performance measurements of these two tests become close to each other. If
so, above which values for m and A can the essential supremum test be con-
sidered as workable in practice? Till now, we have no theoretical answer to
this question and it seems hardly feasible to get an experimental answer to it
because we simply do not known which priors and distributions to choose for
such experiments? Therefore, in this section, we will be satisfied with some
experimental results concerning the following basic case.

With the same notations as those used so far, we suppose that for every
given k ∈ N, Uk, Λk and Xk are two-dimensional random vectors (n = 2)
where Λk is uniformly distributed on the circle centred at the origin with
radius A. We further assume that P (εk = 1}) = 1/2. Given k ∈ N, the
two components of Λk can be regarded as the in-phase and quadrature com-
ponents of a sinusoidal carrier with amplitude A and phase uniformly dis-
tributed in [0, 2π]. Thereby, deciding whether εk equals 0 or 1 is the standard
“Non coherent Detection of a Modulated Sinusoidal Carrier” problem ([Poor,
1994, Example III.B.5, p. 65]). The MPE decision scheme for making a deci-
sion on the value of εk is the thresholding test whose threshold height is the
unique solution in x to the equation I0 (A/σ0x) = eA2/2σ2

0 , where I0 is the
zeroth order modified Bessel function of the first kind ([Poor, 1994, Example
II.E.1, p. 34]). Since I0(x) = 0F1(1; x2/4), the reader will easily verify that
the result is also a straighforward consequence of theorem 1.

Suppose now that the noise standard deviation is unknown. If we dispose
of m observations Uk, k = 1, . . . , m, we can estimate this standard deviation
by minimizing the discrete cost (4) on the basis of those m references. This
estimate can then be used for tuning the EST and, on the basis of the (m +
1)th observation Um+1, make a decision on the value of εk+1. This decision
making has a certain probability of error V̂m(A/σ0). If m and A are large
enough, V̂m(A/σ0) and V (A/σ0) are expected to draw near to each other. In
other words, when m and ρ ∈ (0,∞) are large enough, V̂m(ρ) and V (ρ) should
be close to each other. We thus carry out simulations so as to experimentally
verify this intuitive claim.

In these simulations, σ0 = 1 for this choice induces no loss of gener-
ality; given ρ ∈ (0,∞), V̂m(ρ) is computed by choosing signals uniformly
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distributed on the sphere centred at the origin with radius ρ. We mini-
mize the discrete cost (4) with L = m as a trade-off between accuracy of
the estimate and computational cost. Given m ∈ N and ρ ∈ (0,∞), we
approximate Vm(ρ) by the EST Binary Error Rate (BER), computed as fol-
lows. Given j ∈ N, the EST estimates σ0 on the basis of the m observations
U(j−1)(m+1)+k, k = 1, 2, . . . , m and makes a decision on the value of εj(m+1).
If Ij stands for the indicator variable defined by Ij = 1 if the EST makes
the wrong decision on the value of εj(m+1) and by Ij = 0 otherwise, the
random variables Ij , j ∈ N, are mutually independent because of the mutual

independence of the trials. It turns out that estimating V̂m(ρ) by the sample

proportion Sk/k, where Sk =
∑k

j=1 Ij and k is some specified number of

trials, is not suitable with respect to our purpose. Indeed, V̂m(ρ) is expected
to approximate reasonably well V (ρ) for large values of m and ρ; now, V (ρ)
rapidly decreases with ρ; hence, the accuracy of the sample proportion Sk/k
may significantly depend on the value of V̂m(ρ). Thence, we resort to inverse
binomial sampling as practitioners in telecommunication systems usually do
since error probabilities also decrease rapidly with input signal to noise ratios.
The BER is thus defined as the ratio i/K where K = inf{k ∈ N : Sk = i} is
the minimum number of trials experimentally required for achieving a pre-
defined number of errors equal to i.

Figures 1 to 3 present experimental results obtained for different val-
ues for m. Each figure displays V (ρ) and the BERs of the EST for
ρ = 0.5, 1, 1.5, . . . , 5 and a pre-specified number of errors i equal to 400,
which is a reasonable choice according to practitioners in telecommunication
systems. As expected, the larger m and ρ, the closer V (ρ) and V̂m(ρ).

Consider now the case of sinusoidal carriers with amplitudes all equal to
Cρ with C > 1. According to theorem 2, the least we can expect is that the
larger C, the better the performance of the EST. For instance, the results
displayed in figure 4 were obtained for m = 300 and signals of interest with
amplitude A one dB larger than the value ρ, that is A = 1.2589ρ. These
results strongly suggest that the asymptotic conditions of theorem 2 are not
so constraining in practice and can probably be relaxed.

3 Perspectives and extensions

Forthcoming work should address the respective influence of the EST various
parameters, analyse how the asymptotic conditions of theorem 2 can actually
be relaxed and assess the quality of EST estimate of the noise standard
deviation.

A natural application of the approach presented in this paper is the design
of Constant False Alarm Rate (CFAR) systems used in radar processing for
detecting targets. Our intention is then to study to what extent theorems 1
and 2 are complementary to standard results and algorithms such as those
described in [Minkler and Minkler, 1990].
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Fig. 1. Performance of the EST with L = 100 and m = 100 references for the non
coherent detection of modulated sinusoidal carriers .
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Fig. 2. Performance of the EST with L = 200 and m = 200 references for the non
coherent detection of modulated sinusoidal carriers.
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Fig. 3. Performance of the EST with L = 300 and m = 300 references for the non
coherent detection of modulated sinusoidal carriers.
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Fig. 4. Performance of the EST with L = 300 and m = 300 references for the non
coherent detection of modulated sinusoidal carriers with amplitudes A[dB] equal
to ρ[dB] + 1.

References

[Forsythe et al., 1976]G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer

Methods for Mathematical Computations. Prentice-Hall, 1976.
[Kailath and Poor, 1998]T. Kailath and H. V. Poor. Detection of stochastic pro-

cesses. IEEE Transactions On Information Theory, pages 2230–2259, 1998.
[Kay, 1998]S. M. Kay. Fundamentals of Statistical Signal Processing, Volume II:

Detection Theory. Prentice Hall, Upper Saddle River, 1998.
[Minkler and Minkler, 1990]G. Minkler and J. Minkler. The Principles of Auto-

matic Radar Detection In Clutter, CFAR. Magellan Book Company, Balti-
more, 1990.

[Pastor et al., 2002]D. Pastor, R. Gay, and A. Groenenboom. A sharp upper-bound
for the probability of error of the likelihood ratio test for detecting signals in
white gaussian noise. IEEE Transactions On Information Theory, pages 228–
238, 2002.

[Pastor, 2004]D. Pastor. A limit theorem for sequences of independent random vec-

tors with unknown distributions and its application to nonparametric detection.

GET/ENST-Bretagne Internal Report, Paris, 2004.
[Poor, 1994]H. V. Poor. An Introduction to Signal Detection and Estimation.

Springer-Verlag, 1994.
[Press et al., 1992]W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery. Numerical recipes in C, The art of Scientific Computing. Cambridge
University Press, 1992.


