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Turbo Codes With Rate-m/(m + 1)
Constituent Convolutional Codes

Catherine Douillard, Member, IEEE, and Claude Berrou, Member, IEEE

Abstract—The original turbo codes (TCs), presented in 1993 by
Berrou et al., consist of the parallel concatenation of two rate-1/2
binary recursive systematic convolutional (RSC) codes. This
paper explains how replacing rate-1/2 binary component codes by
rate-rn /(m <+ 1) binary RSC codes can lead to better global per-
formance. The encoding scheme can be designed so that decoding
can be achieved closer to the theoretical limit, while showing better
performance in the region of low error rates. These results are
illustrated with some examples based on double-binary (m = 2)
8-state and 16-state TCs, easily adaptable to a large range of data
block sizes and coding rates. The double-binary 8-state code has
already been adopted in several telecommunication standards.

Index Terms—Iterative decoding, permutation, rate-m/(m +
1) recursive systematic convolutional (RSC) code, tailbiting code,
turbo code (TC).

1. INTRODUCTION

CLASSICAL turbo code (TC) [1] is a parallel concate-
Anation of two binary recursive systematic convolutional
(RSC) codes based on single-input linear feedback shift regis-
ters (LFSRs).

The use of multiple-input LESRs, which allows several infor-
mation bits to be encoded or decoded at the same time, offers
several advantages compared with classical TCs. In the past, the
parallel concatenation of multiple-input LFSRs had mainly been
investigated for the construction of turbo trellis-coded modula-
tion schemes [2]-[4], based on Ungerboeck trellis codes. Ac-
tually, the combination of such codes, providing high natural
coding rates with high-order modulations, leads to very pow-
erful coded modulation schemes.

In this paper, we propose the construction of a family of TCs
calling for RSC constituent codes based on m-input LFSRs, that
outperforms classical TCs. We provide two examples of TCs
with reasonable decoding complexity that allow decoding to be
achieved very close to the theoretical limit, and at the same time,
show good performance in the region of low error rates.
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Section II describes the structure adopted for m-input RSC
component encoders, along with some conditions that guarantee
large free distances, regardless of the value of m.

In Section III, we describe the turbo-encoding scheme, and
the advantages of this construction compared with classical
TCs.

Section IV presents some practical examples of TCs with
m = 2 and their simulated performance. The 8-state family has
already been adopted in the digital video broadcasting (DVB)
standards for return channel via satellite (DVB-RCS) [5] and
the terrestrial distribution system (DVB-RCT) [6], and also in
the 802.16a standard for local and metropolitan area networks
[7]. Combined with the powerful technique of circular trellises,
this . = 2 TC offers good performance and versatility for en-
coding blocks with various sizes and rates, while keeping rea-
sonable decoding complexity. Replacing the §-state component
encoder by a 16-state encoder allows better performance at low
error rates, at the price of a doubled decoding complexity. Min-
imum Hamming distances are increased by 30%—-50%, with re-
gard to 8-state TCs, and allow frame-error rate (FER) curves to
decrease below 10~7 without any noticeable change in the slope
(the so-called flattening effect).

Finally, conclusions and perspectives are summarized in Sec-
tion V.

II. RATE-m/(m + 1) RSC ENCODERS
BASED ON m-INPUT LFSRS

In this section, we will define the constituent RSC codes to
be used in the design of the proposed TCs. Fig. 1 depicts the
general structure of the RSC encoder under study. It involves
a single v-stage LFSR, whose v-row and v-column generator
matrix is denoted G. At time ¢, the m-component input vector
d; =(dir--dig-- di7m)T is connected to the v possible taps
via a connection grid represented by a v-row and m-column
binary matrix denoted C. The tap column vector at time 4, T,
is then given by

T; = Cd,. €))
In order to avoid parallel transitions in the corresponding

trellis, the condition m < v has to be satisfied, and matrix C
has to be full rank.
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m-input Linear Feedback Shift Register

Fig. 1. General structure of a rate-m/(m + 1) RSC encoder with code
memory v.

Except for very particular cases, this encoder is not
equivalent to a single-input encoder fed successively by
di1,d;2,...,d;m,thatis, the m-input encoder is not generally
decomposable.

The redundant output of the machine, not represented in
Fig. 1, is calculated at time ¢ as

yi = Z di,; + RS; (2

where S; denotes the v-component column vector describing
the encoder state at time ¢, and R is the v-component row-re-
dundancy vector. The pth component of R is equal to one if the
pth component of S; is present in the calculation of y;, and zero,
otherwise.

The code being linear, we assume that the “all zero” sequence
is encoded. Let us define a return to zero (RTZ) sequence as an
input sequence of a recursive encoder, that makes the encoder
leave state 0 and return to it again. Calculating the minimum
free distance of such a code involves finding the RTZ sequence
path with minimum output Hamming weight.

Leaving the null path at time 7 implies that S; = 0 and at least
one component of d; is equal to one. In this case, (2) ensures
that the Hamming weight of (d; 1,di 2, ..., dim, ;i) is at least
two when leaving the reference path, since the inversion of one
component of d; implies the inversion of ;.

Moreover, since

Siy1=GS; +T; 3)
it can be shown that ¢; may also be written as
Yi = Z di; + RG™'S; 44 4
7j=1,....m

on the condition that
RGC=0. (5)

Consequently, if the code is devised to verify condition (5),
(4) ensures that if the RTZ sequence retrieves the all-zero refer-
ence path at time ¢ (S;11 = 0) because one of the information
bits d; ; is equal to one, ¥; is also equal to one.

Hence, relations (2) and (4) together guarantee that the min-
imum free distance of the unpunctured code, whose rate is R =
m/(m + 1), is at least four, whatever m. The two codes pro-
posed in this paper for m = 2 meet this requirement.

The minimum Hamming distance of a concatenated code
being larger than that of its constituent codes, provided that the

permutation function is carefully devised, we can imagine that
large minimum distances may be obtained for TCs, for low as
well as for high coding rates.

Choosing large values of m implies high decoding com-
plexity, because v also has to be large, and 2™ paths have to
be processed for each trellis node. For this reason, only low
values of m can be contemplated for practical applications for
the time being (typically, m = 2, possibly 3).

Up to now, we have only investigated the case m = 2 in order
to construct practical coding and decoding schemes in this new
family of TCs. In the following, we call such m = 2 RSC or
turbo encoders double binary. Double-binary RSC codes have
a natural rate of 2/3. When higher coding rates are required, a
simple regular or quasi-regular puncturing pattern is applied.

The decoding solution calling for the application of the max-
imum a posteriori (MAP) algorithm based on the dual code [8]
can also be considered for large values of m, since it requires
fewer edge computations than the classical MAP algorithm for
high coding rates. However, for practical implementations, its
application in the log-domain means the computation of transi-
tion metrics with a far greater number of terms, and the compu-
tation of the max* (Jacobian) function requires great precision.
Consequently, the relevance of this method for practical use is
not so obvious when the rate of the mother code is not close to
1.

III. BLOCK TURBO CODING WITH RATE-m/(m + 1)
CONSTITUENT RSC CODES

The TC family proposed in this paper calls for the parallel
concatenation of two identical rate-m/(m + 1) RSC encoders
with m-bit word interleaving. Blocks of & bits, K = m NV, are en-
coded twice by this bidimensional code, whose rate is m/(m +
2).

A. Circular RSC Codes

Among the different techniques aiming at transforming a con-
volutional code into a block code, the best way is to allow any
state of the encoder as the initial state, and to encode the se-
quence so that the final state of the encoder is equal to the initial
state. The code trellis can then be viewed as a circle, without
any state discontinuity. This termination technique, called fail-
biting [9], [10] or circular, presents three advantages in compar-
ison with the classical trellis-termination technique using tail
bits to drive the encoder to the all-zero state. First, no extra bits
have to be added and transmitted; thus, there is no rate loss, and
the spectral efficiency of the transmission is not reduced. Next,
when classical trellis termination is applied for TCs, a few code-
words with input Hamming weight one may appear at the end
of the block (in both coding dimensions), and can be the cause
of a marked decrease in the minimum Hamming distance of
the composite code. With tailbiting RSC codes, only codewords
with minimum input weight two have to be considered. In other
words, tailbiting encoding avoids any side effects. Moreover, in
a tailbiting or circular trellis, the past is also the future and vice
versa. This means that a non-RTZ sequence produces effects on



the whole set of redundant symbols stemming from the encoder,
around the whole circle. Consequently, the output weights asso-
ciated with non-RTZ sequences are large, and do not contribute
to the minimum Hamming distance of the code.

In practice, the circular encoding of a data block consists of a
two-step process [9]. At the first step, the information sequence
is encoded from state 0 and the final state is memorized. During
this first step, the outputs bits are ignored. The second step is the
actual encoding, whose initial state is a function of the final state
previously memorized. The double encoding operation repre-
sents the main drawback of this method, but in most cases, it
can be performed at a frequency much higher than the data rate.

The iterative decoding of such codes involves repeated and
continuous loops around the circular trellis. The number of
loops performed is equal to the required number of iterations.
The state probabilities or metrics, according to the chosen
decoding algorithm, computed at the end of each turn are used
as initial values for the next turn. With this method, the initial,
or final, state depends on the encoded information block and
is a priori unknown to the decoder at the beginning of the first
iteration. If all the states are assumed to be equiprobable at the
beginning of the decoding process, some side errors may be
produced by the decoders at the beginning of the first iteration.
These errors are removed at the subsequent iterations, since
final state probabilities or metrics computed at the end of the
previous iteration are used as initial values.

B. Permutation

Among the numerous permutation models that have been sug-
gested up to now, the apparently most promising ones, in terms
of minimum Hamming distances, are based on regular permuta-
tion calling for circular shifting [11] or the co-prime [12] prin-
ciple. After writing the data in a linear memory, with address %
(0 <7 < N — 1), the information block is likened to a circle,
both extremities of the block (+ = 0 and z = N — 1) then being
contiguous. The data are read out such that the jth datum read
was written at the position , given by

i =TI(j) = Pj +io

where the skip value P is an integer, relatively prime with N,
and ¢ is the starting index. This permutation does not require
the block to be seen as rectangular; that is, /N may be any integer.

In [13] and [14], two very similar modifications of (6) were
proposed, which generalize the permutation principle adopted
in the DVB-RCS/RCT or IEEE802.16a TCs. In the following,
we will consider the almost regular permutation (ARP) model
detailed in [14], which changes relation (6) into

1=1(j)=Pj+ Q) +iy mod N (7)

where ()(7) is an integer, whose value is taken in a limited set
{0,Q1,Q2,...,Qc_1}, in a cyclic way. C, called the cycle of
the permutation, must be a divider of /V and has a typical value
of four or eight. For instance, if C' = 4, the permutation law is
defined by

mod N (6)

ifj=0mod4, i=T(j)=Pj+0+iy modN
if j=1mod4, i=II(j)=Pj+Q1+i0 modN
ifj=2mod4, i=I(j)=Pj+Q2+1i9 mod N

if j =3mod4, i=I(j)=Pj+Qs+io mod N (8)

and N must be a multiple of four, which is not a very restricting
condition, with respect to flexibility.

In order to ensure the bijection property of II, the ) values
are not just any values. A straightforward way to satisfy the
bijection condition is to choose all (Q’s as multiples of C.

The regular permutation law expressed by (6) is appropriate
for error patterns which are simple RTZ sequences for both en-
coders; that is, RTZ sequences which are not decomposable as a
sum of shorter RTZ sequences. A particular and important case
of a simple RTZ sequence is the two-symbol RTZ sequence,
which may dominate in the asymptotic characteristics of a TC
(see [15] for TCs with m = 1). A two-symbol sequence is a se-
quence with two nonzero rn-bit input symbols, which may con-
tain more than one nonzero bit. Let us define the total spatial
distance (or total span) S(j1,j2) as the sum of the two spatial
distances, before and after permutation, according to (6), for a
given pair of positions j; and jo

S(j1,72) = (41, j2) + £(1(j1), (52)) ©)

where

f(u,v) = min {Ju — v|, N — |[u —v|}. (10)
Finally, we denote by S,yi, the minimum value of S(j1, j2),
for all possible pairs j; and 7

Smin = min{s(jth)}' (1D
J1,72
It was demonstrated in [16] that the maximum possible value
for Smin, Wwhen using regular interleaving, is

S = (Smin)max = V2N = V %
m

If any two-symbol RTZ sequence for one component encoder
is transformed by I1 or I1=! into another two-symbol RTZ se-
quence for the other encoder, the upper bound given by (12)
is amply sufficient to guarantee a large weight for parity bits,
and thus, a large minimum binary Hamming distance. This is
the same for any number of symbols, on the condition that both
RTZ sequences, before and after permutation, are simple RTZ
sequences.

On the other hand, ARP aims at combating error patterns
which are not simple RTZ sequences, but are combinations of
simple RTZ sequences for both encoders. Instilling some con-
trolled disorder, through the Q(j) values in (7), tends to break
most of the composite RTZ sequences. Meanwhile, because the
value of cycle C'is small, the good property of regular permuta-
tion for simple RTZ sequences is not lost, and a total span close
to V2N can be achieved. [14] describes a procedure to obtain
appropriate values for P and for the set of () parameters.

The algorithmic permutation model described by (7) is simple
to implement, does not require any ROM, and the parameters
can be changed on-the-fly for adaptive encoding and decoding.
Moreover, as explained in [14], massive parallelism, allowing
several processors to run at the same time without increasing
the memory size, can be exploited.

In addition to the ARP principle and the advantages devel-
oped above, the rate-m /(m+1) component code adds one more

12)



10000001 13

00
00
00
00
00
00
13

<

0 0
0 0
0 0
0 0
0 0
0 0
1 1

000000

Noo oS oOoN
Ll — AR

(=]

di;

dia %
(@) (b)

Vi Vi

Fig.2. Possible rectangular error patterns. For (a) binary and (b) double-binary
TCs with regular permutations.

degree of freedom in the design of permutations: intrasymbol
permutation, which enables some controlled disorder still to be
added into the permutation without altering its global quasi-reg-
ularity. Intrasymbol permutation means modifying the contents
of the m-bit symbols periodically, before the second encoding,
in such a way that a large proportion of composite RTZ se-
quences for both codes can no longer subsist. Let us develop
this idea in the simplest case of m = 2.

Fig. 2(a) depicts the minimal rectangular error pattern (input
weight w = 4) for a parallel concatenation of two identical bi-
nary RSC encoders, involving a regular permutation (linewise
writing, columnwise reading). This error pattern is a combina-
tion of two input weight-two RTZ sequences in each dimension,
leading to a composite RTZ pattern with distance 16, for coding
rate 1/2. If the component encoder is replaced by a double-bi-
nary encoder, as illustrated in Fig. 2(b), RTZ sequences and
error patterns involve couples of bits, instead of binary values.
Fig. 2(b) gives two examples of rectangular error patterns, corre-
sponding to distance 18, still for coding rate 1/2 (i.e., no punc-
turing). Data couples are numbered from 0 to 3, with the fol-
lowing notation: (0,0):0; (0,1):1; (1,0):2; (1,1):3. The periodici-
ties of the double-binary RSC encoder, depicting all the combi-
nations of pairs of input couples different from 0 that are RTZ
sequences, are summarized in the diagram of Fig. 3. For in-
stance, if the encoder, starting from state 0, is fed up with suc-
cessive couples 1 and 3, it retrieves state 0. The same behavior
can be observed with sequences 201, 2003, 30002, 3000001, or
30000003, for example.

The change from binary to double-binary code, though
leading to a slight improvement in the distance (18 instead of
16), is not sufficient to ensure very good performance at low
error rates. Let us suppose now that couples are inverted (1
becomes 2 and vice versa) once every other time before second
(vertical) encoding, as depicted in Fig. 4. In this way, the error
patterns displayed in Fig. 2(b) no longer remain error patterns.
For instance, 20000002 is still an RTZ sequence for the second
(vertical) encoder, but 10000002 is no longer RTZ. Thus, many
error patterns, especially short patterns, are eliminated, thanks
to the disorder introduced inside input symbols. The right-hand
side of Fig. 4 shows two examples of rectangle error patterns

Fig. 3. Periodicities of the double-binary encoder of Fig. 2(b). Input couples
(0,0), (0,1), (1,0), and (1,1) are denoted 0, 1, 2, and 3, respectively.
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Fig. 4. Couples in gray spaces are inverted before second (vertical) encoding.
1 becomes 2; 2 becomes 1; 0 and 3 remain unaltered. The three patterns on the
left-hand side are no longer error patterns. Those on the right-hand side remain
possible error patterns, with distances 24 and 26 for coding rate 1/2.

that remain possible error patterns after the periodic inversion.
The resulting minimal distances, 24 and 26, are large enough
for the transmission of short data blocks [17]. For longer data
blocks (a few thousand bits), combining this intrasymbol per-
mutation with intersymbol ARP, as described above, can lead
to even larger minimum distances, at least with respect to the
rectangular error patterns with low input weights we gave as
examples.

C. Advantages of TCs With Rate-m/(m + 1) RSC Constituent
Codes

Parallel concatenation of m-input binary RSC codes offers
several advantages in comparison with classical (one input) bi-
nary TCs, which have already been partly commented onin [18].

1) Better Convergence of the Iterative Process: This point
was first observed in [19] and commented on in [20]. The better
convergence of the bidimensional iterative process is explained
by a lower error density in each code dimension, which leads
to a decrease in the correlation effect between the component
decoders.

Let us consider again (12), which gives the maximum total
span achievable when using regular or quasi-regular permuta-
tion. For a given coding rate R, the number of parity bits in-
volved all along the total span, and used by either one decoder

or the other, is
1-R\m 1-R mk
()= () 55 ()5
1) with a double-

Thus, replacing a classical binary (m =
binary (m = 2) TC multiplies this number of parity bits by v/2,
though dividing the total span by the same value. Because the

(13)
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Fig. 5. Performance in BER of single 8-state RSC codes with m = 1 and

m = 2. Encoder polynomials: 15 (feedback) and 13 (redundancy) in octal
form (DVB-RCS constituent encoder for m = 2). Coding rates are 2/3 and
6/7 (regular puncturing). Binary/quaternary phase-shift keying (BPSK/QPSK)
modulation, additive white Gaussian noise (AWGN) channel, and MAP
decoding. No quantization.

parity bits are not a matter of information exchange between the
two decoders (they are just used locally), the more numerous
they are, with respect to a given possible error pattern (here, the
weight-two patterns), the fewer correlation effects between the
component decoders.

Raising m beyond two still improves the turbo algorithm, re-
garding correlation, but the gains get smaller and smaller as m
increases.

2) Larger Minimum Distances: As explained above,
the number of parity bits involved in simple two-symbol
RTZ sequences for both encoders is increased when using
rate-rn/(m + 1) component codes. The number of parity bits
involved in any simple RTZ sequence, before and after permu-
tation, is at least equal to Nparity (S), regardless of the number
of nonzero symbols in the sequence. The binary Hamming
distances corresponding to all simple RTZ sequences are then
high, and do not pose any problem with respect to the minimum
Hamming distance of the TC. This comes from error patterns
made up of several (typically, two or three) short simple RTZ
sequences on both dimensions of the TC. Different techniques
can be used to break most of these patterns, one of them (ARP)
having been presented in Section III-B.

3) Less Puncturing for a Given Rate: In order to obtain
coding rates higher than m/(m + 1), from the RSC encoder of
Fig. 1, fewer redundant symbols have to be discarded, compared
with an m = 1 binary encoder. Consequently, the correcting
ability of the constituent code is less degraded. In order to
illustrate this assertion, Fig. 5 compares the performance, in

BER
1.0e-02 r T T T T T T T

1.0e-03 -

1.0e-04

1.0e-05 -

1.0e-06 I 1 1 I I I I
3 35 4 45 5 55 6 6.5 7

E3/No (dB)

Fig. 6. Performance in BER of three single 16-state RSC codes with 1 = 1,
m = 2,and m = 3. Encoder polynomials: 23 (feedback) and 35 (redundancy)
in octal notation. Coding rate is 3/4, regular puncturing. BPSK/QPSK
modulation, AWGN channel and MAP decoding. No quantization.

terms of bit-error rate (BER), of two 8-state RSC codes with
the same generator polynomials (15, 13) in octal notation, for

m=1 (C=[1 0 0]T)
1 0 0]"
m=2 C:{o 1 1}

The two-input RSC code displays better performance than the
one-input code, for both simulated coding rates.

Raising m to three and beyond for this code is not of interest,
since there is no full-rank three-column matrix C that satisfies
(5). The choice of a constituent code with parallel transitions in
the trellis would lead to a TC with very low minimum Hamming
distance.

In Fig. 6, an m = 3 curve has been introduced for the (23,35)
16-state RSC code with coding rate 3/4. The connection ma-
trices are equal to

C=[1 0 0 0]" form=1

T
1 0 0 O
C—[l 10 1} form =2
100 01"
C=(11 0 1 for m = 3.
1 1 1 0

As expected, we observe that the performance gain between
m = 2 and m = 3 is smaller than the gain between m = 1
and m = 2. Raising mn to four and beyond for this 16-state code
is not of interest, since there is no full-rank four-column matrix
C that satisfies (5).

4) Higher Throughput and Reduced Latency: The decoder
of an m/(m + 1) convolutional code provides m bits at each
decoding step. Thus, once the data block is received, and for a
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Fig. 7. Comparison of performance in FER of two TCs based on both 8-state
RSC codes of Fig. 5, with k = 1504, R = 4/5, for MAP and Max-Log-MAP
decoding. AWGN channel, QPSK modulation, eight iterations. Scaling factor
for Max-Log-MAP decoding: 0.7 for iterations 1-7, 1.0 for iteration 8. No
quantization.

given processing clock, the decoding throughput of a hardware
decoder is multiplied by m. The latency, i.e., the number of
clock periods required to decode a data block, is then divided
by m, compared with the classical case (m = 1).

However, the critical path of the decoder being the Add—Com-
pare—Select (ACS) unit, the decoder with m > 1 has a lower
maximum clock frequency than with m = 1. For instance, for
m = 2, the Compare—Select operation has to be done on four
metrics instead of two, thus with an increased propagation delay.
The use of specialized look-ahead operators and/or the intro-
duction of parallelism, in particular, the multistreaming method
[21], makes it possible to significantly increase the maximum
frequency of the decoder, and even to reach that of the decoder
with m = 1.

5) Robustness of the Decoder: Fig. 7 represents the sim-
ulated performance in FER, as a function of Fj /Ny, of four
coding/decoding schemes dealing with blocks of 1504 informa-
tion bits and coding rate 4/5: binary and double-binary 8-state
TCs exhibited in Fig. 2, both with the full MAP decoding al-
gorithm [22], [23], and with the simplified Max-Log-MAP ver-
sion [24]. In the latter case, the extrinsic information is less re-
liable, especially at the beginning of the iterative process. To
compensate for this, a scaling factor, lower than 1.0, is applied
to extrinsic information [25]. The best observed performance
was obtained when a scaling coefficient of 0.7 for all the itera-
tions, except for the last one, was applied.

In Fig. 7, both codes have ARP internal permutation with op-
timized span. We can observe that the double-binary TC per-
forms better, at both low and high Ej, /Ny, and the steeper slope
for the double-binary TC indicates a larger minimum binary
Hamming distance. These characteristics were justified by 1)
and 2) of this section.

What is also noteworthy is the very slight difference between
the decoding performance of the double-binary TC when using
the MAP or the Max-Log-MAP algorithms. This property of

nonbinary turbo decoding actually makes the full MAP decoder
unnecessary (or the Max-Log-MAP decoder with Jacobian log-
arithm correction [24]), which requires more operations than
the Max-Log-MAP decoder. Also, the latter does not need the
knowledge of the noise variance on Gaussian channels, which is
anice advantage. The rigorous explanation for this quasi-equiv-
alence of the MAP and the Max-Log-MAP algorithms, when
decoding m-input TCs, has still to be found.

IV. PERFORMANCE OF DOUBLE-BINARY TCS

This section describes two examples of double-binary TCs,
with memory 3 and 4, whose reasonable decoding complexity
allows them to be implemented in actual hardware devices for
practical applications. Simulation results for transmissions over
an AWGN channel with QPSK modulation are provided.

A. FEight-State Double-Binary TC

The parameters of the component codes are

101 11

G=|10 0| C=|0 1| Ry=[1 1 0]
010 0 1

R,=[1 0 0] (14)

The diagram of the encoder is described in Fig. 8. Redun-
dancy vector Ry is only used for coding rates less than 1/2. For
coding rates higher than 1/2, puncturing is performed on redun-
dancy bits in a regular periodical way, following patterns that
are described in [5]. These patterns are identical for both con-
stituent encoders.

The permutation function ¢ = TI(j) is performed on two
levels, as explained in Section III-B.

For j = 0,..., N — 1, we have the following.

* Level 1: inversion of d;; and d;» in the data couple, if

g mod 2 = 0.
» Level 2: this permutation level is described by a particular
form of (8)
1=(Pxj+Q()+1) mod N, with
Q) =0 if jmod4=0
N
Q(J):3+P1 ifjmod4 =1
Q) =P if jmod 4 =2
N
Q) = 5 + Ps if j mod 4 = 3. (15)
Value 79 = 1 is added to the incremental relation in order

to comply with the odd—even rule [26]. The disorder is instilled
in the permutation function, according to the ARP principle, in
two ways.
* A shift by N/2 is added for odd values of j. This is done
because the lowest subperiod of the code generator is one
(see Fig. 3). The role of this additional increment is thus
to spread to the full the possible errors associated with the
shortest error patterns.
* P, P>, and P; act as local additional pseudorandom fluc-
tuations.
Notice that the permutation equations and parameters do not
depend on the coding rate considered. The parameters can be
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Fig. 9. Structure of the proposed 16-state double-binary turbo encoder.
TABLE 1

optimized to provide good behavior, on average, at low error
rates for all coding rates, but seeking parameters for a particular
coding rate could lead to slightly better performance.

B. Sixteen-State Double-Binary TC

The parameters of the best component code we have found
are

G= R=[1 1 1 0].

OO = O
o= OO
_o O
OO O
S OO
=

(16)

The diagram of the encoder is described in Fig. 9. Puncturing
is performed on redundancy in a periodic way, with identical
patterns for both constituent encoders. It is usually regular, ex-
cept when the puncturing period is a divisor of the LFSR period.
For example, for coding rate 3/4, the puncturing period is chosen
equal to six, with puncturing pattern [101000].

For this code, the permutation parameters have been carefully
chosen, following the procedure described in [14], in order to
guarantee a large minimum Hamming distance, even for high
rates. The level-1 permutation is identical to the intrapermuta-
tion of the 8-state code. The level-2 intersymbol permutation is
given by

Forj =0,...,N -1

i=(P xj+ Q(j) +3) mod N, with
Q(j) =0 if j mod 4 =0
Q) = if jmod4 =1
Q) =4Qp+ Q2 ifjmod4 =2
Q) =4Q0 + Q3 if j mod 4 = 3. (17)

ESTIMATED VALUES OF MINIMUM BINARY HAMMING DISTANCES d i, OF
PROPOSED 8-STATE AND 16-STATE DOUBLE-BINARY TCS FOR 188-B
DATA BLOCKS. DISTANCES WERE ESTIMATED WITH THE ALL-ZERO

ITERATIVE DECODING ALGORITHM [27]

Coding rate 12 23 3/4

8-state double-binary turbo code 19 12 9

(P=19,R =376, P, =224, P; = 600)

16-state double-binary turbo code 26 18 12

(P=3500=101=4.0,=40;=12)

The spirit in which this permutation was designed is the same
as that already explained for the 8-state TC. The only difference
is that the lowest subperiod of the 16-state generator is two, in-
stead of one. That is why the additional shift (by 4Q¢) is applied
consecutively, twice every four values of j.

Table I compares the minimum binary Hamming distances of
the proposed 8-state and 16-state TCs, for 188-B data blocks
and four different coding rates. The distance values were esti-
mated with the so-called all-zero iterative algorithm, a fast com-
putational method described in [27], which provides distance
values with very high reliability for block sizes larger than a
few hundred bits. We can observe a significant increase in the
minimum distance when using 16-state component codes; the
gain varies from 30%-50% depending on the case considered.
With this code, we were also able to define permutation param-
eters leading to minimum distances as large as 33 for R = 1/2,
22 for R = 2/3, and 16 for R = 3/4 for (10 x 188)-B blocks.
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Fig. 10. Performance in FER of 8-state and 16-state double-binary TCs for
ATM (53 B) blocks and rates 1/2, 2/3, and 3/4. QPSK modulation and AWGN
channel. Max-Log-MAP decoding with 4-b input samples and 8 iterations. The
theoretical limits on FER are derived from [28].

From an implemention point of view, the complexity of the
corresponding decoder is about twice the complexity of the
8-state decoder.

C. Simulation Results

We have simulated and compared these two codes for two
block sizes and three coding rates for transmissions over an
AWGN channel with QPSK modulation. The simulation results
take actual implementation constraints into account. In partic-
ular, the decoder inputs are quantized for hardware complexity
considerations. According to our experience, the performance
degradation due to input quantization is not significant beyond
5 b. The observed loss is less than 0.15 dB for 4-b quantization,
and about 0.4 dB for 3-b quantization. When quantization is ap-
plied, clipping extrinsic information at a threshold around twice
the maximum range of the input samples does not degrade the
performance, while limiting the amount of required memory.

Solid line curves in Figs. 10 and 11 show the FER as a
function of Fj /N, for the transmission of ATM (53 B) and
MPEG (188 B) packets for three different values of coding rate
of the 8-state double-binary TC. The component decoders use
the Max-Log-MAP algorithm, with input samples quantized on
4 b. Eight iterations were simulated and at least 100 erroneous
frames were considered for each point indicated, except for the
lowest points, where approximately 30 erroneous frames were
simulated.

We can observe good average performance for this code
whose decoding complexity is very reasonable. For a hardware
implementation, less than 20000 logical gates are necessary
to implement one iteration of the decoding process when
decoding is performed at the system clock frequency, plus the
memory required for extrinsic information and input data. Its
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Fig. 11. Performance in FER of 8-state and 16-state double-binary TCs for

MPEG (188 B) blocks and rates 1/2, 2/3, and 3/4. QPSK modulation and AWGN
channel. Max-Log-MAP decoding with 4-b input samples and 8 iterations. The
theoretical limits on FER are derived from [28].

performance improves predictably with block size and coding
rate in relation to the theoretical limit. The reported limits given
in Figs. 10 and 11, as well as in Fig. 7, take the block size and
the target FER into account. They are derived from the Gallager
random coding bound on the error probability for binary-input
channels, as described in [28]. At FER = 10—, the simulated
curves lie within 0.6-0.8 dB from the limit, regardless of
block size and coding rate. To improve the performance of this
code family at FER below 1075, the more powerful 16-state
component code has to be selected so as to increase the overall
minimum Hamming distance of the composite code.

Dotted-line curves in Figs. 10 and 11 show the 16-state
TC performance for the same simulation conditions as for the
8-state code. Similar to this code, the permutation parameters
are related to the block size, not to the coding rate.

We can observe that the selected code does not lead to a
convergence-threshold shift of the iterative decoding process
in comparison with the previous 8-state code. For FERs above
104, 16-state and 8-state codes behave similarly. For lower
error rates, thanks to the increase in distance, there is no notice-
able floor effect for the simulated signal-to-noise ratio (SNR)
ranges, that is, down to a FER of 10~7. Again, performance im-
proves predictably with block size and coding rate in relation to
the theoretical limit. At FER = 105, the simulated curves lie
within 0.7-1.0 dB from the limits, regardless of block size and
coding rate, even with the simplified Max-Log-MAP algorithm.

V. CONCLUSION

Searching for perfect channel coding presents two chal-
lenges: encoding in such a way that large minimum distances
can be reached; and achieving decoding as close to the theo-
retical limit as possible. In this paper, we have explained why



m-input binary TCs combined with a two-level permutation
can represent a better answer to these challenges than classical
one-input binary TCs.

In practice, with m = 2, we have been able to design coding
schemes with moderate decoding complexity, and whose per-
formance approaches the theoretical limit by less than 1 dB at
FER = 1075, The 8-state TC with m = 2 has already found
practical applications through several international standards.

Furthermore, the parallel concatenation of RSC circular
codes leads to flexible composite codes, easily adaptable to
a large range of data block sizes and coding rates. Conse-
quently, as m-input binary codes are well suited for association
with high-order modulations, in particular M-ary quadrature
amplitude modulation and M-ary PSK, TCs based on these
constituent codes appear to be good candidates for most future
digital communication systems based on block transmission.
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