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On the Application of Recent Results in Statistical Decision and
Estimation Theory to Perceptual Filtering of Noisy Speech Signals

Asmaa Amehraye, Dominique Pastor and So£a Ben Jebara

Abstract— This paper combines perceptual £ltering to recent
results in statistical decision and estimation theory in order to
denoise speech signals corrupted by additive and independent
white Gaussian noise. The resulting technique requires no Voice
Activity Detector and its performance is signi£cantly close to
that obtained when the noise standard deviation is known and
the masking threshold computed on the basis of the clean speech
signals.

I. INTRODUCTION

Speech enhancement has greatly progressed over the past
decades. Traditional methods basically improve the Signal
to Noise Ratio (SNR). However, they introduce unpleasant
residual noise known as musical noise. Various algorithms
have been proposed for reducing the effects of musical
noise ([1], [2], [3]). They admittedly succeed under some
conditions but there is still a need for more performant
methods that reduce the amount of residual noise at very
low input SNRs without introducing speech distortion.

The current trend is to exploit the auditory masking prop-
erties, widely used in perceptual audio coding. By using these
properties, it is expected to make residual noise inaudible
([4], [10], [11]). In this respect, the masking threshold
becomes a constraint to take into account because the human
auditory system is not sensitive to any residual noise masked
by coexistant speech signal. The most usual method to
calculate the masking threshold is presented in [5] and relies
on a critical band analysis modelling the behaviour of the
inner ear.

In this paper, to denoise speech signals corrupted by
independent and additive white Gaussian noise (AWGN),
we combine a perceptually motivated method with a non
parametric estimator of the noise standard deviation. This
estimator avoids the use of any Voice Activity Detector
(VAD). Because of the novelty of this estimator, we do
not address the case of coloured noise yet. The estimate
performed by this estimator is used twice. First, to adjust a
recursive Wiener £ltering whose outcome serves to estimate
the masking threshold of the speech signals to denoise;
second, to tune the perceptual £lter proposed by [9]. We
evaluate the quality of the £ltered speech signals by means

A. Amehraye is with the GSCM-Faculté des Science de Rabat, Rabat,
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of two objective criteria, namely the standard Segmental
Signal to Noise Ratio (SSNR) (see [8]) and the Modi£ed
Bark Spectral Distortion (MBSD) (see [13]). The latter is
a perceptually motivated metric that employs the concept
of masking threshold in order to introduce no bias due
to possible inaudible distortions. It proves to be highly
correlated with subjective speech quality assessment [13].

Section II presents the perceptual £ltering we consider.
In section III, we describe the theoretical tools, the noise
standard deviation estimator derived from these results and
the application of this estimator to speech processing. The
performance of the speech enhancement method that com-
bines this estimator with the perceptual £ltering of section
II is addressed in section IV. Concluding remarks and
perspectives are given in section V.

II. PERCEPTUAL SPEEH ENHANCEMENT

Let s(n) be some speech signal corrupted by additive and
independent stationary noisex(n). The observed signal is

y(n) = s(n) + x(n). (1)

Given a frame ofN samplesy(n), n = 1, . . . , N , let
Yk, Sk and Xk, k = 0, . . . , N − 1, denote the Discrete
Fourier Transform (DFT) coef£cients ofy(n), s(n) and
x(n) respectively. Generally, speech enhancement techniques
consist in estimating the frequency componentsSk by

Ŝk = HkYk, k = 0, . . . , N − 1, (2)

whereHk is a linear estimator chosen according to a suitable
criterion. The error signal generated by this estimator is

ek = Ŝk − Sk = (Hk − 1)Sk + HkXk. (3)

The values(Hk − 1)Sk, k = 0, . . . , N − 1, are the DFT
coef£cients of the speech distorsion due to the £ltering and
the frequency componentsHkXk, k = 0, . . . , N − 1, are
the DFT coef£cients of the residual noise. The quantity
|Hk|2E[|Xk|2] is then the residual noise spectral power for
the kth frequency component.

In order to take into account the properties of the auditory
system, the £lterHk can be designed so as to yield inaudible
residual noise. This can be achieved by forcing the residual
noise spectral power to be below the masking threshold in
each frequency bin; indeed, the human auditory system does
not perceive any noise with spectral power less than the
masking threshold. This is the approach followed in [9]. The

£lter is then constrained by the inequality|Hk| ≤
√

Tk

γk

, k =

0, . . . , N −1, whereTk andγk are the value of the masking



threshold and that of the noise power spectral density in the
kth bin. We choose real values forHk such that0 ≤ Hk ≤ 1.
This inequality is the same as that satis£ed by the standard
Wiener £lter and guarantees that the spectral power of the
residual noise is less than or equal to that of the input noise.
The expression of the perceptual £lter is then

Hk = min(

√
Tk

γk
, 1) (4)

This solution can also be derived by considering the £ltering
problem addressed in this section as a constrained optimiza-
tion problem [4]. The £lter de£ned by (4) reduces only
the noise frequency components that are above the masking
threshold because the others are not audible and can even
mask residual noise. In practice, the two terms of the ratio
in the right hand side of (4) must be estimated and the
performance of the resulting £ltering strongly depends on
the accuracy of these estimates.

The masking threshold can be estimated on the basis of the
outcome of a spectral substraction ([4], [11]). This solution
reduces the amount of additive noise but introduces musical
noise. The tone-like nature of musical noise increases the
energy per critical band. This can induce an overestimation
of the masking threshold.

To avoid such a drawback, we estimate the speech signals
by Wiener £ltering. This method introduces less musical
noise in comparaison with spectral subtraction methods [3].
The Wiener £ltering version that we use is based on thea
priori SNR ξk(m) estimated by [3]

ξ̃k(m) = (1−α)h (χk(m) − 1)+α
|S̃k(m − 1)|2
|X̃k(m − 1)|2

, 0 ≤ α < 1.

In this equation,|S̃k(m − 1)| and |X̃k(m − 1)| are the
amplitude estimates of thekth spectral components of the
clean speech signal and noise in the(m−1)th analysis frame;
h(x) = x if x ≥ 0 and h(x) = 0 otherwise;α is some
weighting factor, we choseα = 0.98 for our experiments;
χk(m) = |Yk(m)|2/|X̃k(m)|2 is thea posteriori SNR where
|Yk(m)| is the amplitude of thekth spectral component of the
noisy speech signal in themth analysis frame. The Wiener
£lter is then

W =
ξ̃k(m)

1 + ξ̃k(m)
, k = 0, . . . , N − 1. (5)

The estimate performed by the Wiener £ltering thus de£ned
is then employed to calculate the masking threshold.

In order to estimate the input noise spectral density,
standard solutions are based on the use of a VAD. Frames
detected by this VAD as noise alone serve to estimate the
valuesγk, k = 0, . . . , N − 1. The accuracy of the estimates
depends on the performance of the VAD. When speech
signals are corrupted by independent and AWGN with noise
standard deviationσ0, we haveγk = σ2

0 . In this case, what
follows explains how to get an estimate ofσ0 without using
any VAD.

III. ESTIMATION OF THE NOISE STANDARD
DEVIATION

A. Theoretical results

The random variables encountered below are assumed to
be de£ned on the same probability space and we write (a-s)
for almost surely. Given a positive real valueσ0, a sequence
X = (Xk)k∈N of random complex variables is said to
be acomplex white Gaussian noise (CWGN) with standard
deviationσ0 if the random variablesXk, k = 1, 2, . . ., are
complex, mutually independent and identically Gaussian dis-
tributed with null mean and varianceσ2

0 (Xk ∼ Nc(0, σ
2
0)).

Theminimum amplitude a(S) of a sequenceS = (Sk)k∈N

of random complex variables is de£ned by

a(S) = sup {α ∈ [0,∞] : ∀k ∈ N, |Sk| ≥ α (a-s)} . (6)

If f is some map of the set of all the sequences of complex
random variables intoR, we say that the limit off is ℓ ∈ R

whena(S) tends to∞ and write thatlim
a(S)→∞ f(S) = ℓ if,

for any positive real valueη, there exists someα0 ∈ (0,∞)
such that, for everyα ≥ α0 and everyS such thata(S) ≥ α,
|f(S) − ℓ| ≤ η.

Let L2
C

(Ω) stand for the set of those complex ran-
dom variablesY such thatE[|Y |2] < ∞. We denote by
ℓ∞(N, L2

C
(Ω)) the set of those sequencesS = (Sk)k∈N of

complex random variables such thatSk ∈ L2
C

(Ω) for every
k ∈ N and supk∈N E[|Sk|2] is £nite.

The following result is a corollary of the limit theorem
established in [6] forn-dimensional real random vectors.
Given any random vectorY and any real numberτ , I(|Y | ≤
τ) stands for the indicator function of the event{|Y | ≤ τ}.

Proposition 3.1: Let Y = (Yk)k∈N be some sequence of
complex random variables such that, for every k ∈ N, Yk =
εkSk + Xk where S ∈ ℓ∞(N, L2

C
(Ω)), X = (Xk)k∈N is

some CWGN with standard deviation σ0 and ε = (εk)k∈N is
a sequence of random variables valued in {0, 1} respectively.

Assume that
(A1) for every k ∈ N, Sk, Xk and εk are mutually

independent;
(A2) the random variables Yk, k ∈ N, are mutually

independent;
(A3) the random variables εk, k ∈ N, are mutually

independent;
(A4) the priors P ({εk = 1}), k ∈ N, are less than or

equal to one half.
Given any natural number m and any pair (σ, T ) of

positive real numbers, de£ne the random variable ∆m(σ, T )
by

∆m(σ, T ) =

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

|Yk|I(|Yk| ≤ σT )

m∑

k=1

I(|Yk| ≤ σT )

− 2σ

∫ T

0

u2e−u2

du

1 − e−T 2

∣∣∣∣∣∣∣∣∣∣

.

Then, σ0 is the unique positive real number σ such that,
for every β0 ∈ (0, 1],

lim
a(Λ)→∞

∥∥∥lim
m

∆m(σ, βg(a(Λ)/σ))
∥∥∥
∞

= 0 (7)



uniformly in β ∈ [β0, 1] where, for every x ∈ R, g(x) =
I−1
0 (ex2

)/2x with g(0) = 1 and I0 is the standard zeroth-
order modi£ed Bessel function of the £rst kind.

In this statement,Y models a sequence of observations;
for every given k ∈ N, Sk stands for some possible
random signal,εk is the possible occurrence ofSk and
the complex noise is modelled byX. The assumption that
S ∈ ℓ∞(N, L2

C
(Ω)) corresponds to the practical case of

interest where the energies of the signals are £nite and
bounded.

B. The algorithm

With the same notations as above, suppose that we have
m observationsY1, . . . , Ym. Let L ∈ N and setβℓ = ℓ/L
for every ℓ ∈ {1, . . . , L}. The result stated above suggests
estimatingσ0 by a possibly local minimum of

sup
ℓ∈{1,...,L}

∆m(σ, βℓg(a(S)/σ)).

According to proposition 3.1, the larger the minimum ampli-
tude, the better the estimate. However, good results can be
obtained even when the minimum amplitude of the signals is
not large [7]. Therefore, we propose to perform an estimate
of the noise standard deviation by takinga(S) = 0, a trivial
bound for any signal norm. By so proceeding, we discard any
assumption about the probability distributions of the signals
and simply assume that these signals are less present than
absent. Sinceg(0) = 1, we compute a minimum̂σ0 of

sup
ℓ=1,L





∣∣∣∣∣∣∣∣∣∣

m∑

k=1

|Yk|I(|Yk|≤βℓσ)

m∑

k=1

I(|Yk|≤βℓσ)

−2σ

∫ βℓ

0

u2e−u2

du

1 − e−β2

ℓ

∣∣∣∣∣∣∣∣∣∣





(8)

by means of a minimization routine for scalar bounded
non-linear functions. For instance, the experimental results
presented in the next section were obtained with theMATLAB
routinefminbnd.m.

The search interval[σmin, σmax] is constructed as follows.
Sort the complex valuesY1, . . . , Ym, k = 1, . . . ,m, by
increasing modulus. LetY[k], k = 1, . . . ,m, be the resulting
sequence. The right endpoint of the search interval isσmax =
|Y[m]|/

√
2. Now, choose a real numberQ close to1 but less

than or equal to1− m
4(m/2−1)2 . A typical choice isQ = 0.95,

provided thatm ≥ 24. Set h = 1/
√

4m(1 − Q) and
kmin = m/2−hm. The left endpoint isσmin = |Y[kmin]|/

√
2.

The reader is asked to refer to [6] and [7] for justi£cations
of this construction.

Preliminary tests of the same type as those described in
[7] show thatσ̂0 tends to overestimate the value ofσ0 and
suggest to estimate this noise standard deviation by

σ̃0 =

√√√√
m∑

k=1

|Yk|2I(|Yk| ≤ σ̂0)/

m∑

k=1

I(|Yk| ≤ σ̂0). (9)

We work on theoretical justi£cations of this £nal estimate.

According to [6] and [7] and as a good trade-off between
computational load and accuracy, it is recommended to use
the algorithm proposed above on a few hundred observations
and to chooseL = m. For instance, the experimental results
of section IV were obtained on the basis of observation sets
with 200 hundred samples each.

C. Application to speech processing

ConsiderK samples of speech signals corrupted by inde-
pendent AWGN with standard deviationσ0. Let Fs stand
for the sampling frequency. Split this set of observations
into M disjoint frames ofN = 2p samples each. We have
K = MN . In practice,p will be chosen such thatNFs ≈
20ms. Apply anN -DFT on each frame. We obtain a matrix
[Ui,j ]i∈{1,...,M},j∈{0,...,N−1} of complex values wherei is
the frame index andj the DFT bin number. Because of the
Hermitian symmetry of the DFT, we restrict our attention to
the valuesUi,j , i ∈ {1, . . . ,M}, j ∈ {0, . . . , N/2 − 1}.

For each framei and each binj, we assume the random
presence of a speech frequency componentSi,j and that the
probability of presence ofSi,j is less than or equal to one
half. This probability of presence may be larger than one half
for low frequency components; however, for high frequency
components, this probability of presence becomes less than
or equal to one half and even relatively small. We thus
assume thatUi,j = εi,jSi,j + Xi,j . As above,εi,j ∈ {0, 1}
indicates whether the speech frequency componentSi,j is
present or absent in thejth bin of the ith frame. Since
noise is white and Gaussian with standard deviationσ0, the
complex random variablesXi,j are mutually independent and
identically distributed withXi,j ∼ Nc(0, NC2σ2

0) when the
DFT coef£cientsUk, k = 0, . . . , N − 1, of a sequence ofN
samplesu0, . . . , uN−1 areUk = C

∑N−1
n=0 une−i2πnk/N .

Instead of performing an estimate of
√

NC2σ2
0 on the

basis of theMN/2 = K/2 values we have, we follow the
recommendation of the previous section and split our set of
observations into subsets ofm = 200 observations each.
Each subset is used to perform an estimate of

√
NC2σ2

0 .
We then compute the average value of theMN/2m estimates
thus obtained. It then suf£ces to divide this average byC

√
N

to get an estimate ofσ0. In order to deal withm observations
that can reasonably be considered as mutually independent,
these observations can be chosen randomly amongst the
MN/2 values we have. However, this randomization does
not affect signi£cantly the results presented below.

IV. PERFORMANCE EVALUATION

The perceptual £ltering associated with the estimator pro-
posed in section III was tested as follows. We considered
speech signals from the TIMIT database. These speech
signals are recorded at16 kHz and we downsampled them
to 8 kHz before adding white Gaussian noise.

To estimate the noise standard deviation, we proceeded as
described above with frames ofN = 256 samples each. This
estimate serves to estimate the masking threshold and tune
the perceptual £ltering. Both the estimation of the masking
threshold and the perceptual £ltering are achieved on the



basis of32ms-duration frames (256 samples per frame) with
a 50% overlap. The computation of the masking threshold is
based on18 critical bands.

We computed the SSNR and the MBSD of the proposed
method. The SSNR and the MBSD are objective criteria
for measuring the performance of a speech enhancement
system. The SSNR is the average of the SNR values on short
segments [8]. However, the SSNR is not relevant enough
to measure the distortion of denoised speech signals and to
assess the quality of perceptually motivated speech enhance-
ment approaches. Such approaches purposely keep noise
components that are inaudible because suppressing them
could introduce unpleasant speech distortion. Many other
objective measures have been developped. They correlate
well with subjective measures of speech quality. Amongst
them, the MBSD [13] is an improved version of the Bark
Spectral Distortion (BSD) [12]. It extends the BSD by
incorporating the masking threshold so as to differentiate
audible distortions from inaudible ones. The MBSD proves
to be even more correlated with speech quality than the BSD
[13].

We computed the SSNR and the MBSD when the exact
value of the noise standard deviation is used and the masking
threshold is computed on the basis of the clean speech
signals (before adding noise). The SSNR and the MBSD
thus obtained are hereafter called the “Theoretical limits”.

The SSNR and the MBSD were also measured for the per-
ceptual £lter of section II when the noise standard deviation
is estimated on the basis of signal-free time frames provided
by an ideal DAV (“perceptual £lter + DAV”).

Consider the Wiener £ltering based, as in section II, on
the recursive computation of thea priori SNR. We computed
the SSNR and the MBSD when the estimate of the noise
standard deviation is achieved via the estimator of section
III (“Wiener + Noise Estimator”). We also calculated the
SSNR and the MBSD when this noise standard deviation is
estimated on the basis of signal-free periods of time (“Wiener
+ DAV”).

Fig. 1 presents the performance measurements obtained.
The proposed method yields performance signi£cantly close
to the theoretical limits at various input SNRs. It outperforms
the Wiener £ltering. Surprisingly enough, it also performs
better than the perceptual £ltering tuned by the noise standard
deviation estimate derived from an ideal DAV. We think that
this relates to the fact that the number of observations used
by our estimator is signi£cantly larger than that available
on the basis of signal-free time frames. Note also that
the SNR improvement achieved by the proposed method is
particularly signi£cant for low input SNRs.

V. CONCLUSION AND FUTURE WORK

By combining a perceptually motivated approach for
speech enhancement with a new estimator of the noise
standard deviation, we denoise speech signals corrupted by
independent AWGN without using any VAD. The proposed
method reduces residual noise, limits speech distortions and
outperforms Wiener £ltering. Above all, its performance
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Fig. 1. MBSD and SSNR improvement for speech signals in independent
AWGN with various SNRs.

measurements are very promising because they signi£cantly
approach those obtained by using the exact value of the noise
standard deviation and computing the masking threshold
on the basis of clean speech signals. Forthcoming work
will involve further comparison to other techniques such as
Ephraim and Malah’s [3] as well extension of the approach
to non-white Gaussian noise.
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