N
N

N

HAL

open science

On the application of recent results in statistical

decision and estimation theory to perceptual filtering of

noisy speech signals

Asmaa Amehraye, Dominique Pastor, Sofia Ben Jebara

» To cite this version:

Asmaa Amehraye, Dominique Pastor, Sofia Ben Jebara.
statistical decision and estimation theory to perceptual filtering of noisy speech signals.
2006: 2d international symposium on Control, Communications and Signal Processing, Mar 2006,

Marrakech, Morocco. hal-02137078

HAL Id: hal-02137078
https://hal.science/hal-02137078

Submitted on 22 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

On the application of recent results in

ISCCSP


https://hal.science/hal-02137078
https://hal.archives-ouvertes.fr

On the Application of Recent Results in Statistical Decision and
Estimation Theory to Perceptual Filtering of Noisy Speech Sigals

Asmaa Amehraye, Dominique Pastor and Sofa Ben Jebara

Abstract— This paper combines perceptual £ltering to recent of two objective criteria, namely the standard Segmental
results in statistical decision and estimation theory in order to  Sjgnal to Noise Ratio (SSNR) (see [8]) and the Modifed
denoise speech signals corrupted by additive and independent Bark Spectral Distortion (MBSD) (see [13]). The latter is

white Gaussian noise. The resulting technique requires no Voice tuall tivated tric that | th t
Activity Detector and its performance is signi£cantly close to a perceptually motivated metric that employs the concep

that obtained when the noise standard deviation is known and Of masking threshold in order to introduce no bias due
the masking threshold computed on the basis of the clean speech to possible inaudible distortions. It proves to be highly

signals. correlated with subjective speech quality assessment [13]
Section Il presents the perceptual £ltering we consider.
I. INTRODUCTION In section Ill, we describe the theoretical tools, the noise
Speech enhancement has greatly progressed over the ,ﬁgﬂdard deviation estimator derived from these results an
decades. Traditional methods basically improve the SignHie application of this estimator to speech processing. The
to Noise Ratio (SNR). However, they introduce unpleasamerformance of the speech enhancement method that com-
residual noise known as musical noise. Various algorithmi@ines this estimator with the perceptual £ltering of section
have been proposed for reducing the effects of musicHl is addressed in section IV. Concluding remarks and
noise ([1], [2], [3]). They admittedly succeed under soméerspectives are given in section V.
conditions but there is still a need for more performant
methods that reduce the amount of residual noise at very Il. PERCEPTUAL SPEEH ENHANCEMENT
low input SNRs without introducing speech distortion. Let s(n) be some speech signal corrupted by additive and
The current trend is to exploit the auditory masking propindependent stationary noisgn). The observed signal is
erties, widely used in perceptual audio coding. By usinge¢he .
properties, it is expected to make residual noise inaudible y(n) = s(n) + z(n). (1)
([4], [10], [11]). In this respect, the masking thresholdGiven a frame of N samplesy(n), n = 1,...,N, let
becomes a constraint to take into account because the human S, and X, & = 0,...,N — 1, denote the Discrete
auditory system is not sensitive to any residual noise nthsk@ourier Transform (DFT) coefEcients af(n), s(n) and
by coexistant speech signal. The most usual method fgn) respectively. Generally, speech enhancement techniques
calculate the masking threshold is presented in [5] andseli consist in estimating the frequency componesitsby

on a critical band analysis modelling the behaviour of the N
inner ear. Sk = HpYp,k=0,...,N —1, 2)

~ In this paper, to denoise speech signals corrupted Ryheref, is a linear estimator chosen according to a suitable
independent and additive white Gaussian noise (AWGNyiterion. The error signal generated by this estimator is
we combine a perceptually motivated method with a non .

parametric estimator of the noise standard deviation. This ex = Sk — Sk = (Hg — 1)Sk + Hy Xy 3)
estimator avoids the use of any Voice Activity Detector. _
(VAD). Because of the novelty of this estimator, we do' Ne values(fly, — 1)Sy, k = 0,...,N — 1, are the DFT

not address the case of coloured noise yet. The estim%%efﬁments of the speech distorsion due to the £ltering and

performed by this estimator is used twice. First, to adjust f;‘he frequency componently Xy, k = 0,...,N — 1, are

. : : : e DFT coefEcients of the residual noise. The quantity
recursive Wiener £ltering whose outcome serves to estim £ 2E[|X,|?] is then the residual noise spectral power for
the masking threshold of the speech signals to denoisg:” k P P

second, to tune the perceptual £lter proposed by [9]. € kth frequency component.

evaluate the aquality of the £ltered speech sianals b meansm order to take into account the properties of the auditory
q y P 9 y system, the £ltef/;, can be designed so as to yield inaudible
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threshold and that of the noise power spectral density in the 1ll. ESTIMATION OF THE NOISE STANDARD
kth bin. We choose real values féf, such that < H;, < 1. DEVIATION

This inequality is the same as that satisEed by the standagd Theoretical results

Wiener £lter and guarantees that the spectral power of the
residual noise is less than or equal to that of the input nois
The expression of the perceptual £lter is then

The random variables encountered below are assumed to
Be de£ned on the same probability space and we write (a-s)
for almost surely. Given a positive real valug, a sequence

T X = (Xp)ren of random complex variables is said to
Hj, = min( —k, 1) (4) be acomplex white Gaussian noise (CWGN) with standard

Tk deviation oy if the random variables\;,, k = 1,2,..., are

This solution can also be derived by considering the £lterin§omplex, mutually independent and identically Gaussian di
problem addressed in this section as a constrained optimigbuted with null mean and varianeg§ (Xi ~ N (0, 03)).
tion problem [4]. The £lter defned by (4) reduces only 'heminimumamplitudea(S) of a sequence = (Sk)ren
the noise frequency components that are above the maskifgrandom complex variables is de£ned by

threshold because the others are not audible and can eveny(S) = sup {a € [0,00] : Vk € N, |Si| > a (a-s)}.  (6)

mask residual noise. In practice, the two terms of the ratiﬁ is some man of the set of all the sequences of complex
in the right hand side of (4) must be estimated and the f P q P

performance of the resulting £ltering strongly depends ohandom variables int®, we say that the limit off is £ € R

the accuracy of these estimates. whena($) tends taoo and write thatim, s) o f(S5) = ¢if,
The masking threshold can be estimated on the basis of tLOe( any positive real valu, there exists somay € (0, o)
. : . such that, for every > o and everyS such that(S) > «,
outcome of a spectral substraction ([4], [11]). This santi L£(S) — €] <
reduces the amount of additive noise but introduces musicécl Let 2 (?Z)n.stand for the set of those complex ran-
noise. The tone-like nature of musical noise increases tra% b

energy per critical band. This can induce an overestimatioggom variablesy’ such thatE(|Y|") < co. We denote by
. 2 ~
of the masking threshold. (N, L& () the set of those sequencls= (Sy)ken Of

: _ ___complex random variables such th&it € LZ(Q) for every
To avoid such a drawback, we estimate the speech s|gn%ls6 N andsup.x E[|Sk|?] is £nite.

by Wiener £ltering. This method introduces less musical o fo10wing result is a corollary of the limit theorem
noise in comparaison with spectral subtraction methods [Séstablished in [6] forn-dimensional real random vectors.
The Wiener £ltering version that we use is based onahe Given any random vectdr and any real number, Z(|Y| <
priori SNR&;(m) estimated by [3] 7) stands for the indicator function of the evefit’| < 7}.

~ |§ (m —1)|? Proposition 3.1: Let Y = (Y%)ren be some sequence of
&r(m) = (1=a)h (xx(m) — 1)+a = 5 0<a<l complex random variables such that, for every k € N, Y}, =
[ Xk (m — 1) erSk + X Where S € (°(N,LL(Q)), X = (Xy)ren iS

some CWGN with standard deviation o and &€ = (e )gen 1S

In this equation,|Sy(m — 1)| and [Xx(m — 1)| are the a sequence of random variables valued in {0, 1} respectively.

amplitude estimates of theth spectral components of the

clean speech signal and noise in fhe—1)th analysis frame; ‘Ahslsun?that ke N S X q wuall
h(z) = z if « > 0 and h(z) = 0 otherwise;« is some (AL) iﬁ(r:iezveirgent' € Ny Ok Ap aNd g, are mutually
weighting factor, we chose: = 0.98 for our experiments; L
xx(m) = Y. (m)|?/| X1 (m)|? is thea posteriori SNR where (A2) .thz ranglon:. variables Yy, k € N, are mutually
|Y:(m)| is the amplitude of théth spectral component of the A3 E[E ependen, bl L e N wuall
noisy speech signal in thexth analysis frame. The Wiener (A3) ) 3 random. Varianles ex, & € N, are mutually
£lter is then Ihaepen ent
B (A4) the priors P({e;, = 1}),k € N, are less than or
W &(m) k=0 N_1 (5) equal to one half.
1+ &(m) B ’ Given any natural number m and any pair (o,T) of

) ] ) positive real numbers, defne the random variable A, (o, T')
The estimate performed by the Wiener £ltering thus de£nqg§,

is then employed to calculate the masking threshold.

In order to estimate the input noise spectral density, ZIYkII(IYkI < oT) /Tu2e“2du
standard solutions are based on the use of a VAD. Frames 1 o
detected by this VAD as noise alone serve to estimate them (0, 1) = m —20 1_ 12
valuesy, k =0,..., N — 1. The accuracy of the estimates ZI(\Yk\ <oT)
depends on the performance of the VAD. When speech k=1

signals are corrupted by independent and AWGN with noise Then, oy is the unique positive real number o such that,
standard deviatiowy, we havey, = o3. In this case, what for every g3, € (0, 1],

follows explains how to get an estimate @f without using . —

any VAD. [ A, o, Bg(a(a)/o))|

=0 @)



uniformly in 8 € [By, 1] where, for every z € R, g(x) = According to [6] and [7] and as a good trade-off between

Igl(e$2)/2x with g(0) = 1 and I, is the standard zeroth- computational load and accuracy, it is recommended to use

order modi£ed Bessel function of the £rst kind. the algorithm proposed above on a few hundred observations
In this statementY” models a sequence of observationsand to choosd, = m. For instance, the experimental results

for every givenk ¢ N, S, stands for some possible of section IV were obtained on the basis of observation sets

random signal,e;, is the possible occurrence o, and with 200 hundred samples each.

the complex noise is modelled by. The assumption that - .

S € (*°(N,L%(Q)) corresponds to the practical case o Application to speech processing

interest where the energies of the signals are £nite andConsiderk samples of speech signals corrupted by inde-

bounded. pendent AWGN with standard deviation,. Let F, stand
for the sampling frequency. Split this set of observations
B. The algorithm into M disjoint frames of N = 2P samples each. We have

With the same notations as above, suppose that we halfe= M V- In practice,p will be chosen such thaV Fs ~
m observations;, ..., Y,,. Let L € N and set3, = (/L 20ms. Apply anN-DFT on each frame. We obtain a matrix

for every ¢ € {1,...,L}. The result stated above suggestsUijlie(1....m} jefo....n—1} Of complex values wherg is
estimatingo, by a possibly local minimum of the frfcl_me index ang the DFT bin numbe_r. Because qf the
Hermitian symmetry of the DFT, we restrict our attention to
sup  An(o,Beg(a(sS)/o)). the valuesU; ;, i € {1,...,M},j €{0,...,N/2 —1}.
tefl,...L} For each frame and each binj, we assume the random

According to proposition 3.1, the larger the minimum ampliPresence of a speech frequency comportgntand that the
tude, the better the estimate. However, good results can Beobability of presence of; ; is less than or equal to one
obtained even when the minimum amplitude of the signals f§lf- This probability of presence may be larger than oné hal
not large [7]. Therefore, we propose to perform an estimaf€r 0w frequency components; however, for high frequency
of the noise standard deviation by takia(S) = 0, a trivial cOmponents, this probability of presence becomes less than
bound for any signal norm. By so proceeding, we discard arff equal to one half and even relatively small. We thus
assumption about the probability distributions of the aign assume that/; ; = ¢, ;S; ; + X; ;. As abovee;; € {0,1}

and simply assume that these signals are less present tigicates whether the speech frequency compoisentis

absent. Sincg(0) = 1, we compute a minimurd, of present or absent in thgth bin of the ith frame. Since
noise is white and Gaussian with standard deviatipnthe
Be )
/ ue™™ du
0

complex random variableX; ; are mutually independent and
identically distributed withX; ; ~ A.(0, NC?0Z) when the
5 (8) DFT coefEcientd/,, k=0,...,N — 1, of a sequence oV
1—e% ‘ samplesug, ..., uy_; areU = CZ,]:[:_J up e i2mnk/N
Instead of performing an estimate f NC203 on the
gasis of theM N/2 = K/2 values we have, we follow the
recommendation of the previous section and split our set of
observations into subsets @i = 200 observations each.
Each subset is used to perform an estimate,/ GV C20?2.
We then compute the average value of éV/2m estimates
thus obtained. It then suffces to divide this averag€'kyN
to get an estimate afy. In order to deal withn observations
that can reasonably be considered as mutually independent,
these observations can be chosen randomly amongst the
MN/2 values we have. However, this randomization does
not affect signi£cantly the results presented below.

Z \Yi|Z(|Yk| < Beo)
k=1
sup —20

SRS T T(YRI < Beo)
k=1

by means of a minimization routine for scalar bounde
non-linear functions. For instance, the experimental Itesu
presented in the next section were obtained withMAELAB
routinef m nbnd. m

The search interveb iy, omax] is constructed as follows.
Sort the complex value¥i,...,Y,,, & = 1,...,m, by
increasing modulus. Lét[;), k = 1,...,m, be the resulting
sequence. The right endpoint of the search interval.is, =
|Y},|/v/2. Now, choose a real numbéJ close tol but less
than or equal td — W. A typical choice i) = 0.95,

provided thatm > 24. Seth = 1//4m(1 —-@Q) and

Fumin = m/2—hm. The left endpoint i, = [Yi,1|/v/2. IV. PERFORMANCE EVALUATION
The reader is asked to refer to [6] and [7] for justifcations The perceptual £ltering associated with the estimator pro-
of this construction. posed in section Il was tested as follows. We considered

Preliminary tests of the same type as those described dpeech signals from the TIMIT database. These speech
[7] show thats, tends to overestimate the value @f and  signals are recorded at kHz and we downsampled them
suggest to estimate this noise standard deviation by to 8 kHz before adding white Gaussian noise.

— — To estimate the noise standard deviation, we proceeded as
~ 9 <4 <60, described above with frames &f = 256 samples each. This
70 Z VP2l < UO)/ZIOY’“' < 60) ©) estimate serves to estimate the masking threshold and tune
the perceptual £ltering. Both the estimation of the masking
We work on theoretical justiEcations of this £nal estimate.threshold and the perceptual £ltering are achieved on the

k=1 k=1



basis of32ms-duration frames266 samples per frame) with S > W [y
a50% overlap. The computation of the masking threshold i T e[| ¥ i
based onl8 critical bands. g E— =
We computed the SSNR and the MBSD of the propose
method. The SSNR and the MBSD are objective criteri_ “
for measuring the performance of a speech enhancemé “
system. The SSNR is the average of the SNR values on sh *
segments [8]. However, the SSNR is not relevant enou¢
to measure the distortion of denoised speech signals and .
assess the quality of perceptually motivated speech eehan
ment approaches. Such approaches purposely keep nc ; : 5 5 s
components that are inaudible because suppressing the... SR SIRE)
could introduce unpleasant speech distortion. Many othgr 1. MBSD and SSNR improvement for speech signals in incbgren
objective measures have been developped. They correlawGN with various SNRs.
well with subjective measures of speech quality. Amongst
them, the MBSD [13] is an improved version of the Bark
Spectral Distortion (BSD) [12]. It extends the BSD bymeasurements are very promising because they signi£cantly
incorporating the masking threshold so as to differentiatePProach those obtained by using the exact value of the noise
audible distortions from inaudible ones. The MBSD prove§tandard deviation and computing the masking threshold
to be even more correlated with speech quality than the BSZN the basis of clean speech signals. Forthcoming work
[13]. will involve further comparison to other techniques such as
We computed the SSNR and the MBSD when the exa&pPhraim and Malah's [3] as well extension of the approach
value of the noise standard deviation is used and the maskiffynon-white Gaussian noise.
threshold is computed on the basis of the clean speech
signals (before adding noise). The SSNR and the MBSD1 B R sen 4 3. Makhoul “Enh o
thus obtained are hereafter called the “Theoretical limits ! Cdrm‘;rtzzt'by écocusvt\ggrzzc‘)i:;h Soe IEEE Int goigcgrzgéﬁg
The SSNR and the MBSD were also measured for the per-  gpeech, Signal Processing, Washington DC, 1979, pp. 208-211.
ceptual £lter of section Il when the noise standard deviatiori2] S. Boll, “Suppression of acoustic noise in speech usipgctal

. . . . ~ . . subtraction”, IEEE Transactions on Acoustics, Speech and Signal
is estimated on the basis of signal-free time frames pravide Processing, vol. 27, no. 2, 1979.

by an ideal DAV (“perceptual £lter + DAV”). [3] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
Consider the Wiener £ltering based, as in section Il, on mean square error short-time spectral amplitude estimat&EE

the recursive computation of tlagpriori SNR. We computed g:)anflgg_ffggi" Speech, Signal Processing, vol. ASSP-32, 1984,

the SSNR and the MBSD when the estimate of the noise4] Y. Hu and P. Loizou, “Incorporating a psychoacoustic moife
standard deviation is achieved via the estimator of section frequency domain speech enhancemenEEE Sgnal Processing

WA S : : ” Letters, 11(2), 2004, pp. 270-273.
Il ("Wiener + Noise Estlmator )- We also Calcma‘te.d .the_ 5] Johnston, J. D, “Transforming of audio signals using pptaal noise
SSNR and the MBSD when this noise standard deviation is ~ criteria”|EEE Jour. Selected Areas Commun., vol. 6, no. 2, 1988, pp.
estimated on the basis of signal-free periods of time (“Wfen 314-323. o _
+ DAV”) [6] D. Pastor, R. Gay,_ “A limit theor_em_ for_ sequences of |n_dwm1t
. : . random vectors with unknown distributions and its appi@a to
Fig. 1 presents the performance measurements obtained. non-parametric detectionGollection des Rapports de Recherche de

The proposed method yields performance signifcantly close —I'"ENST Bretagne, RR-2004001-SC, 2004.

. _ . . D. Pastor, “Un tleodme limite et un test pour laétection non
to the theoretical limits at various input SNRs. It outpenis parangtrique de signaux dans un bruit blanc gaussien de variance

the Wiener £ltering. Surprisingly enough, it also performs  inconnue”, 20e colloque GRETS sur le traitement du signal et des
better than the perceptual £ltering tuned by the noise sldnda[ . 'Sffﬁ(g&& CEREJS}]%% Lguvam-lll_a-NguI\\/I/eb f005- <. “Objectite

. Quackenpusn, I. barnwell, an . ements, “ jeCl sures
deviation estimate derived from an ideal DAV. We think that ™ & 5 00" oy ality” Englewood Cliffs, NJ: Prentice-Hall, 1988,
this relates to the fact that the number of observations usefd] Te-won Lee and Kaisheng Yao, “Speech enhancement by pieale
by our estimator is signi£cantly larger than that available £lter with sequential noise parameter estimatidntgrnational Con-

. . . ference on Acoustics, Speech, and Sgnal Processing, ICASSP '04,
on the basis of signal-free time frames. Note also that ;e 1, 2004, pp. 693-696.

the SNR improvement achieved by the proposed method [i®] D. Tsoukalas, M. Paraskevas, and J. Mourjopoulos, é8penhance-

03|

SSNR(dB)
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