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On the Application of Recent Results in Statistical Decision and Estimation Theory to Perceptual Filtering of Noisy Speech Signals

This paper combines perceptual £ltering to recent results in statistical decision and estimation theory in order to denoise speech signals corrupted by additive and independent white Gaussian noise. The resulting technique requires no Voice

Activity Detector and its performance is signi£cantly close to that obtained when the noise standard deviation is known and the masking threshold computed on the basis of the clean speech signals.

I. INTRODUCTION

Speech enhancement has greatly progressed over the past decades. Traditional methods basically improve the Signal to Noise Ratio (SNR). However, they introduce unpleasant residual noise known as musical noise. Various algorithms have been proposed for reducing the effects of musical noise ( [START_REF] Berouti | Enhancement of speech corrupted by acoustic noise[END_REF], [START_REF] Boll | Suppression of acoustic noise in speech using spectral subtraction[END_REF], [START_REF] Ephraim | Speech enhancement using a minimum mean square error short-time spectral amplitude estimator[END_REF]). They admittedly succeed under some conditions but there is still a need for more performant methods that reduce the amount of residual noise at very low input SNRs without introducing speech distortion.

The current trend is to exploit the auditory masking properties, widely used in perceptual audio coding. By using these properties, it is expected to make residual noise inaudible ( [START_REF] Hu | Incorporating a psychoacoustic model in frequency domain speech enhancement[END_REF], [START_REF] Tsoukalas | Speech enhancement using psycho-acousticriteria[END_REF], [START_REF] Virag | Singlehannel speech enhancement based on masking properties of the human auditory system[END_REF]). In this respect, the masking threshold becomes a constraint to take into account because the human auditory system is not sensitive to any residual noise masked by coexistant speech signal. The most usual method to calculate the masking threshold is presented in [START_REF] Johnston | Transforming of audio signals using perceptual noise criteria[END_REF] and relies on a critical band analysis modelling the behaviour of the inner ear.

In this paper, to denoise speech signals corrupted by independent and additive white Gaussian noise (AWGN), we combine a perceptually motivated method with a non parametric estimator of the noise standard deviation. This estimator avoids the use of any Voice Activity Detector (VAD). Because of the novelty of this estimator, we do not address the case of coloured noise yet. The estimate performed by this estimator is used twice. First, to adjust a recursive Wiener £ltering whose outcome serves to estimate the masking threshold of the speech signals to denoise; second, to tune the perceptual £lter proposed by [START_REF] Lee | Speech enhancement by perceptual £lter with sequential noise parameter estimation[END_REF]. We evaluate the quality of the £ltered speech signals by means A. Amehraye is with the GSCM-Faculté des Science de Rabat, Rabat, Morocco and also with Ecole Nationale Supérieure des Télécommunications de Bretagne asmaa.amehraye@enst-bretagne.fr D. Pastor is with Ecole Nationale Supérieure des Télécommunications de Bretagne, Technopôle de Brest-Iroise, CS 83818, 28238 Brest, France dominique.pastor@enst-bretagne.fr S. Ben Jebara is with Research unit TECHTRA , Ecole Supérieure des Communications de Tunis, Route de Raoued 3.5 Km, Cité El Ghazala, 2083, Ariana, Tunisia, sofia.benjebara@supcom.rnu.tn of two objective criteria, namely the standard Segmental Signal to Noise Ratio (SSNR) (see [START_REF] Quackenbush | Objective Measures of Speech Quality[END_REF]) and the Modi£ed Bark Spectral Distortion (MBSD) (see [START_REF] Yang | Modi£ed bark spectral distortion measure which uses noise masking threshold[END_REF]). The latter is a perceptually motivated metric that employs the concept of masking threshold in order to introduce no bias due to possible inaudible distortions. It proves to be highly correlated with subjective speech quality assessment [START_REF] Yang | Modi£ed bark spectral distortion measure which uses noise masking threshold[END_REF].

Section II presents the perceptual £ltering we consider. In section III, we describe the theoretical tools, the noise standard deviation estimator derived from these results and the application of this estimator to speech processing. The performance of the speech enhancement method that combines this estimator with the perceptual £ltering of section II is addressed in section IV. Concluding remarks and perspectives are given in section V.

II. PERCEPTUAL SPEEH ENHANCEMENT

Let s(n) some speech signal corrupted by additive and independent stationary noise x(n). The observed signal is

y(n) = s(n) + x(n). (1) 
Given a frame of N samples y(n), n = 1, . . . , N , let Y k , S k and X k , k = 0, . . . , N -1, the Discrete Fourier Transform (DFT) coef£cients of y(n), s(n) and x(n) respectively. Generally, speech enhancement techniques consist in estimating the frequency components S k by

Ŝk = H k Y k , k = 0, . . . , N -1, (2) 
where H k is a linear estimator chosen according to a suitable criterion. The error signal generated by this estimator is

e k = Ŝk -S k = (H k -1)S k + H k X k . (3) 
The values (H k -1)S k , k = 0, . . . , N -1, are the DFT coef£cients of the speech distorsion due to the £ltering and the frequency components H k X k , k = 0, . . . , N -1, are the DFT coef£cients of the residual noise. The quantity

|H k | 2 E[|X k | 2
] is then the residual noise spectral power for the kth frequency component.

In order to take into account the properties of the auditory system, the £lter H k can be designed so as to yield inaudible residual noise. This can be achieved by forcing the residual noise spectral power to be below the masking threshold in each frequency bin; indeed, the human auditory system does not perceive any noise with spectral power less than the masking threshold. This is the approach followed in [START_REF] Lee | Speech enhancement by perceptual £lter with sequential noise parameter estimation[END_REF]. The £lter is then constrained by the inequality |H k | ≤ T k γ k , k = 0, . . . , N -1, where T k and γ k are the value of the masking threshold and that of the noise power spectral density in the kth bin. We choose real values for H k such that 0 ≤ H k ≤ 1. This inequality is the same as that satis£ed by the standard Wiener £lter and guarantees that the spectral power of the residual noise is less than or equal to that of the input noise. The expression of the perceptual £lter is then

H k = min( T k γ k , 1) (4) 
This solution can also be derived by considering the £ltering problem addressed in this section as a constrained optimization problem [START_REF] Hu | Incorporating a psychoacoustic model in frequency domain speech enhancement[END_REF]. The £lter de£ned by ( 4) reduces only the noise frequency components that are above the masking threshold because the others are not audible and can even mask residual noise. In practice, the two terms of the ratio in the right hand side of ( 4) must be estimated and the performance of the resulting £ltering strongly depends on the accuracy of these estimates.

The masking threshold can be estimated on the basis of the outcome of a spectral substraction ( [START_REF] Hu | Incorporating a psychoacoustic model in frequency domain speech enhancement[END_REF], [START_REF] Virag | Singlehannel speech enhancement based on masking properties of the human auditory system[END_REF]). This solution reduces the amount of additive noise but introduces musical noise. The tone-like nature of musical noise increases the energy per critical band. This can induce an overestimation of the masking threshold.

To avoid such a drawback, we estimate the speech signals by Wiener £ltering. This method introduces less musical noise in comparaison with spectral subtraction methods [START_REF] Ephraim | Speech enhancement using a minimum mean square error short-time spectral amplitude estimator[END_REF]. The Wiener £ltering version that we use is based on the a priori SNR ξ k (m) estimated by [START_REF] Ephraim | Speech enhancement using a minimum mean square error short-time spectral amplitude estimator[END_REF] 

ξ k (m) = (1-α)h (χ k (m) -1)+α | S k (m -1)| 2 | X k (m -1)| 2 , 0 ≤ α < 1.
In this equation, | S k (m -1)| and | X k (m -1)| are the amplitude estimates of the kth spectral components of the clean speech signal and noise in the (m-1)th analysis frame; h(x) = x if x ≥ 0 and h(x) = 0 otherwise; α is some weighting factor, we chose α = 0.98 for our experiments;

χ k (m) = |Y k (m)| 2 /| X k (m)| 2 is the a posteriori SNR where |Y k (m)
| is the amplitude of the kth spectral component of the noisy speech signal in the mth analysis frame. The Wiener £lter is then

W = ξ k (m) 1 + ξ k (m) , k = 0, . . . , N -1. (5) 
The estimate performed by the Wiener £ltering thus de£ned is then employed to calculate the masking threshold.

In order to estimate the input noise spectral density, standard solutions are based on the use of a VAD. Frames detected by this VAD as noise alone serve to estimate the values γ k , k = 0, . . . , N -1. The accuracy of the estimates depends on the performance of the VAD. When speech signals are corrupted by independent and AWGN with noise standard deviation σ 0 , we have γ k = σ 2 0 . In this case, what follows explains how to get an estimate of σ 0 without using any VAD.

III. ESTIMATION OF THE NOISE STANDARD DEVIATION A. Theoretical results

The random variables encountered below are assumed to be de£ned on the same probability space and we write (a-s) for almost surely. Given a positive real value σ 0 , a sequence X = (X k ) k∈N of random complex variables is said to be a complex white Gaussian noise (CWGN) with standard deviation σ 0 the random variables X k , k = 1, 2, . . ., are complex, mutually independent and identically Gaussian distributed with null mean and variance σ 2 0 (X k ∼ N c (0, σ 2 0 )). The minimum amplitude a(S) of a sequence S = (S k ) k∈N of random complex variables is de£ned by

a(S) = sup {α ∈ [0, ∞] : ∀k ∈ N, |S k | ≥ α (a-s)} . (6)
If f is some map of the set of all the sequences of complex random variables into R, we say that the limit of f is ℓ ∈ R when a(S) tends to ∞ and write that lim a(S)→∞ f (S) = ℓ if, for any positive real value η, there exists some α 0 ∈ (0, ∞) such that, for every α ≥ α 0 and every S such that a(S) ≥ α, |f (S) -ℓ| ≤ η.

Let L 2 C (Ω) stand for the set of those complex random variables

Y such that E[|Y | 2 ] < ∞. We denote by ℓ ∞ (N, L 2 C (Ω)) the set of those sequences S = (S k ) k∈N of complex random variables such that S k ∈ L 2 C (Ω) for every k ∈ N and sup k∈N E[|S k | 2 ] is £nite.
The following result is a corollary of the limit theorem established in [START_REF] Pastor | A limit theorem for sequences of independent random vectors with unknown distributions and its applications to non-parametric detection[END_REF] for n-dimensional real random vectors. Given any random vector Y any real number , I(|Y | ≤ τ ) stands for the indicator function of the event {|Y | ≤ τ }.

Proposition 3.1: Let Y = (Y k ) k∈N be some sequence of complex random variables such that, for every k ∈ N, 

Y k = ε k S k + X k where S ∈ ℓ ∞ (N, L 2 C (Ω)), X = (X k ) k∈N is
∆ m (σ, T ) = m k=1 |Y k |I(|Y k | ≤ σT ) m k=1 I(|Y k | ≤ σT ) -2σ T 0 u 2 e -u 2 du 1 -e -T 2 .
Then, σ 0 is the unique positive real number σ such that, for every

β 0 ∈ (0, 1], lim a(Λ)→∞ lim m ∆ m (σ, βg(a(Λ)/σ)) ∞ = 0 (7)
uniformly in β ∈ [β 0 , 1] where, for every x ∈ R, g(x) = I -1 0 (e x 2 )/2x with g(0) = 1 and I 0 is the standard zerothorder modi£ed Bessel function of the £rst kind.

In this statement, Y models a sequence of observations; for every given k ∈ N, S k stands for some possible random signal, ε k is the possible occurrence of S k and the complex noise is modelled by X. The assumption that S ∈ ℓ ∞ (N, L 2 C (Ω)) corresponds to the practical case of interest where the energies of the signals are £nite and bounded.

B. The algorithm

With the same notations as above, suppose that we have m observations Y 1 , . . . , Y m . Let L ∈ N and set β ℓ = ℓ/L for every ℓ ∈ {1, . . . , L}. The result stated above suggests estimating σ 0 by a possibly local minimum of sup ℓ∈{1,...,L} ∆ m (σ, β ℓ g(a(S)/σ)).

According to proposition 3.1, the larger the minimum amplitude, the better the estimate. However, good results can be obtained even when the minimum amplitude of the signals is not large [START_REF] Pastor | Un théorÁ eme limite et un test pour la détection non paramétrique de signaux dans un bruit blanc gaussien de variance inconnue[END_REF]. Therefore, we propose to perform an estimate of the noise standard deviation by taking a(S) = 0, a trivial bound for any signal norm. By so proceeding, we discard any assumption about the probability distributions of the signals and simply that these signals less present than absent. Since g(0) = 1, we compute a minimum σ0 of

sup ℓ=1,L            m k=1 |Y k |I(|Y k | ≤ β ℓ σ) m k=1 I(|Y k | ≤ β ℓ σ) -2σ β ℓ 0 u 2 e -u 2 du 1 -e -β 2 ℓ            (8)
by means of a minimization routine for scalar bounded non-linear functions. For instance, experimental results presented in the next section were obtained with the MATLAB routine fminbnd.m. The search interval [σ min , σ max ] is constructed as follows. Sort the complex values Y 1 , . . . , Y m , k = 1, . . . , m, by increasing modulus. Let Y [k] , k = 1, . . . , m, be the resulting sequence. The right endpoint of the search interval is

σ max = |Y [m] |/ √ 2. Now, choose a real number Q close to 1 but less than or equal to 1- m 4(m/2-1) 2 . A typical choice is Q = 0.95, provided that m ≥ 24. Set h = 1/ 4m(1 -Q) and k min = m/2-hm. The left endpoint is σ min = |Y [kmin] |/ √ 2.
The reader is asked to refer to [START_REF] Pastor | A limit theorem for sequences of independent random vectors with unknown distributions and its applications to non-parametric detection[END_REF] and [START_REF] Pastor | Un théorÁ eme limite et un test pour la détection non paramétrique de signaux dans un bruit blanc gaussien de variance inconnue[END_REF] for justi£cations of this construction.

Preliminary tests of the same type as those described in [START_REF] Pastor | Un théorÁ eme limite et un test pour la détection non paramétrique de signaux dans un bruit blanc gaussien de variance inconnue[END_REF] show that σ0 tends to overestimate the value of σ 0 and suggest to estimate this noise standard deviation by

σ 0 = m k=1 |Y k | 2 I(|Y k | ≤ σ0 )/ m k=1 I(|Y k | ≤ σ0 ). (9) 
We work on theoretical justi£cations of this £nal estimate.

According to [START_REF] Pastor | A limit theorem for sequences of independent random vectors with unknown distributions and its applications to non-parametric detection[END_REF] and [START_REF] Pastor | Un théorÁ eme limite et un test pour la détection non paramétrique de signaux dans un bruit blanc gaussien de variance inconnue[END_REF] and as a good trade-off between computational load and accuracy, it is recommended to use the algorithm proposed above on a few hundred observations and to choose L = m. For instance, the experimental results of section IV were obtained on the basis of observation sets with 200 hundred samples each.

C. Application to speech processing

Consider K samples of speech signals corrupted by independent AWGN with standard deviation σ 0 . Let F s stand for the sampling frequency. Split this set of observations into M disjoint frames of N = 2 p samples each. We have K = M N . In practice, p will be chosen such that N F s ≈ 20ms. Apply an N -DFT on each frame. We obtain a matrix [U i,j ] i∈{1,...,M },j∈{0,...,N -1} of complex values where i is the frame index and j the DFT bin number. Because of the Hermitian symmetry of the DFT, we restrict our attention to the values U i,j , i ∈ {1, . . . , M }, j ∈ {0, . . . , N/2 -1}.

For each frame i and each bin j, we assume the random presence of a speech frequency component S i,j and that the probability of presence of S i,j is less than or equal to one half. This probability of presence may be larger than one half for low frequency components; however, for high frequency components, this probability of presence becomes less than or equal to one half and even relatively small. We thus assume that U i,j = ε i,j S i,j + X i,j . As above, ε i,j ∈ {0, 1} indicates whether the speech frequency component S i,j is present or absent in the jth bin of the ith frame. Since noise is white and Gaussian with standard deviation σ 0 , the complex random variables X i,j are mutually independent and identically distributed with X i,j ∼ N c (0, N C 2 σ 2 0 ) when the DFT coef£cients U k , k = 0, . . . , N -1, of a sequence of N samples u 0 , . . . , u N -1 are U k = C N -1 n=0 u n e -i2πnk/N . Instead of performing an estimate of N C 2 σ 2 0 on the basis of the M N/2 = K/2 values we have, we follow the recommendation of the previous section and split our set of observations into subsets of m = 200 observations each. Each subset is used to perform an estimate of N C 2 σ 2 0 . We then compute the average value of the M N/2m estimates thus obtained. It then suf£ces to divide this average by C √ N to get an estimate of σ 0 . In order to deal with m observations that can reasonably be considered as mutually independent, these observations can be chosen randomly amongst the M N/2 values we have. However, this randomization does not affect signi£cantly the results presented below.

IV. PERFORMANCE EVALUATION

The perceptual £ltering associated with the estimator proposed in section III was tested as follows. We considered speech signals from the TIMIT database. These speech signals are recorded at 16 kHz and we downsampled them to 8 kHz before adding white Gaussian noise.

To estimate the noise standard deviation, we proceeded as described above with frames of N = 256 samples each. This estimate serves to estimate the masking threshold and tune the perceptual £ltering. Both the estimation of the masking threshold and the perceptual £ltering are achieved on the basis of 32ms-duration frames (256 samples per frame) with a 50% overlap. The computation of the masking threshold is based on 18 critical bands.

We computed the SSNR and the MBSD of the proposed method. The SSNR and the MBSD are objective criteria for measuring the performance of a speech enhancement system. The SSNR is the average of the SNR values on short segments [START_REF] Quackenbush | Objective Measures of Speech Quality[END_REF]. However, the SSNR is not relevant enough to measure the distortion of denoised speech signals and to assess the quality of perceptually motivated speech enhancement approaches. Such approaches purposely keep noise components that are inaudible because suppressing them could introduce unpleasant speech distortion. Many other objective measures have been developped. They correlate well with subjective measures of speech quality. Amongst them, the MBSD [START_REF] Yang | Modi£ed bark spectral distortion measure which uses noise masking threshold[END_REF] is an improved version of the Bark Spectral Distortion (BSD) [START_REF] Wang | An objective measure for predicting subjective quality of speech coders[END_REF]. It extends BSD by incorporating masking threshold so as to differentiate audible distortions from inaudible ones. The MBSD proves to be even more correlated with speech quality than the BSD [START_REF] Yang | Modi£ed bark spectral distortion measure which uses noise masking threshold[END_REF].

We computed the SSNR and the MBSD when the exact value of the noise standard deviation is used and the masking threshold is computed on the basis of the clean speech signals (before adding noise). The SSNR and the MBSD thus obtained are hereafter called the "Theoretical limits".

The SSNR and the MBSD were also measured for the perceptual £lter of section II when the noise standard deviation is estimated on the basis of signal-free time frames provided by an ideal DAV ("perceptual £lter + DAV").

Consider the Wiener £ltering based, as in section II, on the recursive computation of the a priori SNR. We computed the SSNR and the MBSD when the estimate of the noise standard deviation is achieved via the estimator of section III ("Wiener + Noise Estimator"). We also calculated the SSNR and the MBSD when this noise standard deviation is estimated on the basis of signal-free periods of time ("Wiener + DAV").

Fig. 1 presents the performance measurements obtained. The proposed method yields performance signi£cantly close to the theoretical limits at various input SNRs. It outperforms the Wiener £ltering. Surprisingly enough, it also performs better than the perceptual £ltering tuned by the noise standard deviation estimate derived from an ideal DAV. We think that this relates to the fact that the number of observations used by our estimator is signi£cantly larger than that available on the basis of signal-free time frames. Note also that the SNR improvement achieved by the proposed method is particularly signi£cant for low input SNRs.

V. CONCLUSION AND FUTURE WORK

By combining a perceptually motivated approach for speech enhancement with a new estimator of the noise standard deviation, we denoise speech signals corrupted by independent AWGN without using any VAD. The proposed method reduces residual noise, limits speech distortions and outperforms Wiener £ltering. Above all, its performance measurements are very promising because they signi£cantly approach those obtained by using the exact value of the noise standard deviation and computing the masking threshold on the basis of clean speech signals. Forthcoming work will involve further comparison to other techniques such as Ephraim and Malah's [START_REF] Ephraim | Speech enhancement using a minimum mean square error short-time spectral amplitude estimator[END_REF] as well extension of the approach to non-white Gaussian noise.
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 1 Fig. 1. MBSD and SSNR improvement for speech signals in independent AWGN with various SNRs.