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Abstract
By using the asymptotic analysis method as regards two-scale convergence we derive
the effective behavior of a fine mixing of piezoelectric material and piezomagnetic
material. It can be shown that an electromagnetic coupling arises only when each
phase is connected and the interface is electrically and magnetically impermeable.

Keywords: Homogenization; Two-scale convergence; Piezoelectricity;
Piezomagnetism

1 Introduction
Developing smart materials or multifunctional structures by using product properties of
composite materials is a quite old idea but it, however, keeps getting more and more inter-
esting for many technological applications. The concept is simple (see [1]): an effect in one
of the phases of the composite implies a second effect in one of the other phases. Here we
focus on the magnetoelectric coupling emerging in a composite material made of a mag-
netostrictive phase and a piezoelectric phase. This kind of situation is interesting because
the direct coupling between electric and magnetic fields is seldom found in nature and,
when it exists, it is very weak. The composite materials made of ferroelectric and ferro-
magnetic phases, however, may generate a considerably higher magnetoelectric response.
This domain of research falls within the field of metamaterials which possess properties
that cannot be found naturally. Understandably this opens the door for many different
technological applications such as data storage, mechanical devices, magnetic sensors,
high frequency signal treatment, etc. It is therefore of interest to propose an efficient and
accurate modeling of the behavior of a composite material made of a piezoelectric phase
and a piezomagnetic phase. This was done in [2] considering multilayered structures and
using the asymptotic expansion method. It is worthwhile to refer to [3] and the references
quoted therein to get a good overview of the problem. Here we propose a mathemati-
cally rigorous study of this situation by using asymptotic analysis method such as two-
scale convergence. We consider a periodically heterogeneous composite material made of
a piezoelectric phase and a piezomagnetic phase. We introduce two other parameters that
refer to the connectedness of each phase and to the boundary conditions on the interface.
Depending on these two parameters, we show that different models appear when the size
of the period goes to zero. The situations when a full coupling among mechanical, electric
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and magnetic effects (i.e., nonvanishing elasto–magneto–electric coupling coefficients in
the linearized context considered here) appears are highlighted.

2 Setting the problem
Let Ye a domain of R3 included in Y := (0, 1)3 with a Lipschitz-continuous boundary. For
all real positive numbers ε, let Eε

e :=
⋃

i∈Z3 ε(i + Ye), which is assumed to be connected in
R

3, and Eε
m := R

3 \ Eε

e , Ym := Y \ Y e. We will consider a body occupying a domain of R3

with a Lipschitz-continuous boundary ∂Ω made of a purely piezoelectric phase occupying
Ωε

e := Ω ∩ Eε
e and a purely piezomagnetic phase occupying Ωε

m := Ω ∩ Eε
m. So the magne-

toelectromechanical state of the body is described by the triplet sε := (uε ,φε ,ψε) where
uε , φε , ψε denote the field of displacement, the electrical potential, the magnetic potential
defined in Ω , Ωε

e , Ωε
m, respectively. If σ ε , Dε , Bε denote the stress, the electric induction,

the magnetic induction, respectively, one has

(
σ ε , Dε

)
= Me

(
e
(
uε

)
,∇φε

)
in Ωε

e ,
(
σ ε , Bε

)
= Mm

(
e
(
uε

)
,∇ψε

)
in Ωε

m, (1)

where e(uε) is the strain associated with uε while Me and Mm stand for the piezoelectric
and piezomagnetic tensors, respectively, with Me, Mm in Lin(S3) satisfying

∃α > 0 s.t. Me(e, h) · (e, h) ≥ α
∣
∣(e, h)

∣
∣2,

Mm(e, h) · (e, h) ≥ α
∣
∣(e, h)

∣
∣2 ∀(e, h) ∈ S

3 ×R
3, (2)

where Lin(S3) denotes the space of linear mappings on S
3 the space of symmetric 3 × 3

matrices whose scalar product and norm are denoted by · and | · | as in R
3.

We will consider various situations indexed by p = (p1, p2) in {1, 2}× {1, 2, 3, 4}. The case
p1 = 1 corresponds to Ωε

e and Ωε
m connected, p1 = 2 corresponds to Ωε

e connected but Ωε
m

disconnected. (Of course, by exchanging the words electric and magnetic the following
results may be adapted if it is the magnetic phase only which is connected!) Let Γ ε

I :=
Ω ∩ ∂Eε

e (= Ω ∩ ∂Eε
m) be the interface between the two phases, when

p2 = 1: Γ ε
I is assumed to be electrically and magnetically impermeable (∂neφ

ε = ∂nmψε =
0) on Γ ε

I where ne and nm = –ne denote the normal outward to Ωε
e and Ωε

m,
respectively;

p2 = 2: the electric and magnetic potentials are assumed to be constant on each con-
nected component of Γ ε

I ;
p2 = 3: Γ ε

I is assumed to be electrically impermeable while the magnetic potential has to
be constant on each connected component of Γ ε

I ;
p2 = 4: the role played by electricity and magnetism in the previous case (p2 = 3) is ex-

changed.
Eventually, we assume that the electric and magnetic potentials take given values φ0 and
ψ0 on Γ ε

e,ext := ∂Ω ∩ Eε

e and Γ ε
m,ext := ∂Ω ∩ Eε

m, φ0 and ψ0 being fields defined on Ω that
we assume to be constant when p2 �= 1. In all cases, the body is clamped on ΓD ⊂ ∂Ω

which is assumed to be of positive two-dimensional Hausdorff measure, subjected to
body and surface forces on ΓN = ∂Ω \ ΓD of densities f and g and there are no elec-
tric or magnetic charges. So if we assume that φ0 and ψ0 belong to H1(Ω) and (f , g) to
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L2(Ω ;R3) × L2(ΓN;R3), a weak formulation of the equilibrium problem for the body is

(
Pε

)

⎧
⎪⎪⎨

⎪⎪⎩

Find sε = (uε ,φε ,ψε) in (0,φ0,ψ0) + H1
ΓD

(Ω ;R3) × V ε
e,p2 × V ε

m,p2 s.t.
∫
Ωε

e
Me(e(uε),∇φε) · (e(v),∇φ) dx +

∫
Ωε

m
Mm(e(uε),∇ψε) · (e(v),∇ψ) dx

=
∫
Ω

f · v dx +
∫
ΓN

g · v dH2 ∀(v,φ,ψ) ∈ H1
ΓD

(Ω ;R3) × V ε
e,p2 × V ε

m,p2

with

V ε
e,1 := H1

Γ ε
e,ext

(
Ωε

e
)
,

V ε
m,1 :=

{
ψ ∈ H1

Γ ε
m,ext

(
Ωε

m
)

with vanishing average on each connected

component of Ωε
m whose boundary does not meet Ω

}
;

V ε
e,2 := H1

0
(
Ωε

e
)
,

V ε
m,2 :=

{
ψ ∈ H1

Γ ε
m,ext

(
Ωε

m
)

such that for all connected components Ωε,i
m of Ωε

m

there exists Cε,i(ψ) in R with ψ := ψ – Cε,i(ψ) in H1
0
(
Ωε,i

m
)}

;

V ε
e,3 := V ε

e,1, V ε
m,3 = V ε

m,2;

V ε
e,4 := V ε

e,2, V ε
m,3 = V ε

m,1,

where for all open sets G of Rn, H1
γ (G;Rn) denotes the subspace of the Sobolev space

H1(G;Rn) made of the elements with vanishing trace on γ included in the boundary ∂G
of G.

By the Lax–Milgram lemma, (Pε) has a unique solution sε . The very question is to study
the asymptotic behavior when ε goes to zero which will supply the effective behavior of
the heterogeneous body.

3 A convergence result
To study the convergence when ε goes to zero, we use the two-scale convergence method
[4] and recall the definition.

Definition 1 A sequence of functions vε in L2(Ω ;R3) is said to two-scale converge to a
limit v0 belonging to L2(Ω × Y ;R3) if for any function θ in D(Ω ; C∞

# (Y ;R3)), we have

lim
ε→0

∫

Ω

vε(x) · θ (x, x/ε) dx =
∫

Ω×Y
v0(x, y) · θ (x, y) dx dy,

where D(Ω ; C∞
# (Y ;R3)) denotes the space of infinitely smooth and compactly supported

functions in Ω with values in the space C∞
# (Y ;R3) of infinitely smooth and Y -periodic

functions.

For any element θ of L2(Ωε
e ;Rn) or L2(Ωε

m;Rn) we denote the extension by 0 to the re-
maining part of Ω by θ̃ . By taking (v,φ,ψ) = sε –(0,φ0,ψ0) in the variational formulation of
(Pε) we deduce that (uε , ∇̃φε , ∇̃ψε) are bounded in H1

ΓD
(Ω ;R3) × L2(Ω ;R3) × L2(Ω ;R3).

The Poincaré or Poincaré–Wirtinger inequalities and the sharp estimate of [5]

∃C(Ω) > 0 s.t.
∫

Ωε
e

|v|2 dx ≤ C(Ω)
∫

Ωε
e

|∇v|2 dx ∀v ∈ H1
Γ ε

e,ext

(
Ωε

e
)
,
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∫

Ωε
m

|v|2 dx ≤ C(Ω)
∫

Ωε
m

|∇v|2 dx ∀v ∈ H1
Γ ε

m,ext

(
Ωε

m
)

when Ωε
m is connected

show that φ̃ε is bounded in L2(Ω) when p2 = 1 or 3, the sequence (φ̃ε – φ0)/ε is bounded
in L2(Ω) when p2 = 2 or 4, ψ̃ε is bounded in L2(Ω) when p = (1, 1), (1, 4), (ψ̃ε – ψ0)/ε
is bounded in L2(Ω) when p = (1, 2), (1, 3), (2, 1), (2, 4), the sequence (ψε – Cε(ψε))/ε is
bounded in L2(Ω) when p = (2, 2) or (2, 3), Cε(ψε) being equal to Cε,i(ψε) on the connected
component Ωε,i

m of Ωε
m. Then a standard result of two-scale convergence theory implies

the following.

Theorem 1 Let χe and χm be the characteristic functions of Ye and Ym, then there ex-
ists a unique (u0, u1,φ0,φ1,ψ0,ψ1) in H1

ΓD
(Ω ;R3) × L2(Ω ; H1

# (Ym)/R3) × (φ0 + H1
0 (Ω)) ×

L2(Ω ; H1
# (Ye)/R) × (ψ0 + H1

0 (Ω)) × L2(Ω ; H1
# (Ym)/R) such that uε converges weakly toward

u0 in H1
ΓD

(Ω ;R3) and e(uε) two-scale converges toward e(u0) + ey(u1) and
p = (1, 1): (φ̃ε , ψ̃ε) and (∇̃φε , ∇̃ψε) two-scale converge toward (χeφ

0,χmψ0) and
(χe(∇φ0 + ∇yφ

1),χm(∇ψ0 + ∇yψ
1)), respectively, with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u0, u1,φ0,φ1,ψ0,ψ1) ∈ (0, 0,φ0, 0,ψ0, 0) + V1,1;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇φ0 + ∇yφ

1)

· (e(u′) + ey(u′1),∇φ′ + ∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇ψ0 + ∇yψ

1)

· (e(u′) + ey(u′1),∇ψ ′ + ∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′,φ′1,ψ ′,ψ ′1) ∈ V1,1,

p = (2, 1): (φ̃ε , ˜(ψε – ψ0)/ε) and (∇̃φε , ∇̃ψε) two-scale converge toward (χeφ
0,ψ1) and

(χe(∇φ0 + ∇yφ
1),χm∇yψ

1), respectively, with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u0, u1,φ0,φ1,ψ1) ∈ (0, 0,φ0, 0, 0) + V2,1;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇φ0 + ∇yφ

1)

· (e(u′) + ey(u′1),∇φ′ + ∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇yψ

1) · (e(u′) + ey(u′1),∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′,φ′1,ψ ′1) ∈ V2,1,

p = (1, 2): ( ˜(φε – φ0)/ε, ˜(ψε – ψ0)/ε) and (∇̃φε , ∇̃ψε) two-scale converge toward (φ1,ψ1)
and (∇yφ

1,∇yψ
1), respectively, with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u0, u1,φ1,ψ1) ∈ V1,2;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇yφ

1) · (e(u′) + ey(u′1),∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇yψ

1) · (e(u′) + ey(u′1),∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′1,ψ ′1) ∈ V1,2,
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p = (2, 2): ( ˜(φε – φ0)/ε, ˜(ψε – Cε(ψε))/ε) and (∇̃φε , ∇̃ψε) two-scale converge toward
(φ1,ψ1) and (∇yφ

1,∇yψ
1), respectively, with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u0, u1,φ1,ψ1) ∈ V2,2;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇yφ

1) · (e(u′) + ey(u′),∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇yψ

1) · (e(u′) + ey(u′1),∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′1,ψ ′1) ∈ V2,2,

p = (1, 3): (φ̃ε , ˜(ψε – ψ0)/ε) and (∇̃φε , ∇̃ψε) two-scale converge toward (χeφ
0,ψ1) and

(χe(∇φ0 + ∇yφ
1),∇yψ

1), respectively, with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u0, u1,φ0,φ1,ψ1) ∈ (0, 0,φ0, 0, 0) + V1,3;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇φ0 + ∇yφ

1) · (e(u′) + ey(u′),∇φ′ + ∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇yψ

1) · (e(u′) + ey(u′1),∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′,φ′1,ψ ′1) ∈ V1,3,

p = (2, 3): (φ̃ε , ˜(ψε – Cε(ψε))/ε) and (∇̃φε , ∇̃ψε) two-scale converge toward (χeφ
0,ψ1)

and (χe(∇φ0 + ∇yφ
1),∇yψ

1), respectively, with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u0, u1,φ0,φ1,ψ1) ∈ (0, 0,φ0, 0, 0) + V2,3;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇φ0 + ∇yφ

1) · (e(u′) + ey(u′1),∇φ′ + ∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇yψ

1) · (e(u′) + ey(u′1),∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′,φ′1,ψ ′1) ∈ V2,3,

p = (1, 4): ((φ̃ε – φ0)/ε, ψ̃ε) and (∇̃φε , ∇̃ψε) two-scale converge toward (φ1,χmψ0) and
(∇yφ

1,χm(∇ψ0 + ∇yψ
1)), respectively, with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u0, u1,φ1,ψ0,ψ1) ∈ (0, 0, 0,ψ0, 0) + V1,4;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇yφ

1) · (e(u′) + ey(u′),∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇ψ0 + ∇yψ

1)

· (e(u′) + ey(u′1),∇ψ ′ + ∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′1,ψ ′,ψ ′1) ∈ V1,4,

p = (2, 4): ((φ̃ε – φ0)/ε, (ψ̃ε – ψ0)/ε) and (∇̃φε , ∇̃ψε) two-scale converge toward (φ1,ψ1)
and (∇yφ

1,χm∇yψ
1), respectively, with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u0, u1,φ1,ψ1) ∈ V2,4;
∫
Ω×Y χe(y)Me(e(u0) + ey(u1),∇yφ

1) · (e(u′) + ey(u′),∇yφ
′1) dx dy

+
∫
Ω×Y χm(y)Mm(e(u0) + ey(u1),∇yψ

1)

· (e(u′) + ey(u′1),∇yψ
′1) dx dy

= L(u′) ∀(u′, u′1,φ′1,ψ ′1) ∈ V2,4.
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Here

L
(
u′) :=

∫

Ω

f · u′ dx +
∫

ΓN

g · u′ dx ∀u′ ∈ H1
ΓD

(
Ω ;R3)

and

V1,1 := K1 × K2 × K3 × K4 × K5 × K6, V2,1 := K1 × K2 × K3 × K4 × K6,

V1,2 := K1 × K2 × K7 × K8, V2,2 := V1,2,

V1,3 := K1 × K2 × K3 × K4 × K8, V2,3 := V1,3,

V1,4 := K1 × K2 × K7 × K3 × K6, V2,4 := K1 × K2 × K7 × K6,

where

K1 = H1
ΓD

(
Ω ;R3), K2 = L2(Ω ; H1

#

(
Y ;R3)), K3 = K5 = H1

0 (Ω),

K4 = L2(Ω ; H1
# (Ye)/R

)
, K6 = L2(Ω ; H1

# (Ym)/R
)
, K7 = L2(Ω ; H1

#,m(Y )/R
)
,

K8 = L2(Ω ; H1
#,e(Y )/R

)
,

with

H1
#

(
G;Rn) the completion with respect to the norm of H1(G;Rn) of the

space made of the restriction to G of the elements of C∞
#

(
Y ;Rn),

H1
#,e(Y ) =

{
ψ ∈ H1

# (Y ) s.t. ψ = 0 on Ye
}

,

H1
#,m(Y ) =

{
φ ∈ H1

# (Y ) s.t. φ = 0 on Ym
}

.

4 Physical interpretation
By eliminating the microscopic variables u1, φ1, ψ1 we can characterize the nature of the
effective behavior.

When p = (1, 1), the body has a piezoelectromagnetic behavior with an electromagnetic
coupling involving the following effective piezoelectromagnetic tensor:

Mkl
eff :=

∫

Y
χe(y)Me(y)

[(
Ek

s , Ek
e
)

+
(
e
(
uk),∇φk)] · [(El

s, El
e
)

+
(
e
(
ul),∇φl)]dy

+
∫

Y
χm(y)Mm(y)

[(
Ek

s , Ek
m
)

+
(
e
(
uk),∇ψk)] · [(El

s, El
m
)

+
(
e
(
ul),∇ψ l)]dy,

where Ek = (Ek
s , Ek

e , Ek
m), k = 1, 2, . . . , 12, is any element of a basis S

3 × R
3 × R

3 and
(uk ,φk ,ψk) are a solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find (uk ,φk ,ψk) in V := (H1
# (Y ;R3)/R3) × (H1

# (Ye)/R) × (H1
# (Ym)/R);

∫
Y χe(y)Me(y)((Ek

s , Ek
e ) + (e(uk),∇φk)) · (e(u),∇φ) dy

+
∫

Y χm(y)Mm(y)((Ek
s , Ek

m) + (e(uk),∇ψk)) · (e(u),∇ψ) dy

= L(u) ∀(u,φ,ψ) ∈ V .
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When p = (1, 2), (2, 2), (2, 4), the effective material is purely elastic, electricity and mag-
netism are only involved in the building of the effective elasticity tensor by solving cell-
problems.

When p = (1, 3), (2, 1), (2, 3), the effective material is piezoelectric, magnetism is only
involved in the building of the effective piezoelectric tensor.

When p = (1, 4), the effective material is piezomagnetic and electricity is only involved
in the building of the effective piezomagnetic tensor.

5 Discussion and conclusions
From the mathematical point of view, the models obtained by [2, 3] were derived through
formal homogenization approaches such as asymptotic expansions and field-averaging.
The method presented here has the advantage of providing rigorous convergence results
but also to enlightening the strategic aspects that must be taken into account by an en-
gineer to design the proper multi-physical device with an effective electromagnetic cou-
pling. Thus to have full piezoelectromagnetic behavior each phase has to be connected
and the interface has to be impermeable. As the permeability/impermeability conditions
are handily obtained through an additional coating of the phases of the composite, this
opens the way for future investigations that will enrich our models.
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