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 26 

Abstract 27 

 28 

Surface water storage and fluxes in rivers, lakes, reservoirs and wetlands are currently poorly 29 

observed at the global scale, even though they represent major components of the water cycle and 30 

deeply impact human societies. In situ networks are heterogeneously distributed in space, and many 31 

river basins and most lakes – especially in the developing world and in sparsely populated regions – 32 

remain unmonitored. Satellite remote sensing has provided useful complementary observations, but 33 

no past or current satellite mission has yet been specifically designed to observe, at the global scale, 34 

surface water storage change and fluxes. This is the purpose of the planned Surface Water and 35 

Ocean Topography (SWOT) satellite mission. SWOT is a collaboration among the (U.S.) National 36 

Aeronautics and Space Administration (NASA), Centre National d‟Études Spatiales (CNES, the 37 

French Spatial Agency), the Canadian Space Agency (CSA), and the United-Kingdom Space 38 

Agency (UKSA), with launch planned in late 2020. SWOT is both a continental hydrology and 39 

oceanography mission. However, only the hydrology capabilities of SWOT are discussed here. 40 

After a description of the SWOT mission requirements and measurement capabilities, we review the 41 

SWOT-related studies concerning land hydrology published to date. Beginning in 2007, studies 42 

demonstrated the benefits of SWOT data for river hydrology, both through discharge estimation 43 

directly from SWOT measurements and through assimilation of SWOT data into hydrodynamic and 44 

hydrology models. A smaller number of studies have also addressed methods for computation of 45 

lake and reservoir storage change or have quantified improvements expected from SWOT compared 46 

to current knowledge of lake water storage variability. We also briefly review other land hydrology 47 

capabilities of SWOT, including those related to transboundary river basins, human water 48 

withdrawals, and wetland environments. Finally, we discuss additional studies needed before and 49 

after the launch of the mission, along with perspectives on a potential successor to SWOT.  50 

 51 

Keywords: Surface Water and Ocean Topography (SWOT) satellite mission; continental surface 52 

waters; lakes; reservoirs; rivers  53 

54 
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1. SWOT mission overview 55 

 56 

1.1. The needs for a global water surface mission and its requirements 57 

 58 

In the late 1990s and early 2000s, the crucial need for more quantitative data on spatiotemporal 59 

dynamics of surface waters at a global scale became clear in context of a declining in situ gage 60 

network and increasing need to observe and model the global water cycle (Alsdorf et al. 2003). To 61 

address this challenge, Alsdorf and Lettenmaier (2003) advocated development of a “topographic 62 

imager” satellite mission with ~100 m spatial resolution (to observe main channels, floodplains and 63 

lakes), temporal resolution on the order of a few days (to sample flood waves and river dynamic at 64 

basin scale), and capability to measure height changes that characterize variations in river discharge 65 

and lake water storage. Alsdorf et al. (2007) provided a more in-depth study showing that “spatial 66 

and temporal dynamics of surface freshwater discharge and changes in storage globally” are poorly 67 

known because: 68 

- in situ networks are very heterogeneous (some countries have dense networks, whereas others 69 

have a few measurements points), 70 

- these data are not always shared at the international level, 71 

- current satellite missions do not provide measurements adequate to observe global spatio-temporal 72 

dynamics of continental water surface.  73 

For that reason, Alsdorf et al. (2007) proposed a new satellite mission based on synthetic aperture 74 

radar (SAR) interferometry, called Water and Terrestrial Elevation Recovery (WATER). The 75 

concept of this satellite mission is built on the legacy of the Shuttle Radar Topography Mission 76 

(SRTM) and the Wide Swath Ocean Altimeter (WSOA). SRTM (Farr et al. 2007) was a SAR 77 

interferometer in C- and X-bands that flew in February 2000 on the NASA Space Shuttle 78 

Endeavour. SRTM provided a near-global Digital Elevation Model (DEM) at 90 m spatial 79 

resolution between 60°S and 60°N, but because of the specular returns characteristic of its oblique 80 

look angles (between 30° and 60°) it provided poor measurements of surface water. Because the 81 

two interferometric antennas were separated by a 60 m mast, construction of an SRTM-like system 82 

on a satellite platform would be problematic. A similar concept, WSOA, was envisioned as an 83 

additional payload to the altimetry Jason-2 satellite mission with the aim of imaging ocean 84 

topography. The distance between the two Ku-band antennas was set to 6.4 m to facilitate inclusion 85 

on a satellite platform (resulting in kilometric pixel resolution), and a near-nadir look angle was 86 

chosen to better observe the ocean surface (Fu and Rodríguez 2004). WSOA was definitely 87 

withdrawn in 2004 and never flown. To adapt this concept to the needs of continental water surface 88 

observation, Alsdorf et al. (2007) proposed to use Ka-band instead of Ku-band, allowing better 89 
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spatial resolution (see section 1.2). In 2007, in its Decadal Survey (NRC 2007), the National 90 

Research Council recommended to NASA this new satellite mission, under the name Surface Water 91 

and Ocean Topography (SWOT, https://swot.jpl.nasa.gov/), to measure both the ocean and land 92 

water surface topography. Since then, SWOT has been collaboratively developed by NASA, the 93 

Centre National d‟Etudes Spatiales (CNES, the French space agency) and more recently the 94 

Canadian Space Agency (CSA/ASC) and the United-Kingdom Space Agency (UKSA). Currently, 95 

SWOT is planned for launch in late 2020. It will observe the whole continental waters-estuaries-96 

ocean continuum and therefore link the ocean and hydrology scientific communities. However, in 97 

this paper, the ocean component of the mission will not be addressed. 98 

Figure 1 gives an overview of the main spatiotemporal physical processes related to the land 99 

hydrological cycle and the SWOT observation window. SWOT is designed to observe a large 100 

fraction of rivers and lakes globally and will provide robust observations of their seasonal cycles. 101 

However, at least by itself, it is not conceived to observe climate-scale variability (and especially 102 

climate change) and will not be able (except on rare occasions) to monitor flash floods. As stated by 103 

Rodríguez (2015), SWOT aims to address the following hydrologic science questions:  104 

- What are the temporal and spatial scales of the hydrologic processes controlling surface water 105 

storage and transport across the world's continents? 106 

- What are the spatially distributed impacts of humans on surface water, for example through water 107 

impoundment behind dams, withdrawals and releases to rivers and lakes, trans-boundary water 108 

sharing agreements, diversions, levees, and other structures? 109 

- What are the regional- to global-scale sensitivities of surface water storages and transport to 110 

climate, antecedent floodplain conditions, land cover, extreme droughts, and the cryosphere? 111 

- Can regional and global extents of floodable land be quantified through combining remotely 112 

sensed river surface heights, widths, slopes, and inundation edge with coordinated flood modeling? 113 

- What are the hydraulic geometries and three-dimensional spatial structures of rivers globally, 114 

knowledge of which will improve our understanding of water flow? 115 

The scientific rationales for these questions and the measurement needs are presented in the 116 

SWOT Mission Science Document (Fu et al. 2012). Based on these needs, the SWOT Science 117 

Requirements (Rodríguez 2015, summed up in Table 1) have been derived to design the SWOT 118 

mission, which is presented in subsections 1.2 to 1.4 (sections 1.2 for the main payload, section 1.3 119 

concerning SWOT products over land and section 1.4 for its spatiotemporal sampling). Then, 120 

sections 2 and 3 present the benefits of SWOT for measurement of rivers and other water bodies, 121 

respectively. 122 

 123 

1.2. Characteristics of the KaRIn instrument 124 



5 

 

 125 

To meet the SWOT science requirements (Table 1), a Ka-band Radar Interferometer (KaRIn) has 126 

been designed as the mission main payload. KaRIn will be a SAR interferometer in Ka-band (35.75 127 

GHz frequency or 8.6 mm wavelength), with near nadir incidence angles (between 0.6° and 3.9°, 128 

Fjørtoft et al. 2014). Figure 2 shows a conceptual view of the KaRIn operating system and ground 129 

coverage. It will provide images of water elevations within two swaths, one on each side of the 130 

satellite. These two swaths (each 50 km wide) will be separated by a 20 km gap at the satellite nadir 131 

(Figure 2). KaRIn will operate in bistatic mode: one antenna emits the electromagnetic signal 132 

towards the closest swath and the two antennas (10 m apart) receive the backscattered signal in their 133 

respective directions. Interferometry effectively involves a triangulation: each point in the swath 134 

will be observed from two different positions (the antennas positions), which will allow precise 135 

estimation of the location of each point. More precisely, the phase difference between the 136 

backscattered signals received by the two antennas (the so-called interferogram) will be used to 137 

invert water elevations. More details of SAR interferometry and the KaRIn measurements are 138 

provided in chapters 6 and 7 in Fu et al. (2012) and by Fjørtoft et al. (2014). Table 2 summarizes the 139 

main characteristics of the KaRIn instrument. 140 

KaRIn will provide images of water surface elevation with pixel sizes ~6 m in the azimuth 141 

direction (direction of the satellite orbit) and from 60 m (near range, see Fig. 2) to 10 m (far range) 142 

in the range direction (perpendicular to the azimuth), as also indicated in Table 2 (Fu et al., 2012, 143 

Fjørtoft et al. 2014, Biancamaria et al. 2010). However, it should be clearly understood that this 144 

image is obtained in “radar projection” and not in a geolocated projection. Indeed, the radar 145 

instrument measures the distance between the observed point and the antenna. Therefore, in radar 146 

images, two consecutive pixels in the range direction correspond to points on the ground that have a 147 

similar distance from the satellite. For that reason, when pixels are geolocated they are more 148 

scattered, they do not correspond to a regular grid, and their shape becomes distorted. For example, 149 

a hill, which is few km away from a river, could have a distance to the satellite similar to that of the 150 

center of the river and therefore could be located close to the river center in a SAR image. However, 151 

in this example, the river banks will have a different distance from the satellite and could be several 152 

pixels distant from the river center pixel. Therefore, the top of the hill will be closer to the river 153 

center than the river banks. This effect, hereafter referred to as “layover”, occurs when surrounding 154 

topography or vegetation is at the same distance from the satellite as the water surface (land over 155 

water layover). Furthermore, pixels with large vertical errors will also have high geolocation error 156 

(vertical and horizontal accuracies are functions of the phase interferogram accuracy). For that 157 

reason, the most basic geolocated SWOT products will likely be delivered as point cloud products 158 

that can more accurately take into account these geolocation inversion effects (Rodríguez 2015). 159 
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The 10 m to 60 m x 6 m intrinsic pixel size also can be somewhat misleading, as a SWOT 160 

measurement requirement (Table 2) is not given for this spatial resolution. While these pixels 161 

represent the basic unit of SWOT measurement, in fact, water elevations measured by the KaRIn 162 

instrument at this native pixel size will be metric if not decametric in accuracy. Achieving the 163 

decimetric accuracy that is a stated requirement in Rodríguez (2015) and Table 2 will require 164 

averaging over many such pixels. This issue is discussed in more detail in the section 1.3.  165 

In Ka-band, water is more or less specular, whereas land is rougher. KaRIn near-nadir incidence 166 

angles are particularly suited to monitor water bodies, as water will backscatter most of the emitted 167 

energy toward the satellite nadir (because of its specular behavior and the near-nadir look angle), 168 

whereas land will backscatter energy in all directions and therefore less in the antenna direction. 169 

Because of this different energy scattering between water and land, the difference in amplitude of 170 

the received electromagnetic wave between water and non-water pixels should be quite high and 171 

will be used to compute the water mask. However, because SWOT look angles are close to the 172 

nadir, but not exactly at the nadir, some water surface roughness is still needed to get sufficient 173 

energy. Thus, when the water surface becomes extremely flat, typically for wind speed << 1 m.s
-1

, 174 

there could be some loss of data in the far-swath where look angle are close to 3.9° (Enjolras and 175 

Rodríguez 2009, Moller and Esteban-Fernandez 2015). This issue is currently under investigation 176 

using measurements from the AirSWOT platform, an airborne SWOT analogue (Rodriguez et al. 177 

2010), obtained during campaigns conducted in 2014 and 2015. It will allow better quantification of 178 

the frequency and magnitude of layover effects. 179 

 Very few satellite missions have used Ka-band, which is therefore not as well understood as 180 

lower frequency bands. For example, most current nadir altimeters use Ku- or C-bands, whereas 181 

SAR imaging missions are in L-, C- or X-bands. Additionally, these current sensors have lower 182 

(nadir altimeters) or higher (SAR imagery missions) observation incidence angles than SWOT. 183 

However, using Ka-band instead of higher wavelength bands has several advantages: first, it allows 184 

a finer spatial resolution (which is dependent on the electromagnetic wavelength) from the SAR 185 

processing and second, it facilitates a shorter baseline (distance between the two antennas) for a 186 

given targeted instrumental vertical accuracy, for the interferometry processing (a shorter baseline 187 

corresponds to a shorter mast between the two antennas, which is easier to construct). Shorter 188 

wavelengths also result in less penetration into soil, snow and vegetation (Fjørtoft et al. 2014), 189 

which should allow better estimation of wetland and saturated soil surface elevation and snow 190 

volume variations, if interferograms can be computed. 191 

A drawback of Ka-band is its sensitivity to rain rates above about 3 mm/hour (Rodríguez 2015). 192 

The only altimetry satellite mission in Ka-band preceding SWOT is the Satellite with Argos and 193 

ALtiKa (SARAL) mission with the AltiKa nadir altimeter, launched only recently (February 2013). 194 
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Measurements obtained from this new instrument will help to better understand backscattering in 195 

Ka-band over different surfaces (water, bare soil, vegetation, snow, etc). However, AltiKa, as a 196 

nadir altimeter, does not have exactly SWOT look angles; its measurements integrate all the energy 197 

backscattered in a cone covering angles between -0.3° and 0.3° to the nadir (AltiKa half antenna 198 

aperture is 0.3°, Steunou et al. 2015). The Global Precipitation Measurement (GPM) Mission Core 199 

Observatory, launched in February 2014, carries the Dual-Frequency Precipitation Radar (DPR) in 200 

Ku and Ka bands (http://pmm.nasa.gov/GPM/flight-project/DPR). In Ka-band, DPR scans across a 201 

125 km swath (±8.5° across track) with a 5 km footprint. Analyzing DPR measurements will 202 

provide useful information on backscatter properties in Ka-band, however the GPM observation 203 

angle covers a wider range than SWOT with a much coarser spatial resolution.  For those reasons, 204 

airborne and field campaigns have been organized by the Jet Propulsion Laboratory (JPL) (Moller 205 

and Esteban-Fernandez 2015) and CNES (Fjørtoft et al. 2014) to better understand Ka-band 206 

backscattering at SWOT-like incidence angles. These campaigns have confirmed the decrease of the 207 

backscatter coefficient with the incidence angle and a water/land backscatter coefficient contrast of 208 

around 10 dB, except when the water surface is very flat (low wind speed and hence extremely low 209 

surface roughness). Moller and Esteban-Fernandez (2015) have also reported the impact of 210 

decorrelation time (and therefore wind speed and water surface turbulence) on pixel azimuth size, 211 

which could become higher than expected based on the instrument characteristics (Table 2). In 212 

addition to KaRIn, SWOT will carry additional scientific payload (Table 2), including a dual 213 

frequency (Ku and C-band) nadir altimeter, similar to the Poseidon-3 instrument on-board Jason-2 214 

(Desjonquères et al. 2010). It will provide water elevation measurements in the middle of the 20 km 215 

gap between the two KaRIn swaths. A radiometer will also facilitate, over the oceans, corrections to 216 

path delay due to wet tropospheric effects. However, it will not be used over land because land 217 

emissivity dominates the radiometric signal (Fu et al. 2012). Wet troposphere corrections over land 218 

will be computed using an atmospheric model, one effect of which will be that the residual 219 

tropospheric error will likely be larger over land than over the ocean and should be on the order of 4 220 

cm (Fu et al. 2012). 221 

 222 

1.3 SWOT measurements over terrestrial surface waters 223 

 224 

SWOT will provide measurements of surface water elevation, slope and water mask. In this 225 

paper, water elevation (H) corresponds to the distance between the top of the water surface 226 

and a given reference surface (geoid or ellipsoid), whereas water depth (d) corresponds to the 227 

distance between the water surface and the water body (e.g. river) bottom. It is important to 228 

note that SWOT will not measure water depth. SWOT level-2 data products (i.e. the highest level of 229 
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processed data delivered by NASA and CNES to end-users) are currently being defined. There 230 

remains, therefore, some uncertainty as to their specific nature. However, some characteristics of 231 

SWOT level-2 data product over land are provided in the science requirements document 232 

(Rodríguez 2015), which is the basis for the discussion in this section. As outlined in Rodríguez 233 

(2015) these products will likely include: 234 

- For each pass, a water mask consisting of a geolocated point cloud product with all KaRIn pixels 235 

that are identified as water, with the finest spatial resolution to meet appropriate geolocation 236 

accuracy (i.e. 10% of the pixel size in any direction). Surface water elevation corresponding to the 237 

provided pixel size (with an estimation of the surface water elevation uncertainty) will be associated 238 

with each point within the water mask. 239 

- At least once every repeat cycle, a global water mask following the shorelines of all observed 240 

water bodies will be provided in vector format, with one water elevation for each individual water 241 

body, along with other information (such as area within the water body and its slope). Water storage 242 

within each such water body will be easily derived from this product. 243 

- A global one-dimensional vector product that will include estimated discharge along river reaches 244 

at each observation time, for all river reaches wider than 50 m. 245 

- A cross-section map of all observed water bodies will be derived from time-varying water 246 

elevations along the shores of each water body. This map will be updated yearly. 247 

As SWOT will observe almost all continental surfaces every 21 days, it will provide a tremendous 248 

amount of data in the point cloud product, which includes the KaRIn pixels resolution stated in 249 

Table 2 (as a reminder, vertical accuracy at such spatial resolution is very low). It will therefore be 250 

very difficult for end-users to use so much data in a non-gridded format at global, regional or even 251 

basin scales. For that reason, vector products providing height integrated measurements for entire 252 

lakes and for discrete river reaches have been defined. 253 

The SWOT mission is designed to observe all rivers wider than 100 m and water bodies (lakes, 254 

reservoirs, ponds, continuous wetlands) with an area greater than 250 m x 250 m (i.e. 62 500 m
2
) 255 

that lie within the swath coverage. Moreover, NASA and CNES teams will strive to design an 256 

instrument and processing methods that will be able to observe rivers wider than 50 m and water 257 

bodies with an area above 100 m x 100 m. If SWOT is able to observe smaller rivers or water 258 

bodies, the measured data will be provided. Besides, lower level product (SAR amplitude and phase 259 

images, interferograms) will be provided on-demand and could be used to reprocess data a 260 

posteriori, which might help to improve products resolution if feasible. The main sources of errors 261 

that will affect KaRIn measurements are instrument thermal noise (white noise), differences in the 262 

return signal speckle, error in the interferometric baseline roll angle, wet and dry tropospheric 263 

effects, ionospheric effects, topographic layover and vegetation layover and attenuation (see chapter 264 
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6 in Fu et al. 2012). Thermal noise and speckle dominates the error budget at the KaRIn pixel level 265 

(10 m to 60 m x 6 m, Table 2), leading to multi-meter vertical errors. These errors are random for 266 

one pixel, but their standard deviations tend to increase in the far range of the measurement swath 267 

(Enjolras and Rodríguez 2009). Fortunately, these random errors can be reduced by averaging over 268 

water pixels by the square root of the number of pixels averaged. For this reason, the science 269 

requirements (Table 1) are provided for water areas much larger than a single pixel. However, the 270 

other sources of error will not be reduced by the averaging process. Over 1 km
2
 (e.g. a 10 km reach 271 

for a river of 100 m width), SWOT water elevation will have a 10 cm (1 σ) accuracy. For this 272 

averaging area, random errors and wet tropospheric effects are the main error sources. Locally, 273 

especially near the water bodies margins, topographic and vegetation layover can be a source of 274 

large errors, especially given the near nadir incidence angles used by KaRIn. Therefore, the 275 

received energy by the antenna will be a mixture of the energy backscattered by water and 276 

topography or vegetation, leading to potentially large errors in retrieved water elevation, 277 

geolocation and water extent. SWOT performance will be evaluated for water bodies meeting the 278 

observation requirement (lakes, reservoirs, and wetlands with area greater than 250 m x 250 m and 279 

rivers wider than 100 m), in order to validate that the instrument meets the accuracies provided in 280 

Table 1. Furthermore, SWOT performance will be characterized for the observational goals (100 m 281 

x 100 m to 250 m x 250 m water bodies and 50 m to 100 m wide rivers).  Estimates of measurement 282 

accuracy will be provided with SWOT data products. 283 

There is currently no near-real time consideration for provision of SWOT data products, 284 

consistent with the scientific rather than operational nature of the mission. However, derived 285 

products are expected to be provided within 60 days of their collection (requirement). There is also 286 

a goal to provide water elevations for a select number of reservoirs (less than 1000) within 30 days 287 

of collection. Finally, it is worth noting that an on-board averaged ocean water elevation product 288 

computed over a regular grid will also be provided over continents (all observed pixels will be 289 

available, not just the ones that are entirely covered by water). This ocean product will have a 290 

spatial resolution between 250 m and 1 km (the grid size has not yet been finalized). However, 291 

while the elevation accuracy over oceans will be centimetric, the accuracy of this product over 292 

continents is not defined and has not yet been evaluated, in part because SAR interferometry 293 

processing over land is much more complex than over oceans. 294 

 295 

1.4. SWOT spatiotemporal coverage 296 

  297 

There will be an initial calibration phase for the SWOT mission with a fast sampling orbit (1-day 298 

repeat period), but reduced spatial coverage relative to the subsequent orbit. The objective of this 299 
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fast sampling phase of the mission is to obtain frequent overpasses of the satellite over specific 300 

ocean/land hydrology targets that will allow calibration of radar system parameters. For open 301 

oceans, it will also help to characterize water elevation temporal decorrelation times. This initial 302 

calibration phase will last three months, which is expected to be sufficient to obtain a fully 303 

calibrated system for the nominal phase (Rodríguez 2015). The nominal phase of the mission (also 304 

termed the science phase), will have a non-sun synchronous, 890.5 km altitude, 20.86 day repeat 305 

period and 77.6° inclination orbit (Table 2) and will last at least 3 years. The remainder of this 306 

section is applicable only to this nominal orbit.  307 

SWOT spatial coverage and revisit times per orbit repeat period (i.e. ~21 days) depend on orbit 308 

characteristics, instrument swath width (2x50 km), nadir gap width (20 km) and is a function of 309 

latitude as well. Figure 3 shows a map of the number of SWOT revisits per orbit repeat period (~21 310 

days) over the continents between 78°S and 78°N (a.). To improve figure readability and given the 311 

scope of this paper, oceans have been masked in blue. However, oceans and continents will have the 312 

same sampling pattern. Figure 3.b shows the Lower Amazon basin, which illustrates the extent of 313 

locations that will never be sampled by SWOT (white diamonds). Tropical regions will be sampled 314 

less frequently than higher latitudes; the number of revisits per repeat period ranges from a 315 

maximum of two at the equator to more than ten above 70°N/S. Few regions will never be observed 316 

(white in Figures 3.a and 3.b); however much of the equatorial regions will be seen only once per 317 

repeat period. 318 

Figure 3 also shows that the mission will observe almost all continental surfaces from 78°S to 319 

78°N, which will be a tremendous improvement compared to nadir altimeters, which miss many 320 

water bodies. Regions not observed by SWOT are the results of the 20 km nadir gap between the 321 

two swaths (white diamonds without magenta boundaries on Figure 3.b) and the orbit intertrack 322 

distance, which does not always allow for adjacent swaths to overlap at the lowest latitudes (white 323 

diamonds with magenta boundaries on Figure 3.b). Gaps due to orbit intertrack distance are only 324 

present in the 25°S-25°N latitude band, with their largest extent between 10°S and 10°N. Coverage 325 

gaps resulting from the nadir gap cover a much broader latitude band (60°S-60°N) and are the main 326 

source of observation gaps. The total gap area over all latitudes between 78°S and 78°N is about 327 

3.55% of the whole land area (or 4.90 x 10
6
 km

2
). This is consistent with the SWOT science 328 

requirement (Rodríguez 2015), which states: “SWOT shall collect data over a minimum of 90% of 329 

all ocean and land areas covered by the orbit inclination for 90% of the operation time” (Table 2). 330 

The coverage gap can, however, be locally higher than 10% between 10°S and 10°N. On average 331 

over this band of latitudes, 7% of land is unobserved and the maximum coverage gap is 14% over a 332 

1° latitude band centered on 4.5°N. 333 

Satellite nadir altimeters measure water elevation along the satellite tracks, and therefore, most 334 
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sampled river reaches are observed only once per repeat period (except for the few locations where 335 

ascending and descending tracks cross). Thus, temporal sampling of rivers by nadir altimeters is 336 

essentially equal to the orbit repeat period. Large lakes may be sampled more than once during a 337 

repeat cycle by altimeters, but uncertainties in the geoid when different parts of a lake are sampled 338 

must be corrected for (Crétaux et al., 2011). These difficulties will be overcome for SWOT, as for 339 

most locations in both rivers and lakes there will be more than one observation per repeat period for 340 

the reasons indicated above. The number of revisits is, however, unevenly distributed in time during 341 

the repeat period. This is illustrated in Figure 4, which shows the SWOT observation mask (black 342 

bars correspond to observation dates) for all latitudes along the 30°E meridian versus days during a 343 

repeat period. For example, at the equator and at 30°E, there will be two observations: one at day 15 344 

and one at day 20, but no observations for 16 consecutive days. The distribution of revisit times 345 

during a repeat period does not monotonically controlled by latitude, which makes it difficult to 346 

infer directly how errors from temporal sampling vary as a function of latitude. SWOT products that 347 

will be used for seasonal studies may require computing monthly time series. The uneven SWOT 348 

temporal sampling will be a source of error in the computation of monthly means. Computing 349 

cycle-based averaged (i.e. 21-days average) might be a viable alternative for SWOT, but this option 350 

requires additional study. The impacts of these variations in temporal sampling depend on the nature 351 

of the water body sampled. For example, the water surface elevation of some lakes may not vary 352 

significantly except on monthly or longer timescales, while many rivers exhibit changes in 353 

discharge on daily or even hourly timescales. In rivers, errors associated with gaps in temporal 354 

sampling result from missed local maximum/minimum flows (Biancamaria et al. 2010, Papa et al. 355 

2012), the importance of which depends on the flashiness of the river. To estimate error in monthly 356 

averages due only to the SWOT uneven temporal sampling, Biancamaria et al. (2010) proposed a 357 

method that used daily in situ discharge time series from 216 gages for a previously proposed 358 

SWOT orbit (970 km, 22 day repeat period and 78° inclination orbit with two 60 km swaths). For 359 

simplicity and solely for the purpose of estimating the impact of temporal sampling error, the 360 

Biancamaria et al. (2010) method assumed that SWOT measurements have already been converted 361 

to discharge. Furthermore, errors due to instantaneous estimation of discharge were not considered, 362 

though in reality they may be a significant component of the error budget. In situ discharge time 363 

series were used because they are much more readily available than water height. Since the errors in 364 

monthly discharge are expressed as percentages, the results should be somewhat similar to those for 365 

water height. Updated for the current orbit, the method of Biancamaria et al. (2010) gives a mean 366 

temporal sampling error for all 216 gages of 8.1%. On average, monthly mean temporal sampling 367 

errors decreased with increasing latitude, ranging from 10.0% around the equator to 6.1% above 368 

60°N. For 11 large rivers distributed from the equator to the high latitudes, Papa et al. (2012) 369 



12 

 

showed that insufficiently frequent temporal sampling around the seasonal peak discharge can lead 370 

to substantial errors in mean river discharge computed over a satellite repeat period. For boreal 371 

rivers, nadir altimetry sampling with a repeat period longer than 20 days leads to errors >>20% due 372 

to the relatively large fraction of the annual discharge of boreal rivers that occurs over relatively 373 

short periods following ice breakup. Errors are much smaller using SWOT temporal sampling. 374 

Furthermore, considering the 11 rivers, SWOT temporal sampling errors are correlated to the 375 

discharge temporal variance contained in all frequencies above 1/(20 days) (R
2
=0.87) rather than 376 

drainage area (R
2
=0.18), at least for the few number of tested large rivers. 377 

Unlike for rivers, there are not yet comprehensive studies estimating the impact of SWOT 378 

temporal sampling on measurement of variations in lake storage. However, given the fact that 379 

storage change in the large majority of global lakes remain entirely unobserved and that storage 380 

change in many observed lakes varies on seasonal or annual timescales (Crétaux et al., 2015), it is 381 

expected that the impacts of limited temporal sampling will be smaller than in the case of rivers. 382 

In summary, despite the uneven time sampling and the limited regions that will not be sampled, 383 

SWOT will provide unprecedented observations of continental surface waters at global scale. The 384 

next sections review in more detail published studies that have explored, for different science 385 

questions, the benefits of the SWOT mission for land hydrology (section 2 for rivers, section 3.1 for 386 

lakes and reservoirs, and section 3.2 for other water bodies and specific applications).  387 

 388 

2. River studies 389 

 390 

2.1. Rivers seen by SWOT  391 

 392 

SWOT will monitor the spatial and temporal dynamics of surface water globally, especially 393 

rivers. At a specific location, river stage, width, and velocity variations and therefore discharge 394 

depend on many local factors such as soil characteristics, bedrock characteristics, topographic 395 

variability, channel density, vegetation characteristics, and the space-time variability of 396 

precipitation, and drainage area, among other characteristics. SWOT will provide the first globally 397 

consistent and coherent images of river storage and discharge variations. Over the last two decades, 398 

optical imagery and digital elevation data have helped to map medium to large rivers, whereas 399 

airborne and local measurements have provided valuable information for smaller rivers (Lehner et 400 

al. 2008, Allen and Pavelsky 2015). SWOT will provide consistent and coherent information about 401 

the spatial distribution of river storage and discharge, which will especially improve the availability 402 

of information about rivers that are not well monitored because in situ observations are not 403 

collected or because they are not shared across political boundaries. In addition, SWOT will provide 404 
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critical information about the impact of river discharge characteristics and variations on human 405 

societies. This includes the nature of floods and droughts in poorly monitored river basins and the 406 

characteristics of discharge in rivers that cross international boundaries (transboundary basins). 407 

Notwithstanding the profound improvement that SWOT will provide in the availability of 408 

information about rivers globally, SWOT does not have the objective of and cannot be an in situ 409 

gage network replacement. In most circumstances, in situ gages will be, by far, more precise than 410 

any remote sensing discharge estimates. This is especially important for applications such as water 411 

management, where highly accurate and precise information is required for legally significant 412 

purposes. For example, data from the gauge on the Colorado River at Lees Ferry, AZ is used to 413 

determine the allocation of water to surrounding states. SWOT will likely not be sufficiently 414 

accurate for this purpose. On the other hand, stream gage information is by its nature local and does 415 

not provide a full view of the spatial variations of streamflow. Moreover, some types of rivers such 416 

as highly braided channels and rivers with poorly defined banks are not well-suited to in situ gauge 417 

measurements. The main benefit of SWOT in this respect will be to provide new and 418 

complementary 2D observations for a wide range of different river planforms. Clearly, SWOT will 419 

not observe full river networks because it will be limited to measuring rivers 50-100 m in width. 420 

Therefore, a key question is: what portions of the global river network SWOT will observe and 421 

what improvement will it represent compared to current capabilities? Pavelsky et al. (2014a) have 422 

addressed these questions. Using river networks from Hydro1k (Verdin and Greenlee 1998) and 423 

HydroSHEDS (Lehner et al. 2008), the global in-situ gage discharge time series database from the 424 

Global Runoff Data center (GRDC, http://www.bafg.de/GRDC/EN/Home/homepage_node.html) 425 

and downstream hydraulic geometry (power law relationships between drainage area, mean annual 426 

discharge and river width at sub-basin scales), they have quantified the fraction of global river 427 

basins that SWOT would observe given river observability thresholds of 100 m and 50 m. They 428 

found that SWOT would observe more than 60% of the global sub-basins with an area of 50,000 429 

km
2
 given the ability to observe rivers wider than 100 m. If SWOT can meet the goal of observing 430 

50 m wide rivers, more than 60% of sub-basins with an area of 10,000 km
2
 would be observed. For 431 

the smallest river basins observed, only the mainstem river will likely be measured by SWOT. 432 

For SWOT-observable rivers, a number of studies have investigated the potential to produce 433 

river discharge estimates directly from SWOT water level, surface slope, and inundation extent 434 

observations. We review these studies in section 2.2. In section 2.3, we review studies that have 435 

pursued an alternate pathway of combining SWOT observations with hydrologic and river 436 

hydrodynamic modeling to produce river discharge estimates. 437 

 438 

 439 

http://www.bafg.de/GRDC/EN/Home/homepage_node.html
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2.2. Instantaneous direct river discharge estimations 440 

 441 

Space-based observations of discharge began nearly two decades ago with the observation that 442 

variations in river width, observable from satellites, can be used along with limited in situ discharge 443 

data to develop rating curves (Smith et al. 1995, 1996, Smith 1997, Smith and Pavelsky 2008). A 444 

few years later, the first attempts were made to use nadir altimetry in conjunction with in situ 445 

observations to derive river discharge from altimetry-based water elevation data using rating curves 446 

(e.g. Kouraev et al. 2004). An alternative strategy of estimating discharge using water elevation, 447 

width, slope and velocity observed by or derived from spaceborne sensors was pursued in studies by 448 

Bjerklie et al. (2003) and Bjerklie et al. (2005) at about the same time. These attempts were specific 449 

to individual study reaches, were highly parametrized, and required ancillary in situ data in addition 450 

to altimetry-based variables. It was recognized that the next logical step was to develop discharge 451 

algorithms that could take advantage of all the information provided by SWOT (water elevations, 452 

slopes and inundation extent) so as to produce river discharge estimates at the scale of large river 453 

basins or even globally. Following the analysis by Pavelsky and Durand (2012) that new discharge 454 

algorithms specifically tuned for SWOT data need to be developed, four different discharge 455 

algorithms have been proposed to derive river discharge from SWOT. Characteristics of these 456 

algorithms are summarized in Table 3 and are briefly presented in the next paragraph. Gleason and 457 

Smith (2014) and Gleason et al. (2014) have pursued an approach that they termed At-Many-458 

stations Hydraulic Geometry (AMHG hereafter). Bjerklie (2007) describes an approach (B2007 459 

hereafter) that is based on an equation similar to the Manning equation with tuned power law 460 

coefficients. Garambois and Monnier (2015), hereafter GM2015, propose a method based on 461 

physical and numerical approximations of the Saint-Venant equations to invert the unobserved 462 

equivalent bathymetry and friction coefficient and then derive discharge. Durand et al. (2014) also 463 

use physical and numerical approximations (different than GM2015) of the Saint-Venant equations. 464 

This algorithm is referred to hereafter as „MetroMan‟, because it uses the Manning equation along 465 

with the continuity equation and a Metropolis algorithm to invert bathymetry, friction and 466 

discharge. We discuss each of these algorithms, including hypotheses and limitations, briefly below. 467 

Additionally, these algorithms are summarized in Table 3. 468 

The AMHG algorithm will use the intensive SWOT observations of river width to derive 469 

discharge using the well-known geomorphologic relationship between river width (w) and discharge 470 

(Q) at a specific location: w=aQ
b
. The a and b coefficients are considered constant in time but vary 471 

along a given river. The innovation of the AMHG algorithm is based on the important fact (reported 472 

for the first time in Gleason and Smith 2014) that a and b at cross-sections within the same river 473 

reach commonly exhibit a well-defined log-linear relationship. Therefore, by considering width 474 
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variations at many cross-sections along a river in combination, the number of unknowns is 475 

decreased, allowing a, b, and Q to be estimated using a genetic algorithm requiring only 476 

multitemporal width observations at many river reaches (Gleason et al. 2014). A global 477 

parametrization is proposed by Gleason et al. (2014) when no a priori information is available. In 478 

this paper, the authors highlight a series of cases for which the algorithm will not work 479 

(corresponding to rivers that do not verify the conditions listed in column „Tested river types‟ for 480 

this algorithm in Table 3). When these cases (types of rivers) are excluded, the relative Root Mean 481 

Square Error (RMSE) between AMHG and in situ discharge ranges from 26% to 41% for 482 

instantaneous discharge. 483 

Bjerklie‟s algorithm (Bjerklie 2007) is based on a tuned Manning equation, using a constant river 484 

slope and parameterized Manning coefficient (n) varying in time and taking into account idealized 485 

channel shape. It requires as ancillary parameters the mean annual discharge (required because 486 

SWOT will provide surface water elevation and not river water depth). This method is robust if 487 

there are no floods and if the mean annual discharge is accurately known. 488 

The GM2015 algorithm is a forward and inverse model based on the 1D Saint-Venant‟s 489 

equations applied to river reaches and rewritten to take into account SWOT measurements of water 490 

surface elevation, width and slope. It assumes no lateral inflows, steady-state flows at observation 491 

times, low Froude Number (<0.5, corresponding to neglecting the inertia term in the Momentum 492 

Equation), trapezoidal cross-section, and constant friction coefficient in time. The inverse model 493 

allows retrieval of discharge and an effective friction coefficient (Strickler or Manning coefficient) 494 

and cross sectional geometry for the lowest observed level (i.e. the low flow bathymetry), for a 495 

given set of observations. The identified coefficients (friction and cross section geometry) can then 496 

be used to compute discharge for other SWOT observations using the forward model. Garambois 497 

and Monnier (2015) tested the GM2015 algorithm on more than 90 synthetic rivers covering a wide 498 

range of conditions (width, depth, discharge) that will be observed by SWOT. They reported RMSE 499 

of discharge below 15% for first guess error exceeding 50% and a very robust estimation of 500 

discharge, as measurements errors and errors due to physical approximation are included in the 501 

estimated bathymetry and friction coefficient errors. Even if some equafinality (Beven 2006) exists 502 

between friction coefficients and bathymetry, the GM2015 algorithm seems to provide accurate 503 

estimates of equivalent bathymetry and friction in the range of tested discharge. 504 

The MetroMan algorithm, like GM2015, uses an approximation (the diffusive wave 505 

approximation) of the 1D Saint-Venant equations. However, the mathematical implementation of 506 

the forward and inverse models are different, and it also takes into account unknown lateral inflows. 507 

It has been evaluated using a 22.4 km river reach of the Severn River (river width ~60 m) in the 508 

United Kingdom and one of its tributary for an in-bank flow event (duration 5 days) and an out-of-509 
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bank flood event (duration 15 days). For the in-bank event, when lateral inflows from tributaries 510 

were known, discharge was retrieved with 10% RMSE, whereas when lateral inflows were 511 

unknown, the discharge RMSE went up to 36%. For the out-of-bank flood event with unknown 512 

lateral inflows, the RMSE was 19%. Both the GM2015 and MetroMan algorithms required multiple 513 

observations (at different times) of water surface height, width and slope (average over 1-10 km 514 

river reaches) and require substantial variability in water elevation and discharge across the 515 

observations. Bathymetry and friction affect river flows at different spatial scales. It worth noting 516 

that MetroMan and GM2015 retrieve these river parameters at the kilometer river reach scale and 517 

might therefore be slightly different from the ones estimated at the local scale.  518 

Results from these investigations are encouraging and demonstrate the feasibility of retrieving 519 

river discharge from SWOT observations alone. Although these four algorithms were developed by 520 

different teams, their development was not independent as all author groups are members of the 521 

SWOT Science Definition Team (SDT) Discharge Algorithms Working Group. Intercomparison 522 

studies are currently being performed over different types of rivers and the relative strengths and 523 

weaknesses of each algorithm are being evaluated. Pending the results of these ongoing 524 

comparisons, the potential for implementation and performance of the algorithms at global scales is 525 

still an open question. Furthermore, at this point they have only been tested over non-braided rivers, 526 

whereas many large rivers (e.g. the Amazon, Ganges/Brahmaputra, and Ob‟) and many smaller 527 

rivers are at least partially braided. The precise river reaches to which the algorithms can be applied 528 

globally remain undefined but most likely will have lengths ranging from a few km to a few 10s of 529 

km. For those algorithms that require ancillary information and/or a first guess (see „1
st
 530 

guess/ancillary data‟ column in Table 3) this information will be defined and provided globally 531 

before launch. Finally, testing of algorithms with real SWOT data and realistic errors will be crucial 532 

for fully assessing the suitability of these algorithms. 533 

 534 

2.3. Data assimilation and optimal interpolation 535 

 536 

An alternate strategy for estimation of discharge and other water surface variables is the use of 537 

indirect and/or statistical methods. Work in this area falls into two categories: optimal interpolation 538 

(OI) to improve spatial/temporal coverage of SWOT water elevation and discharge estimates (Yoon 539 

et al. 2013 and Paiva et al. 2015) and data assimilation (DA), which uses SWOT data to correct 540 

hydraulic/hydrologic model parameters or state vectors (Andreadis et al. 2007, Durand et al. 2008, 541 

Biancamaria et al. 2011, Yoon et al. 2012, Andreadis and Schumann 2014, Pedinotti et al. 2014, 542 

Munier et al. 2015). Table 4 summarizes all these studies. All of the nine studies summarized were 543 

designed in the context of Observing System Simulation Experiments (OSSE), a methodology 544 
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designed to assess the potential of a new type of measurements before it is built or deployed. Figure 545 

5 shows the conceptual framework of an OSSE in the context of SWOT studies using optimal 546 

interpolation (a.) and data assimilation (b.). Among these nine studies, the OSSE consisted of first 547 

computing time series of realistic states (water elevations and discharges) over a specified study 548 

domain with a hydraulic or hydrologic model. This simulation is considered to be the “truth” in the 549 

context of the OSSE (Figure 5). Then, a SWOT simulator is run to provide what the algorithm treats 550 

as SWOT measurements. These so-called “virtual” or “synthetic” SWOT observations are then used 551 

with OI or DA methods to improve the SWOT estimate of river discharge and/or related variables. 552 

Comparison of these derived values to the “truth” allows quantification of the benefits of SWOT 553 

data coupled with the dynamic model. In all studies included here, synthetic SWOT data have been 554 

simulated with simple methods: SWOT spatio-temporal sampling is computed using SWOT orbit 555 

and swath extents to sample “true” water elevations (or discharge for Paiva et al. 2015), to which 556 

white noise (corresponding to instrument noise only) has been added. As the SWOT mission has 557 

evolved through different design stages between 2007 and 2015, different orbits and swath extents 558 

(e.g. no nadir gap) have been considered (see Table 4). Only Munier et al 2015 is recent enough to 559 

consider the final SWOT nominal orbit presented in section 1.4. Furthermore, all of the studies have 560 

been performed as twin experiments in which the same model has been used for computing the 561 

“true” states and the “corrupted” ones (Figure 5). 562 

Among the OI studies, Yoon et al. (2013) used local space-time ordinary kriging to estimate 563 

water height between SWOT observation times over the Tennessee River. Their method used 564 

hydrodynamic model outputs to compute the true heights. They obtained mean spatial and temporal 565 

RMSE of 11 cm and 12 cm, respectively. However, when they used in situ gage time series as the 566 

truth, the temporal RMSE increased to 32 cm. This difference is apparently due in part to effects of 567 

water management, which are not taken into account in the hydrodynamic model. Paiva et al. 568 

(2015) also used spatio-temporal OI but applied it to estimate discharge rather than water height. 569 

They developed an innovative method termed River Kriging (RK), which analytically derives 570 

space-time discharge covariance using the diffusive wave approximation to the Saint-Venant 571 

equations. They showed, using the Ganges-Brahmaputra-Meghna Rivers system in Bangladesh, that 572 

the RK method out-performed linear interpolation, simple kriging and ordinary kriging. 573 

Furthermore, RK-interpolated daily discharge had accuracy similar to that of the initial SWOT 574 

discharge time series. However, the method did not perform well when tidal forcing dominated the 575 

discharge signal. Taken together, the Yoon et al. (2013) and Paiva et al. (2015) studies show the 576 

potential to interpolate SWOT observations at daily time scales. However, they have been applied to 577 

a very limited set of rivers to date. 578 

DA techniques are increasingly being used in the framework of real time operations to forecast 579 
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water levels in the context of flooding (Bates et al. 2014), for real-time reservoir operations (Munier 580 

et al. 2015), for model calibration and parameter estimation (Bates et al. 2014) or for the purpose of 581 

reconstructing the history of some components of the continental water cycle (Reichle et al. 2014). 582 

All of these themes have been addressed by one or more of the SWOT DA studies referenced in 583 

Table 4. Andreadis et al. (2007) and Biancamaria et al. (2011) used virtual SWOT water depth 584 

measurements to correct water depth from river hydrodynamics models applied to the Ohio and Ob‟ 585 

Rivers, respectively. Assumptions included well-known bathymetry and no bias in water elevation 586 

measurements. They showed that in these two applications, model errors dominated and therefore 587 

assimilating SWOT (synthetic) data helped to decrease water depth error and consequently 588 

discharge estimates. These studies demonstrated the potential of SWOT data to improve forecasting 589 

of streamflow. Keeping in mind that the SWOT mission will likely not produce near real time 590 

products, these approaches nonetheless can be applied to producing discharge and water level 591 

products retrospectively once the SWOT data become available, especially with the use of a DA 592 

smoother (Biancamaria et al. 2011) that tends to smooth discontinuities before and after the 593 

assimilation time of an observation with a DA filter.  594 

Flood forecasting is an area of hydrology particularly suited to the use of DA techniques. In 595 

these applications, model initial conditions are critical to producing accurate forecast. This was the 596 

motivation for the work of Andreadis and Schumann (2014) who developed methods of using 597 

satellite water elevation and water area (from nadir altimetry, Lidar, SAR imagery and SWOT) to 598 

correct initial conditions in an application of a hydrodynamic model to the Ohio River. They 599 

showed that using satellite observations improved water elevation and flood extent forecasts with 600 

lead times up to 10 days. For some flood events, however, model errors exceeded errors due to 601 

initial conditions after a few days, and the benefits of the assimilation dissipated. Additionaly, it has 602 

recently been shown that assimilating flood water level derived from SAR images combined with 603 

floodplain topography into a hydrodynamic modeling helps to improve flood forecasts (García-604 

Pintado et al. 2013, García-Pintado et al. 2015). 605 

Other studies have demonstrated the capability of using SWOT data to correct hydraulic model 606 

parameters (especially bathymetry, elevation, and slope; see Durand et al. 2008 and Yoon et al. 607 

2012) or hydrologic model parameters (friction coefficients; see Pedinotti et al. 2014). Errors in the 608 

corrected parameters have decreased in some cases by more than 50% via DA. Of course, these 609 

results have to be interpreted carefully, as they are dependent on the model/observation errors used 610 

and the fact that they have been done in the context of model twin experiments, which often result 611 

in a benefit to DA-based methods in comparison with “real” applications. Nonetheless, these studies 612 

are promising and clearly show the potential benefits of SWOT data in conjunction with river 613 

hydrodynamic modeling even if the SWOT data are not delivered in near real time.  614 
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Finally, Munier et al. (2015), using DA in conjunction with an automatic control algorithm, 615 

showed the potential of SWOT to improve management of the Selingue Reservoir in the upper 616 

Niger River basin by optimizing reservoir releases to meet a minimum low flow requirement 617 

upstream of the Niger Inner Delta. Their algorithm made use of SWOT data both for estimation of 618 

reservoir storage and for discharge computation using a simplified river hydrodynamics model 619 

applied to the reach downstream of the reservoir.  620 

It should be highlighted that all the teams involved in the studies reported here are collaborating 621 

at different levels. Members of the author groups that produced the papers reviewed in this section 622 

met during the “Hydrologic Data Assimilation for the SWOT Mission” meeting, held on 12-13 623 

November 2013 (Biancamaria et al. 2014) and further DA work in the next few years leading up to 624 

launch of the SWOT mission is promising. 625 

 626 

The studies reviewed in sections 2.1-2.3 show the benefits that can be expected from SWOT 627 

measurements for better understanding river flow dynamics, from the river reach scale to the river 628 

basin scale. New and innovative techniques have already been developed that can exploit SWOT 629 

data, and these methods will be available from the beginning of the mission to ensure quick use and 630 

science return of SWOT data. However, more work is still needed, especially to explore the 631 

implications of SWOT errors, which have been represented to date using highly simplifying 632 

assumptions. SWOT errors will be much more complex than white noise. In particular, the impacts 633 

of layover, water classification errors, wet troposphere effects, and correlated instrument error along 634 

the swath are topics of immediate relevance that currently are being investigated. 635 

 636 

3. Lake/reservoir studies and other land hydrology applications 637 

 638 

Section 2 summarized SWOT river-related studies with a focus on river discharge estimation 639 

(both directly and through data assimilation). Lakes and reservoirs have been somewhat less studied 640 

as shown in Table 5, which summarizes SWOT-related lake and reservoir studies. Compared to the 641 

five SWOT discharge algorithms papers and nine DA/OI papers, there are only three papers that 642 

consider lakes and/or reservoirs in the context of SWOT. This is in part due to the fact that the main 643 

SWOT lake/reservoir product, storage change estimation of all observed lakes and reservoirs, is 644 

more easily derived from SWOT direct measurements (maps of water elevations and water surface 645 

extent), than is river discharge. Nonetheless, SWOT has important implications for understanding 646 

the dynamics of individual lakes and reservoirs and their part in the land surface water budget. The 647 

mission is expected to lead to a major leap in our understanding of these water bodies. For instance, 648 

storage variations in reservoirs globally, which have been estimated to have produced a “drag” on 649 
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sea level rise of about 0.5 mm/yr or around 1/6 of observed sea level rise, are so poorly estimated 650 

that the sign of this term is no longer known due to slowing of global reservoir construction and 651 

filling of existing reservoirs with sediment (Lettenmaier and Milly, 2009).  652 

Furthermore, SWOT will not only observe rivers and lakes/reservoirs, but also all other water 653 

bodies on the continents and at their interfaces with the oceans: wetlands, stream-aquifer interfaces, 654 

estuaries and ice sheets. In particular, it will be a tremendous source of information for 655 

transboundary river basins, which are a challenge for water managing between upstream and 656 

downstream countries. More generally, SWOT will observe the direct human impact on the 657 

continental water cycle and therefore will have scientific but also societal and political implications.  658 

 659 

3.1. Lakes and reservoirs 660 

 661 

There is currently large uncertainty concerning the global distribution of lakes (Downing et al. 662 

2006, Verpoorter et al. 2014) and the variations of water stored in them. The locations of largest 663 

lakes are, of course, well known and monitored. It is also well known that the majority of lakes are 664 

located at high latitudes (above 50°N; Lehner and Döll 2004). However there is still considerable 665 

uncertainty concerning the number of medium and small lakes, even aside from their spatial and 666 

temporal dynamics. For example, according to Downing et al. (2006), based on multiple databases 667 

and extrapolation for smaller lakes, there are slightly more than 300 million lakes globally with 668 

surface area exceeding 0.001 km
2
, most of which (99.87% in number and 43% in area) have surface 669 

areas less than 1 km
2
. However, the numbers of small lakes in Downing et al. (2006) are inferred 670 

from the distribution of larger lakes rather than being directly observed, so this estimate is highly 671 

uncertain. In contrast, Verpoorter et al. (2014) report, using Landsat imagery, about 117 million 672 

lakes with surface areas that exceed 0.002 km
2
, a predominance of which have areas between 0.1 673 

and 1 km
2
). However, the use of Landsat imagery (which has a pixel size of 30 m) tends to 674 

underestimate small water bodies, especially those that cover less than about 10 Landsat pixels, or 675 

about 0.01 km
2
. Furthermore, it is difficult to classify water surfaces at the global scale 676 

automatically because of clouds, cloud shadow, the use of images acquired at different dates, 677 

differences in lake turbidity, and other factors, all of which add uncertainty to current estimates of 678 

the global distribution of lakes by area. In addition, it is very difficult to automatically differentiate 679 

the smallest lakes observable in Landsat imagery from segments of partially detected rivers. Finally, 680 

all of the current global lakes databases (e.g. Lehner and Döll 2004, Verpoorter et al. 2014) are 681 

static and do not provide any information about spatio-temporal dynamics, notwithstanding well-682 

known studies of long-term variations in the surface areas of both large (e.g. Gao et al. 2012) and 683 

small (e.g. Smith et al. 2005) lakes. SWOT will provide revolutionary information concerning lake 684 
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extent and water storage, which will be beneficial not just for a better understanding of the 685 

continental hydrological cycle but also for the carbon (Cole et al. 1994) and methane (Walter et al. 686 

2007) cycles at continental and global scales. 687 

If the global distribution of lakes is subject to large uncertainties, their water elevation changes 688 

are even less well known. Therefore, estimating total water storage change of all lakes remains a 689 

challenge. Biancamaria et al. (2010) have provided early estimates. Using, annual water level 690 

amplitudes from 224 lakes worldwide, they found no clear correlation between annual water level 691 

variations and lake area or lake drainage area. Rather, it seemed that inter-annual water surface 692 

amplitudes followed a log-normal distribution, which they used to estimate water level variations 693 

for all lakes globally. They used a power-law relationship between the number of lakes and lake 694 

area derived by Downing et al. (2006) to compute the number of all lakes and their size. By 695 

performing a very rough approximation of cylindrical lake bathymetry, using the previously 696 

mentioned lake log-normal water level distribution, the Downing et al. (2006) lake numbers versus 697 

lake areas relationship, they were able to compute cumulative lake storage change as a function of 698 

lake area and, ultimately, the total annual lake storage change (about 9,000 km
3
). Their computation 699 

was based on just one realization of the log-normal water level distribution for each lake area bin 700 

and did not consider uncertainty due to the random distribution. In order to take this uncertainty into 701 

account, 100 realizations of the log-normal water level distribution have been generated for each 702 

lake area bin. For each realization the same methodology of Biancamaria et al. (2010), previously 703 

described, has been applied. Figure 6 shows the updated results with the ensemble of 100 704 

realizations (grey curves). The mean of this ensemble, which is likely a better approximation of the 705 

cumulative annual lake storage change than a single realization of the log-normal distribution, is 706 

represented by the green curve on Figure 6. The ensemble mean is close to the cumulative storage 707 

change published by Biancamaria et al. (2010), while the ensemble spread clearly shows the 708 

uncertainty associated with the log-normal water level distribution approximation. Of course, there 709 

are also errors from the number of lakes versus lake area power law and the cylindrical bathymetry 710 

approximation, which add (unrepresented) errors to the annual storage change estimates at global 711 

scale. It should be noted that these errors are extremely difficult to estimate and have yet to be 712 

modeled. 713 

Currently, storage change can be computed for the small number of lakes for which in situ data 714 

are freely available. The alternative is to use satellite data to derive water elevation (from nadir 715 

altimeters or Lidar) and surface extent (from optical or SAR sensors) (Gao et al. 2012, Zhang et al. 716 

2014, Arsen et al. 2014, Baup et al. 2014, Crétaux et al. 2015). However, these approaches require 717 

data from at least two different satellites, nearly always at different observation times, with different 718 

space-time resolutions. As such, they require significant manual editing of the time series 719 
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(especially for water elevation) and are challenging to apply automatically at large scales. The 720 

resolution of current nadir altimeters also limits the application of these methods. Satellite 721 

capability to monitor specific lakes depends on not just the radar footprint on the ground but also 722 

the lake shape. Current results (for example, from the Hydroweb database, http://www.legos.obs-723 

mip.fr/en/soa/hydrologie/hydroweb/) show that 10 km
2
 lake area (dashed red line on Figure 6) is, on 724 

average, a good guess for the minimum lake extent that nadir altimeters can observe, though some 725 

results can be obtained for smaller lakes (Baup et al. 2014). Considering the constellation of 726 

satellites that are the most likely to fly in the near future (AltiKa, Jason-3, Sentinel-3A and -3B), 727 

based on the distribution shown in Figure 6 (green curve) and assuming that these satellites will 728 

sample all lakes above 10 km
2
 area that are intersected by their nadir ground tracks (which is a very 729 

optimistic hypothesis), then only 36% of the total annual storage change can be measured (as not all 730 

lakes above 10 km
2
 will be observed). In contrast, SWOT, should be able to monitor about 65% of 731 

total annual storage change (Biancamaria et al. 2010). On Figure 6, all lakes above 250m x 250m or 732 

about 0.06 km
2
 (blue dashed line) account for 68% of the total annual storage change, but SWOT 733 

will miss a small fraction of these lakes. This is due to measurement errors that could be higher than 734 

the annual water level amplitude for some lakes in between 0.06 km
2
 and 1 km

2
.  However, SWOT 735 

should overcome most of the uncertainty in the lake spatial distribution (grey curves on Figure 6), at 736 

least for lakes with an area above 0.06 km
2
. To assess the accuracy that could be expected from 737 

SWOT-derived lake storage changes, Lee et al. (2010) performed an OSSE for Arctic lakes, using a 738 

methodology similar to the one presented in section 2.3 for optimal interpolation and shown on 739 

Figure 5a. Based on daily interpolated lake level variations from altimetry, satellite optical images 740 

and parametrizations, daily water level variations for several thousands of lakes in the Peace-741 

Athabasca Delta (Canada), Northern Alaska (US) and West Siberia (Russia) were derived and used 742 

as the “truth”. With this data set, they estimated that at high latitudes, SWOT lake storage change 743 

measurements will likely have errors lower than 5% for lakes larger than 1 km
2
, whereas errors for 744 

lakes with areas of 0.01 km
2
 should be around 20%, confirming the relatively high accuracy that is 745 

expected from SWOT data. However, this study did not consider measurements errors due to 746 

layover, water classification, wet troposphere… (see section 1.3). Work on a more limited number 747 

of lakes in the Peace-Athabasca Delta suggests that errors in water surface elevation will dominate 748 

the calculation of storage change measurements in comparatively large lakes, while errors in 749 

inundated area will play a more important role for storage change calculations in small lakes (Smith 750 

and Pavelsky, 2009).  751 

Reservoirs also play an important role in the continental water cycle. Zhou et al. (in review) 752 

showed, using a large scale water management model, that 166 of the world‟s largest reservoirs, 753 

which have a total storage capacity of 3900 km
3
 (~60% of all reservoirs storage), could have almost 754 
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700 km
3
 seasonal storage variation (~10% of the total reservoirs storage). Despite this significant 755 

variability, there is only the study of Munier et al. (2015) that has investigating the potential of 756 

SWOT for reservoirs monitoring (see section 2.3). This study showed the potential use of SWOT 757 

reservoir measurements to optimize reservoir operations. Gao et al. (2012) and Crétaux et al. (2015) 758 

have shown the feasibility of computing storage change for large reservoirs using nadir altimetry, 759 

which is very promising for SWOT. The lack of knowledge of the distribution of small lakes is also 760 

true for reservoirs. Even with global datasets for reservoirs, like the one compiled by the 761 

International Commission on Large Dams (ICOLD) or the Global Reservoir and Dam (GRanD) 762 

database (Lehner et al. 2011), there is little information for intermediate and small reservoirs. Given 763 

gaps in current understanding of the number and area distribution of lakes and reservoirs, SWOT 764 

will provide a major improvement in the ability to observe the dynamics of these water bodies 765 

directly. In particular, it will help to better characterize the role of small lakes and reservoirs at 766 

global scales, which are mostly ignored in current estimates of the dynamics of land water storage 767 

(Zhou et al. in review). 768 

 769 

3.2. Other Land hydrology applications and synergistic land sciences 770 

 771 

To date, published studies concerning SWOT have been mostly focused on understanding and 772 

assessing benefits of the new type of measurements that will be produced for river and lakes 773 

dynamics. This focus was essential as the mission was in an early stage of definition. Nonetheless, a 774 

number of other applications of SWOT data are expected in the land hydrology arena (Durand et al. 775 

2010, Fu et al. 2012, Rodríguez 2015). One of these is the management of water in transboundary 776 

river basins. These basins cross one or more international boundaries and imply sharing of water, 777 

which in many cases can lead to tensions between upstream and downstream countries. 778 

Transboundary river basins are important globally, as they cover around 45% of the global land 779 

area, involve 145 countries and 40% of the total human population (Wolf et al. 1999). Clark et al. 780 

(2015, accepted) have reviewed studies using nadir altimetry for three transboundary basins (the 781 

Brahmaputra-Ganges-Meghna, the Indus and the Niger basins) and highlighted the importance of 782 

upcoming SWOT data for providing freely available observations of storage change, water level 783 

and discharge over the entire basin areas (not including the minor observations gaps discussed in 784 

section 1.4) repetitively and independently from national networks.  785 

Another field that will greatly benefit from SWOT data will be the study of the direct impact of 786 

human activities (like water management infrastructures and water withdrawals) on the land 787 

hydrological cycle. For example, reservoirs (Shiklomanov and Lammers 2009) and soil changes and 788 

erosion (Descroix et al. 2012) can have important impacts on downstream river discharge, and these 789 
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impacts will be observed and may be quantifiable by SWOT. SWOT will also provide valuable 790 

information to model development and validation, especially for land surface models used in 791 

numerical weather prediction and climate models. Most such models at present only represent 792 

natural rivers. SWOT observations may also have application to studies of stream-aquifer 793 

exchanges at basin and continental scales, filling a current observation gap (Flipo et al. 2014).  794 

SWOT will also provide useful data in wetland environments, although the range of observable 795 

wetlands remains uncertain. In wetlands with sparse vegetation and large extents of open water it is 796 

likely that SWOT will provide useful measures of water surface elevation and inundation extent. 797 

Where vegetation is denser, it remains unclear to what extent SWOT will be affected by scattering 798 

and layover caused by the vegetation. However, given difficulties in measuring the hydrology of 799 

large wetlands in situ and their importance in the global carbon and methane cycles, SWOT 800 

measurements may provide substantial benefits even if sampling under dense vegetation proves 801 

limited. Experiments to better define the opportunities and constraints of SWOT wetland 802 

measurements are, as of this writing, in the final planning stages. They will use measurements from 803 

AirSWOT (Rodriguez et al. 2010), to better understand SWOT returns from inundated vegetation.  804 

Complementary to land hydrology, some additional science objectives for SWOT, referred to as 805 

synergistic sciences (Fu et al. 2012, Rodríguez 2015), have been identified, including: 806 

- Freshwater/marine interfaces, especially in estuaries. This issue bridges ocean and continental 807 

hydrology and, while it is a key component of the hydrological cycle, it is just beginning to be 808 

addressed in the context of SWOT. 809 

- Antarctic and Greenland ice sheet topographic variability. As shown on Figure 3, most of 810 

Greenland (which extends up to 82°N) and a substantial portion of Antarctica (and all its coastal 811 

regions) will be sampled at the highest time sampling frequency. However, it should be noted that 812 

SWOT performance over ice and snow is not yet well characterized (Fjørtoft et al. 2014). In 813 

addition, it is likely that SWOT data for many portions of these ice sheets will be available only at 814 

the lower resolution used for SWOT ocean products.  815 

- Helping to characterize snow cover variability and, perhaps, help to characterize land cover 816 

variability. 817 

- Estimation of vertical deflection due to gravity changes over large lakes. 818 

These are just some of the anticipated SWOT scientific applications that have yet to be investigated 819 

in any substantial detail. Because most of these applications are synergistic to SWOT‟s principal 820 

scientific goals and because SWOT observing technology is not optimized for them, more 821 

investigations are needed to determine how useful SWOT data will be. For example, better 822 

characterization of Ka-band backscatter over snow and ice is needed (this also has implications for 823 

observations of high latitude rivers during ice breakup). In addition, for most new satellite 824 
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technologies like SWOT, applications not yet anticipated will emerge once the data becomes 825 

available. 826 

 827 

 828 

4. Conclusions and perspectives 829 

 830 

We have described the characteristics of the upcoming wide swath altimetry satellite mission, 831 

SWOT, and have reviewed recent published papers that have evaluated key scientific hydrology 832 

uses of SWOT data. We argue that SWOT will be transformational for land hydrology in providing 833 

fundamental information about rivers, lakes, and wetlands that has never before been available 834 

directly from observations. The SWOT mission will provide, for instance, maps of surface water 835 

elevation and their temporal evolution, therefore providing for the first time estimates of surface 836 

water storage and fluxes at global scale for rivers wider than 50-100.  837 

It will also characterize spatio-temporal variability of lakes and reservoirs with areas larger than 838 

~0.06 km
2
, implying direct estimates of about 2/3 of global lake and reservoir storage variations 839 

(current nadir altimeters provide estimates in both cases that represent less than 20 percent of the 840 

total). Some of the types of studies for which SWOT data will be especially well suited are:  841 

- global water balance studies,  842 

- flood dynamics for medium to large rivers, especially those that persist for multiple SWOT 843 

revisits, 844 

- studies of surface water in the global carbon and methane cycles,  845 

- documentation and quantification, of direct human impacts on the hydrological cycle. 846 

With respect to Earth system modeling, it will provide constraints and diagnostics that will allow 847 

better representation of processes such as flood dynamics and human influence on the water cycle, 848 

which at present are poorly quantified in global coupled land-atmosphere-ocean models. For 849 

example, most such models do not represent the storage of water in man-made reservoirs, or its 850 

effect on river discharge (Wood et al. 2011). SWOT will also have important societal impacts on 851 

understanding of transboundary river basins; in many such cases, data about river discharge and 852 

reservoir storage are not shared among upstream and downstream countries, and in this respect the 853 

SWOT data, which will be freely available, will be transformational.  854 

However, there is still much to be learned before the planned launch of the mission some five 855 

years from the time of this writing. One priority must be to strengthen the results of studies 856 

performed to date, especially by taking into account more realistic quantifications of the magnitudes 857 

and types of SWOT measurement errors (e.g., spatially-correlated instrumental noise, error due to 858 

the roll of the satellite, wet troposphere errors, water classification errors, topography and 859 
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vegetation errors, among others). These errors will be chiefly explored using two complementary 860 

tools: an increasingly sophisticated high-resolution SWOT simulator and AirSWOT airborne 861 

campaigns, which will provide SWOT-like measurements that can be compared to simultaneous 862 

ground validation data. To compute river discharge, four algorithms have been proposed, and they 863 

need to be investigated on diverse real cases, especially braided rivers. They also require a priori 864 

information such as river bathymetry and friction coefficients. The sensitivity of discharge estimates 865 

to the accuracy of these a priori parameters should be estimated, and they should be computed at a 866 

global scale prior to launch. 867 

Furthermore, synergies with other satellite missions observing different component of the water 868 

cycle that are likely to collect data simultaneously with SWOT should be investigated, to improve 869 

understanding of the water cycle as a whole. Results from discussion of the SWOT Science 870 

Definition Team to date suggest that data assimilation approaches are not yet mature enough for 871 

global application. For this reason, studies like those reviewed in section 2.2 are based on the need 872 

for simple algorithms, which can be applied more or less directly to SWOT observations of river 873 

water levels, slopes, and widths to estimate discharge. However, some recent studies (Yamazaki et 874 

al. 2011, Neal et al. 2012, Schumann et al. 2013, Bates et al. 2014) suggest that application of river 875 

hydrodynamics models have advanced to the point that applications of these models (which would 876 

be the physics core for data assimilation algorithms) may now be feasible at continental and global 877 

scales (Wood et al. 2011, Schumann et al. 2014, Bierkens et al. 2015). Thus, the role of data 878 

assimilation in SWOT river discharge and related variables may need to be revisited. 879 

 Finally, some thinking about the successor of SWOT is now appropriate. If SWOT is successful, 880 

it almost certainly will motivate demand for continuing observations, in the same way that the first 881 

ocean altimeter, TOPEX/Poseidon, did for ocean sciences. With the launch date of SWOT 882 

approaching quickly, it is not too early to think about how a future mission might extend and 883 

improve on results from SWOT. 884 
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Table 1 SWOT mission science requirements and goals (Rodríguez 2015)  1207 

Observed areas 

- All observed water area will be provided 

- Errors are evaluated for (250 m)
2
 (= 62 500 m

2
) water 

bodies and 100 m (width) x 10 km (long) river reaches 

- Error are characterized for (100 m)
2
 to (250 m)

2
 water 

bodies and 50 m to 100 m (width) x 10 km (long) river 

reaches
 

Height accuracy 
< 10 cm when averaging over water area > 1 km

2
 

< 25 cm when averaging over (250 m)
2
 < water area < 1 km

2
 

Slope accuracy 
1.7 cm/km for evaluated river reaches when averaging over 

water area > 1 km
2
 

Relative error on water areas 
<15% for evaluated water body and river reaches 

< 25% of total characterized water body and river reaches 

Mission lifetime 
3 months of fast sampling calibration orbit + 3 years of 

nominal orbit 

Rain/Layover/Frozen water flag 68% 

Data collection 
> 90% of all ocean/continents within the orbit during 90% of 

operational time 

 1208 

 1209 

 1210 

Table 2 SWOT mission characteristics 1211 

Orbit 

Altitude 890 km 

Inclination 77.6° 

Repeat period 20.86 days 

KaRIn 

(core payload) 

One swath extent (total swaths: 2) 50 km 

Distance between the 2 swaths outer 

edges 
120 km 

Distance between the 2 swaths inner 

edges (“nadir gap”) 
20 km 

Radar frequency/wavelength 35.75 GHz/8.6 mm (Ka-band) 

Distance between the 2 antennas 

(baseline) 
10 m 

Instrument azimuth pixel size (radar 

projection) 
 6 to 7 m 

Instrument range pixel size (radar 

projection) 

From 60 m (near range, incidence 

angle ~0.6°) to 10 m (far range, ~3.9°) 

Additional 

science 

payload 

Nadir altimeter 
Similar to the dual frequency (Ku/C) 

Poseidon-3 nadir altimeter on Jason-2 

Precise orbit determination system 

- Laser retroreflector 

- DORIS receiver 

- GPS receiver 

Radiometer (usable only over 

oceans) 

3-frequency (18, 23, 34 GHz) 

radiometer, similar to Advanced 

Microwave Radiometer on Jason-2 

 1212 

 1213 

 1214 
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Table 3 Current discharge algorithms designed to use SWOT data (n means Manning coefficient, w 1215 

river width, S river surface slope, H river elevation, A0 unobserved cross-sectional flow area and Q 1216 

discharge) 1217 

Discharge  

algorithm  

Algorithm  

Basis 

Tested river  

types 

SWOT 

variables 

used 

1
st
 guess/ 

ancillary 

data 

Output(s) 

AMHG 

(Gleason and Smith 

2014; Gleason et al. 

2014) 

w/Q geomorphic 

scaling 

relationship along 

river reach 

Single channel 

& width 

variability 

& no lateral 

in/outflows 

& no several 

order magnitude 

variation 

& b>0.1 (in 

w=aQ
b
) 

w - Q 

B2007 

(Bjerklie et al. 2003, 

Bjerklie et al. 2005, 

Bjerklie 2007) 

Manning-like 

equation with 

calibrated 

exponent and 

time varying 

Manning 

coefficient 

Single channel 
H, w, 

constant S 

Mean 

annual n 

and Q 

Q, time 

varying n 

GM2015 

(Garambois and 

Monnier, 2015) 

Shallow water 

equations (low 

Froude) 

Single channel & 

no in/outflows
 δH, w, S 

n, A0, 

baseflow 

Q 

Q, corrected 

n, corrected 

A0 

MetroMan 

(Durand et al. 2014) 

Diffusive 

approximation of 

shallow water 

equations 

Single channel δH, w, S 

n, A0, 

baseflow 

Q 

Q, corrected 

n, corrected 

A0 

 1218 

 1219 

1220 
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Table 4 Published SWOT-related studies using data assimilation (DA) or optimal interpolation (OI) 1221 

to correct/optimize different variables (d means water depth, H water elevation, w width, S water 1222 

surface slope, Q discharge, Ai inundation area, Z bathymetric elevation, Sz bathymetric slope, n 1223 

Manning coefficient). In this table, (L)EnKF/S stands for (Local) Ensemble Kalman 1224 

Filter/Smoother, LSTOK for Local Space-Time Ordinary Kriging, LEnTKF for Local Ensemble 1225 

Transform Kalman Filter, EKF for Extended Kalman Filter, RK for River Kriging and MPC for 1226 

Model Predictive Control 1227 

Reference 
DA/OI 

schemes 
Model(s) + error 

SWOT obs 

used + error 

Corrected/ 

optimized 

variable(s)/ 

parameter(s) 

Study 

domain 

Andreadis et 

al. (2007) 
EnKF 

Hyrodynamic model 

+ inflows errors 

d (140km 

swath, 8-

day/16-d/32-d 

orbit) + white 

noise 

d 
Ohio River 

(50km reach) 

Durand et al. 

(2008) 
EnKF 

Hydrodynamic 

model + Sz and n 

errors 

H (140km 

swath, 16-day 

orbit) + white 

noise 

Z, Sz 

Amazon 

River 

(240km 

reach) 

Biancamaria 

et al. (2011) 

LEnKF+ 

LEnKS 

Hydrodynamic 

model + precip 

errors 

d (140km 

swath, 22-day 

orbit) + white 

noise 

d 
Ob River 

(1120km) 

Yoon et al. 

(2012) 

EnKF+ 

LEnKS 

Hydrodynamic 

model + precip 

errors/z errors/z 

spatial auto-

correlation 

H, S, w (140km 

swath, 22-day 

orbit) + white 

noise 

Z, d 
Ohio basin 

river system 

Yoon et al. 

(2013) 
LSTOK - 

d (140km 

swath, 22-d 

orbit) + white 

noise 

d at times 

with no 

SWOT obs 

Tennessee 

River 

(1050km) 

Andreadis 

and 

Schumann 

(2014) 

LEnTKF 

Hydrodynamic 

model + sampling 

historical simulation 

H, w, Ai (multi 

sat missions) + 

white noise 

Initial 

condition to 

forecast 

model 

Ohio River 

(500km 

reach) 

Pedinotti et 

al. (2014) 
EKF 

Hydrologic model 

(0.5°×0.5° pixels) + 

n errors 

d (140km 

swath, 22-d 

orbit) + white 

noise 

n 
Whole Niger 

basin 

Paiva et al. 

(2015) 
RK 

Space-time Q 

covariance from 

diffusive wave 

approx. St-Venant 

eq 

d, S, w, Q 

(140km swath, 

22-day orbit) + 

white noise 

Q at times 

with no 

SWOT obs 

Ganges-

Brahmaputra-

Meghna river 

system in 

Bangladesh 

Munier et al. 

(2015) 

LEnKS 

+ MPC 

Hydrodynamic 

model & reservoir 

model + precip 

errors 

d (120km 

swath, 21-d 

orbit) + white 

noise 

d + 

optimized 

reservoir 

release 

Upper Niger 

basin and 

Selingue 

reservoir 

 1228 

1229 
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Table 5 Published SWOT-related studies on lakes and reservoirs  1230 

Reference Method SWOT obs. Study domain 

Biancamaria et 

al. (2010) 

Parametrization of global 

annual storage variation 

Lakes area > (250m)
2
 

and height variations> 

SWOT height accuracy 

Extrapolation of 

global lakes 

distribution 

Lee et al. (2010) 

Lake storage change from 

optical image, satellite 

altimetry, in situ gage and 

parametrization 

δH with white noise 

function of lake area 

(140km swath, 3-day 

and 22-day orbit) 

Multiple Arctic 

lakes 

Munier et al. 

(2015) 

Hydrologic model, 

hydrodynamic model + DA of 

SWOT obs., reservoir model 

+ release optimization 

d (120km swath, 21-

day orbit) + white 

noise 

Upper Niger basin 

and Selingue 

reservoir 

1231 
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Fig. 1 Time-space diagrams of continental water surface processes and SWOT observation window. 1232 

Inspired from Blöschl and Sivapalan (1995) and Skøien et al (2003) 1233 

1234 
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Fig. 2 Conceptual view of the future SWOT mission with its principal payloads: the Ka-band Radar 1235 

Interferometer (KaRIn, with the observed swaths shown by the yellow polygons) and a Ku-band 1236 

nadir altimeter (yellow line). Satellite size and altitude are not to scale compared to the Google 1237 

Earth background image (South West of France), but the ground swaths are (background image: 1238 

Google earth, Landsat image, data SIO, NOAA, U.S. Navy, NGA, GEBCO) 1239 

 1240 
 1241 

 1242 

 1243 

 1244 

1245 
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 1246 

Fig. 3 Number of SWOT revisits per orbit repeat period (21 days) over the continents (ocean have 1247 

been masked, but ocean data will also be provided) in between 78°S and 78°N (a.) and a zoom over 1248 

the Lower Amazon (b.). Over the Lower Amazon, white diamonds with magenta boundaries 1249 

corresponds to observation gaps due to the orbit intertrack distance 1250 
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 1253 

Fig. 4 SWOT observations mask (black bars correspond to an observation) along 30°E meridian 1254 

versus days (during an orbit repeat period) 1255 

 1256 
 1257 
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Fig. 5 Conceptual sketches of SWOT Observing System Simulation Experiments (OSSE) using 1259 

optimal interpolation (a.) or data assimilation (b.) 1260 

1261 
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Fig. 6 Cumulative lake storage change (in % of the total lake storage change of the ensemble mean) 1262 

versus lake area for 100 realizations of the log-normal random distribution of the annual water level 1263 

variation estimated by Biancamaria et al. 2010. The ensemble mean corresponds to the green curve 1264 
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