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Abstract

We prove that deciding if a diagram of the unknot can be untangled using at most
k Reidemeister moves (where k is part of the input) is NP-hard. We also prove that
several natural questions regarding links in the 3-sphere are NP-hard, including detecting
whether a link contains a trivial sublink with n components, computing the unlinking
number of a link, and computing a variety of link invariants related to four-dimensional
topology (such as the 4-ball Euler characteristic, the slicing number, and the 4-dimensional
clasp number).
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1 Introduction

Unknot recognition via Reidemeister moves. The unknot recognition problem asks
whether a given knot is the unknot. Decidability of this problem was established by Haken [Hak61],
and since then several other algorithms were constructed (see, e.g., the survey of Lack-
enby [Lac17a]).

One can ask, naively, if one can decide whether a given knot diagram represents the unknot
simply by untangling the diagram: trying various Reidemeister moves until there are no more
crossings. A first issue is that one might need to increase the number of crossings at some
point in this untangling: examples of “hard unknots” witnessing this necessity can be found
in Kaufman and Lambropoulou [KL14]. The problem then, obviously, is knowing when to
stop: if we have not been able to untangle the diagram using so many moves, is the knot in
question necessarily knotted or should we keep on trying?

In [HL01], Hass and Lagarias gave an explicit (albeit rather large) bound on the num-
ber of Reidemeister moves needed to untangle a diagram of the unknot. Lackenby [Lac15]
improved the bound to polynomial thus showing that the unknot recognition problem is in
NP (this was previously proved in [HLP99]). The unknot recognition problem is also in co-
NP [Lac16] (assuming the Generalized Riemann Hypothesis, this was previously shown by
Kuperberg [Kup14]). Thus if the unknot recognition problem were NP-complete (or co-NP-
complete) we would have that NP and co-NP coincide which is commonly believed not to
be the case; see, e.g., [GJ79, Section 7.1]. This suggests that the unknot recognition problem
is not NP-hard.

It is therefore natural to ask if there is a way to use Reidemeister moves leading to a
better solution than a generic brute-force search. Our main result suggests that there may
be serious difficulties in such an approach: given a 3-SAT instance Φ we construct an unknot
diagram and a number k, so that the diagram can be untangled using at most k Reidemeister
moves if and only if Φ is satisfiable. Hence any algorithm that can calculate the minimal
number of Reidemeister moves needed to untangle unknot diagrams – an algorithm that can
actually unknot the diagram optimally – will be robust enough to tackle any problem in NP.

The main result of this paper is:

Theorem 1. Given an unknot diagram D and an integer k, deciding if D can be untangled
using at most k Reidemeister moves is NP-complete.
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NP-membership follows from the result of Lackenby [Lac15], so we only show NP-
hardness. For the reduction in the proof of Theorem 1 we have to construct arbitrarily
large diagrams of the unknot. The difficulty in the proof is to establish tools powerful enough
to provide useful lower bounds on the minimal number of Reidemeister moves needed to un-
tangle these diagrams. For instance, the algebraic methods of Hass and Nowik [HN10] do
not appear strong enough for our reduction. It is also quite easy to modify the construction
and give more easily lower bounds on the number of Reidemeister moves needed to untangle
unlinks if one allows the use of arbitrarily many components of diagrams with constant size,
but those techniques too cannot be used for Theorem 1. We develop the necessary tools in
Section 4.

Computational problems for links. Our approach for proving Theorem 1 partially builds
on techniques to encode satisfiability instances using Hopf links and Borromean rings, that we
previously used in [dMRST18] (though the technical details are very different). With these
techniques, we also show that a variety of link invariants are NP-hard to compute. Precisely,
we prove:

Theorem 2. Given a link diagram L and an integer k, the following problems are NP-hard:

(a) deciding whether L admits a trivial unlink with k components as a sublink.

(b) deciding whether an intermediate invariant has value k on L,

(c) deciding whether χ4(L) = 0,

(d) deciding whether L admits a smoothly slice sublink with k components.

We refer to Definition 12 for the definitions of χ4(L), the 4-ball Euler characteristic, and in-
termediate invariants. These are broadly related to the topology of the 4-ball, and include the
unlinking number, the ribbon number, the slicing number, the concordance unlinking num-
ber, the concordance ribbon number, the concordance slicing number, and the 4-dimensional
clasp number. See, e.g., [Shi74] for a discussion of many intermediate invariants.

Related complexity results. The complexity of computational problems pertaining to
knots and links is quite poorly understood. In particular, only very few computational lower
bounds are known, and as far as we know, almost none concern classical knots (i.e., knots
embedded in S3): apart from our Theorem 1, the only other such hardness proof we know
of [KS, Sam18] concerns counting coloring invariants (i.e., representations of the fundamental
group) of knots. More lower bounds are known for classical links. Lackenby [Lac17b] showed
that determining if a link is a sublink of another one is NP-hard. Our results strengthen this
by showing that even finding an n-component unlink as a sublink is already NP-hard. Agol,
Hass and Thurston [AHT06] showed that computing the genus of a knot in a 3-manifold
is NP-hard, and Lackenby [Lac17b] showed that computing the Thurston complexity of a
link in S3 is also NP-hard. Our results complement this by showing that the 4-dimensional
version of this problem is also NP-hard.

Regarding upper bounds, the current state of knowledge is only slightly better. While, as
we mentioned before, it is now known that the unknot recognition problem is in NP∩ co-NP,
many natural link invariants are not even known to be decidable. In particular, this is the
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case for all the invariants for which we prove NP-hardness, except for the problem of finding
the maximal number of components of a trivial sublink, which is in NP (see Theorem 4).

Shortly before we finished our manuscript, Koenig and Tsvietkova posted a preprint [KT18]
that also shows that certain computational problems on links are NP-hard, with some over-
lap with the results obtained in this paper (the trivial sublink problem and the unlinking
number). They also show NP-hardness of computing the number of Reidemeister moves for
getting between two diagrams of the unlink, but their construction does not untangle the di-
agram and requires arbitrarily many components. Theorem 1 of the current paper is stronger
and answers Question 17 of [KT18].

Organization. This paper is organized as follows. After some preliminaries in Section 2,
we start by proving the hardness of the trivial sublink problem in Part I because it is very
simple and provides a good introduction for our other reductions. We then proceed to prove
Theorem 1 in Part II and the hardness of the unlinking number and the other invariants in
Part III. The three parts are independent and the reader can read any one part alone.

2 Preliminaries

Notation. Most of the notation we use is standard. By knot we mean a tame piecewise
linear embedding of the circle S1 into the 3-sphere S3. By link we mean a tame, piecewise
linear embedding of the disjoint union of any finite number of copies of S1. We use interval
notation for natural numbers, for example, [3, 5] means {3, 4, 5}; we use [12] to indicate [1, 12].
We assume basic familiarity with computational complexity and knot theory, and refer to basic
textbooks such as Arora and Barak [AB09] for the former and Rolfsen [Rol90] for the latter.

Diagram of a knot or a link. All the computational problems that we study in this paper
take as input the diagram of a knot or a link, which we define here.

A diagram of a knot is a piecewise linear map D : S1 → R2 in general position; for
such a map, every point in R2 has at most two preimages, and there are finitely many
points in R2 with exactly two preimages (called crossings). Locally at crossing two arcs cross
each other transversely, and the diagram contains the information of which arc passes ‘over’
and which ‘under’. This we usually depict by interrupting the arc that passes under. (A
diagram usually arises as a composition of a (piecewise linear) knot κ : S1 → R3 and a generic
projection π : R3 → R2 which also induces ‘over’ and ‘under’ information.) We usually identify
a diagram D with its image in R2 together with the information about underpasses/overpasses
at crossings; see, for example, Figure 3, ignoring the notation on the picture. Diagrams are
considered up-to isotopy.

Similarly, a diagram of a link is a piecewise linear map D :
∐
S1 → R2 in general position,

where
∐

denotes a disjoint union of a finite number of circles S1, and with the same additional
information at the crossings.

By an arc in the diagram D we mean a set D(α) where α is an arc in S1, i.e., a subset
of S1 homeomorphic to the closed interval (note that this definition is slightly non-standard
but it will be very useful later on).

The size of a knot or a link diagram is its number of crossings plus number of components
of the link. Up to a constant factor, this complexity exactly describes the complexity of
encoding the combinatorial information contained in a knot or link diagram.
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3-satisfiability. A formula in conjunctive normal form in variables x1, . . . , xn is a Boolean
formula of the form c1 ∧ c2 ∧ · · · ∧ cm where each ci is a clause, that is, a formula of the form
(`1∨`2∨· · ·∨`k) where each `j is a literal, that is, a variable xt or its negation ¬xt. A formula
Φ is satisfiable if there is an assignment to the variables (each variable is assigned true or
false) such that Φ evaluates to true in the given assignment.

A 3-SAT problem is a well-known NP-hard problem. On input there is a formula Φ
in conjunctive normal form such that every clause contains exactly1 three variables; see,
e.g., [Pap94, Proposition 9.2].

Part I

Trivial sublink

Informally, the trivial sublink problem asks, given a link L and a positive integer n, whether
L admits the n-component unlink as a sublink. We define:

Definition 3 (The Trivial Sublink Problem). An unlink, or a trivial link, is a link in S3

whose components bound disjointly embedded disks. A trivial sublink of a link L is an unlink
formed by a subset of the components of L. The trivial sublink problem asks, given a link L
and a positive integer n, whether L admits an n component trivial sublink.

Theorem 4. The trivial sublink problem is NP-complete.

Note that Theorem 4 is just a slight extension of Theorem 2(a), claiming also NP-
membership. The essential part is NP-hardness.

Proof. It follows from Hass, Lagarias, and Pippenger [HLP99] that deciding if a link is trivial
is in NP. By adding to their certificate a collection of n components of L we obtain a
certificate for the trivial sublink problem, showing that it is in NP (NP-membership of
the trivial sublink problem was also established, using completely different techniques, by
Lachenby [Lac15]). Thus all we need to show is that the problem is NP-hard. We will show
this by reducing 3-SAT to the trivial sublink problem.

Given a 3-SAT instance Φ, with n variables (say x1, . . . , xn) and m clauses, we construct a
diagram DΦ as follows (see Figure 1): we first mark n+m disjoint disks in the plane. In each
of the first n disks we draw a diagram of the Hopf link, marking the components in the ith
disk as κxi and κ¬xi . In the remaining m disks we draw diagrams of the Borromean rings and
label them according to the clauses of Φ. We now band each component of the Borromean
rings to the Hopf link component with the same label. Whenever two bands cross we have
one move over the other (with no “weaving”); we assume, as we may, that no two bands cross
twice. It is easy to see that this can be done in polynomial time. The diagram we obtain is
DΦ and the link it represents is denoted LΦ (note that LΦ has exactly 2n components). We
complete the proof by showing that LΦ admits an n-component trivial sublink exactly when
Φ is satisfiable.

Claim 4.1. If Φ is satisfiable then LΦ admits an n-component trivial sublink.

1Here we adopt a convention from [Pap94]. Some other authors define require only ‘at most three’ literals.
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Figure 1: DΦ for Φ = (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ t), a satisfying assignment is dashed.

Given a satisfying assignment we remove from LΦ the components that correspond to
satisfied literals, that is, if xi = true we remove κxi from LΦ and if xi = false we remove
κ¬xi from LΦ. We claim that the remaining n components form an unlink. To see this,
first note that since the assignment is satisfying, from each copy of the Borromean rings at
least one component was removed. Therefore the rings fall apart and (since we did not allow
“weaving”) the diagram obtained retracts into the first n disks. In each of these disks we
had, originally, a copy of the Hopf link; by construction exactly one component was removed.
This shows that the link obtained is indeed the n-component unlink; Claim 4.1 follows.

Claim 4.2. If LΦ admits an n-component trivial sublink, then Φ is satisfiable.

Suppose that LΦ admits an n-component trivial sublink U . Since U itself does not admit
the Hopf link as a sublink, for each i, at most one of κxi and κ¬xi is in U . Since U has n
components we see that exactly one of κxi and κ¬xi is in U . If κxi is in U we set xi = false
and if κ¬xi is in U we set xi = true. Now since U does not admit the Borromean rings as a
sublink, from each copy of the Borromean rings at least one component is not in U . It follows
that in each clause of Φ at least one literal is satisfied, that is, the assignment satisfies Φ;
Claim 4.2 follows.

This completes the proof of Theorem 4.
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Part II

The number of Reidemeister moves for
untangling

3 A restricted form of the satisfiability problem

For the proof of Theorem 1, we will need a slightly restricted form of the 3-SAT problem
given by lemma below.

Lemma 5. Deciding whether a formula Φ in conjunctive normal form is satisfiable is NP-
hard even if we assume the following conditions on Φ.

• Each clause contains exactly three literals.

• No clause contains both x and ¬x for some variable x.

• Each pair of literals {`1, `2} occurs in at most one clause.

Proof. The first condition says that we consider the 3-SAT problem. Any clause violating
the second condition can be removed from the formula without affecting satisfiability of the
formula as such clause is always satisfied. Therefore, it is sufficient to provide a recipe to
build in polynomial time a formula Φ satisfying the three conditions above out of a formula
Φ′ satisfying only the first two conditions.

First, we consider an auxiliary formula

Ψ = Ψ(t, a, b, c) = (t ∨ a ∨ ¬b) ∧ (t ∨ b ∨ ¬c) ∧ (t ∨ c ∨ ¬a) ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c).

We observe that for any satisfying assignment of Ψ we get that t is assigned true. Indeed, if
t were assigned false then (t∨a∨¬b)∧ (t∨ b∨¬c)∧ (t∨ c∨¬a) translates as (b⇒ a)∧ (c⇒
b) ∧ (a⇒ c), that is all a, b, and c are equivalent. However, then (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)
cannot be satisfied.

On the other hand, we also observe that there is a satisfying assignment for Ψ where t is
assigned true and, for example, it is sufficient to assign a with true, b with false and c
arbitrarily.

Now we return to the formula Φ′ discussed above. Suppose there exists a pair literals `1
and `2 contained in two clauses of Φ′, say (`1 ∨ `2 ∨ `3) and (`1 ∨ `2 ∨ `4). We replace them
with

(`1 ∨ `2 ∨ x) ∧ (`3 ∨ ¬x ∨ ¬t1) ∧ (`4 ∨ ¬x ∨ ¬t2) ∧Ψ(t1, a1, b1, c1) ∧Ψ(t2, a2, b2, c2),

where x, t1, t2, a1, a2, b1, b2, c1, and c2 are newly added variables, obtaining a new formula Φ′′.
We aim to show that Φ′′ is satisfiable if and only if Φ′ is satisfiable.

Let us first assume that Φ′ is satisfiable and fix a satisfying assignment. If `1 ∨ `2 is true
in this assignment, then we may extend it to variables of Φ′′ by setting x to false, t1 and t2
to true and a1, . . . , c2 so that Ψ(t1, a1, b1, c1)∧Ψ(t2, a2, b2, c2) is satisfied. If `1 ∨ `2 is false
in the assignment for Φ′, then `3 and `4 must be assigned true. Then we may extend by
setting x to true and t1, t2, a1, . . . , c2 as before.
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Figure 2: Reidemeister moves.

Now let us assume that Φ′′ is satisfiable. Then t1 and t2 are set to true due to the
properties of Ψ. If x is true, then both `3 and `4 must be true and the restriction of the
assignment on Φ′′ to the variables of Φ′ is therefore a satisfying assignment for Φ′. Similarly,
if x is false, then `1 ∨ `2 must be true and the restriction is again a satisfying assignment
for Φ′.

We also observe that in Φ′′ we have reduced the number of clauses containing the literals
`1 and `2 simultaneously, and for any other pair of literals we do not increase the number
of clauses containing that pair. Therefore, after a polynomial number of steps, when always
adding new variables, we arrive at a desired formula Φ satisfying all three conditions.

4 The defect

Reidemeister moves. Reidemeister moves are local modifications of a diagram depicted in
Figure 2 (the labels at the crossings in a III move will be used only later on). We distinguish
the I move (left), the II move (middle) and the III move (right). The first two moves affect the
number of crossings, thus we further distinguish the I− and the II− moves which reduce the
number of crossings from the I+ and the II+ moves which increase the number of crossings.

The number of Reidemeister moves for untangling a knot. A diagram of the unknot
is untangled if it does not contain any crossings. The untangled diagram is denoted by U .
Given a diagram D of an unknot, an untangling of D is a sequence D = (D0, . . . , Dk) where
D0 = D, Dk = U (recall that diagrams are only considered up to isotopy) and Di is obtained
from Di−1 by a single Reidemeister move. The number of Reidemeister moves in D is denoted
by rm(D), that is, rm(D) = k. We also define rm(D) := min rm(D) where the minimum is
taken over all untanglings D of D.

The defect. Let us denote by cross(D) the number of crossings in D. Then the defect of
an untangling D is defined by the formula

def(D) := 2 rm(D)− cross(D).

The defect of a diagram D is defined as def(D) := 2 rm(D)−cross(D). Equivalently, def(D) =
min def(D) where the minimum is taken over all untanglings D of D.

The defect is a convenient way to reparametrize the number of Reidemeister moves due
to the following observation.

Observation 6. For any diagram D of the unknot and any untangling D of D we have
def(D) ≥ 0. Equality holds if and only if D uses only II− moves.
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This notion of defect is different from the one that was introduced by Chang and Er-
ickson [CE17] (following Arnold [Arn94a, Arn94b] and Aicardi [Aic94]) to study homotopy
moves.

Proof. Every Reidemeister move in D = (D0, . . . , Dk) removes at most two crossings and
the II− move is the only move that removes exactly two crossings. Therefore, the number
of crossings in D = D0 is at most 2k and equality holds if and only if every move is a II−

move.

Crossings contributing to the defect. Let D = (D0, . . . , Dk) be an untangling of a
diagram D = D0 of an unknot.

Given a crossing ri in Di, for 0 ≤ i ≤ k − 1, it may vanish by the move transforming Di

into Di+1 if this is a I− or a II− move affecting the crossing. In all other cases it survives and
we denote by ri+1 the corresponding crossing in Di+1. Note that in the case of a III move
there are three crossings affected by the move and three crossings afterwards. Both before
and after, each crossing is the unique intersection between a pair of the three arcs of the knot
that appear in this portion of the diagram. So we may say that these three crossings survive
the move though they change their actual geometric positions (they swap the order in which
they occur along each of the three arcs); see Figure 2.

With a slight abuse of terminology, by a crossing in D we mean a maximal sequence
r = (ra, ra+1, . . . , rb) such that ri+1 is the crossing in Di+1 corresponding to ri in Di for any
i ∈ [a, b − 1]. By maximality we mean that rb vanishes after the (b + 1)st move and either
a = 0 or ra is introduced by the ath Reidemeister move (which must be a I+ or II+ move).

An initial crossing is a crossing r = (r0, r1, . . . , rb) in D. Initial crossings in D are in
one-to-one correspondence with crossings in D = D0. For simplicity of notation, r0 is also
denoted r (as a crossing in D).

A Reidemeister II− move in D is economical if both crossings removed by this move are
initial crossings; otherwise, it is wasteful.

Let m3(r) be the number of III moves affecting a crossing r. The weight of an initial
crossing r is defined in the following way.

w(r) =
2

3
m3(r) +


0 if r vanishes by an economical II− move;
1 if r vanishes by a I− move;
2 if r vanishes by a wasteful II− move.

For later purposes, we also define w(r) := w(r) and w(R) :=
∑

r∈R w(r) for a subset R of
the set of all crossings in D.

Lemma 7. Let D be an untangling of a diagram D. Then

def(D) ≥
∑
r

w(r),

where the sum is over all initial crossings r of D.

Proof. In the proof we use the discharging technique, common in graph theory.
Let us put charges on crossings in D and on Reidemeister moves used in D. The initial

charge will be

2 on each Reidemeister move;
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−1 on each initial crossing; and

0 on each non-initial crossing.

We remark that the sum of the initial charges equals to def(D) by the definition of the
defect.

Now we start redistributing the charge according to the rules described below. The aim
is that, after the redistribution, the charge on each initial crossing will be at least w(r) and
it will be at least 0 on non-initial crossings and on Reidemeister moves. This will prove the
lemma, as the sum of the charges after the redistribution is still equal to the defect, whereas
it will be at least the sum of the weights of initial crossings.

We apply the following rules for the redistribution of the charge.

(R1) Every I+ move sends charge 2 to the (non-initial) crossing it creates.

(R2) Every I− move sends charge 2 to the crossing it removes.

(R3) Every II+ move sends charge 1 to each of the two (non-initial) crossings it creates.

(R4) Every economical II− move sends charge 1 to each of the two (initial) crossings it
removes.

(R5) Every wasteful II− move that removes exactly one initial crossing sends charge 3 to this
initial crossing.

(R6) Every III move sends 2
3 to every crossing it affects.

(R7) Every non-initial crossing which is removed by a wasteful II− move sends charge 1 to
this move.

Now it is routine to check that the desired conditions are satisfied, which we now explain.
Every move has charge at least 0: The initial charge on moves is 2. The rules are set up

so that every move distributes charge at most 2 with exception of the rule (R5). However,
in this case, the wasteful II− move that removes exactly one initial crossing from (R5) gets 1
charge from rule (R7).

Every non-initial crossing has charge at least 0: The initial charge is 0. The only rule that
depletes the charge is (R7); however in such case, the charge is replenished by (R1) or (R3).

Every initial crossing r has charge equal at least w(r): The initial charge is −1. First we
observe that (R6) sends the charge 2

3m3(r) to r. If r vanishes by an economical II− move, it
gets additional charge 1 by (R4). If r vanishes by a I− move, it gets additional charge 2 by
(R2). Finally, if r vanishes by a wasteful II− move then this move removes exactly one initial
crossing, namely r. Therefore r gets an additional charge 3 by (R5).

We will also need a variant for the previous lemma where we get equality, if we use the
I− and II− moves only.

Lemma 8. Let D be an untangling of a digram D which uses the I− and II− moves only.
Then

def(D) =
∑
r

w(r) = number of I− moves,

where the sum is over all initial crossings r of D.
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Proof. Let k1 be the number of initial crossings removed by a I− move and k2 the number of
initial crossings removed by a II− move. Then rm(D) = k1 + k2/2 and from the definition
of the defect we get def(D) = 2(k1 + k2/2) − (k1 + k2) = k1. It follows directly from the
definition of the weight that k1 =

∑
r
w(r).

Twins and the preimage of a bigon. Let r be an initial crossing in an untangling
D = (D0, . . . , Dk) removed by an economical II− move. The twin of r, denoted by t(r) is
the other crossing in D removed by the same II− move. Note that t(r) is also an initial
crossing (because the move is economical). We also get t(t(r)) = r. If r = (r0, . . . , rb), then
we also extend the definition of a twin to Di in such a way that t(ri) is uniquely defined by
t(r) = (t(r0), . . . , t(rb)). In particular, we will often use a twin t(r) of a crossing r = r0 in D
(if it exists).

Furthermore, the crossings rb and t(rb) in Db form a bigon that is removed by the forth-
coming II− move. Let αb(r) and βb(r) be the two arcs of the bigon (with endpoints rb and
t(rb)) so that αb(r) is the arc that, after extending slightly, overpasses the crossings rb and
t(rb) whereas a slight extension of βb(r) underpasses these crossings. (The reader may re-
member this as α is ‘above’ and β is ‘below’.)2 Now we can inductively define arcs αi(r) and
βi(r) for i ∈ [0, b− 1] so that αi(r) and βi(r) are the unique arcs between ri and t(ri) which
are transformed to (already defined) αi+1(r) and βi+1(r) by the (i+ 1)st Reidemeister move.
We also set α(r) = α0(r) and β(r) = β0(r). Intuitively, α(r) and β(r) form a preimage of the
bigon removed by the bth move and they are called the preimage arcs between r and t(r).

Close neighbors. Let R be a subset of the set of crossings in D. Let r and s be any two
crossings in D (not necessarily in R) and let c be a non-negative integer. We say that r and s
are c-close neighbors with respect to R if r and s can be connected by two arcs α and β such
that

• α enters r and s as an overpass;

• β enters r and s as an underpass;

• α and β may have self-crossings; however, neither r nor s is in the interior of α or β;
and

• α and β together contain at most c crossings from R in their interiors. (If there is a
crossing in the interior of both α and β, this crossing is counted only once.)

Lemma 9. Let R be a subset of the set of crossings in D, let c ∈ {0, 1, 2, 3}. Let r be the
crossing in R which is the first of the crossings in R removed by an economical II− move (we
allow a draw). If w(R) ≤ c, then r and its twin t(r) are c-close neighbors with respect to R.

Proof. Let α(r) and β(r) be the preimage arcs between r and t(r). We want to verify that
they satisfy the properties of the arcs from the definition of the close neighbors. The first two
properties follow immediately from the definition of preimage arcs.

Next, we want to check that neither r nor t(r) is the interior of α(r) or β(r). For con-
tradiction, let us assume that this not the case. For example, suppose that r also lies in the

2Note that αb(r) and βb(r) are uniquely defined by r as well as by r. The choice of r in the notation will
be more useful later on.
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δ(x)

ε(x)

p[x] q[x]

p[¬x] q[¬x]
r(x)

s10(x)

s12(x)s9(x)

s11(x)

s5(x)

s6(x)

s8(x)

s7(x)

s2(x)

s4(x)s1(x)

s3(x)

γ1[x]

γ2[x]

γ1[¬x]

γ2[¬x]

x tentacle

¬x tentacle

a1(x) a5(x)

a2(x)

a4(x) a6(x)

a3(x)

Figure 3: The variable gadget V (x).

interior of α(r). Let r = (r, r1, . . . , rb) be the initial crossing corresponding to r. The (b+1)st
Reidemeister move in D removes r. Any preceding Reidemeister move either does not affect r
at all, or it is a III move swapping the crossing with other crossings. In any case, it preserves
the self-crossing of α(r) at r. However, this contradicts the fact that α(rb) is an arc of a bigon
removed by the (b+ 1)st move.

In order to check the last property, let us assume that, for contradiction, α(r) and β(r)
together contain at least c + 1 crossings from R(x) in their interiors. These crossings have
to be removed from the arcs α(r) and β(r) until we reach α(rb) and β(rb). They cannot be
removed by an economical II− move as r is the first crossing from R(x) removed by such a
move. Thus they have to be removed from the arcs either by a I− move, a wasteful II move
or a III move (by swapping with r or t(r)). This contradicts w(x) ≤ c. Indeed, if only I− and
II− moves are used, we get a total weight at least c + 1 on the crossings; if at least one III
move is used, we get a weight at least (c+ 1) · 2

3 on the crossings and an additional 2
3 on r or

t(r). This is in total more than c as c ≤ 3.

5 The reduction

Let Φ be a formula in conjunctive normal form satisfying the conditions stated in Lemma 5
and let n be the number of variables. Our aim is to build a diagram D(Φ) by a polynomial-
time algorithm such that def(D(Φ)) ≤ n if and only if Φ is satisfiable.

The variable gadget. First we describe the variable gadget. For every variable x we
consider the diagram depicted at Figure 3 and we denote it V (x).

The gadget contains 17 crossings p[x], p[¬x], q[x], q[¬x], r(x) and si(x) for i ∈ [12].
The variable gadget also contains six distinguished arcs γi[x] and γi[¬x] for i ∈ [2], δ(x)

and ε(x) and six distinguished auxiliary points a1(x), . . . , a6(x) which will be useful later on
in order to describe how the variable gadget is used in the diagram D(Φ).

We also call the arc between a1(x) and a2(x) which contains γ1[¬x] and γ2[¬x] the ¬x
tentacle, and similarly, the arc between a2(x) and a3(x) which contains γ1[x] and γ2[x] is the
x tentacle. Informally, a satisfying assignment to Φ will correspond to the choice whether
we will decide to remove first the loop at p[x] by a I− move and simplify the x tentacle or

12



`1
`2

`3

Figure 4: The clause gadget for clause c = (`1 ∨ `2 ∨ `3).

whether we remove first the loop at p[¬x] and remove the ¬x tentacle in the final construction
of D(Φ).

We also remark that in the notation, we use square brackets for objects that come in pairs
and will correspond to a choice of literal ` ∈ {x,¬x}. This regards p[`], q[`], γ1[`] and γ2[`]
whereas we use parentheses for the remaining objects.

The clause gadget. Given a clause c = (`1 ∨ `2 ∨ `3) in Φ, the clause gadget is depicted
at Figure 4. The construction is based on the Borromean rings. It contains three pairs of
arcs (distinguished by color) and with a slight abuse of notation, we refer to each of the three
pairs of arcs as a “ring”. Note that each ring has four pendent endpoints (or leaves) as in the
picture. Each ring corresponds to one of the literals `1, `2, and `3.

A blueprint for the construction. Now we build a blueprint for the construction of
D(Φ). Let x1, . . . , xn be the variables of Φ and let c1, . . . , cm be the clauses of Φ.

For each clause cj = (`1 ∨ `2 ∨ `3) we take a copy of the graph K1,3 (also known as the
star with three leaves). We label the vertices of degree 1 of such a K1,3 by the literals `1, `2,
and `3. Now we draw these stars into the plane sorted along a horizontal line; see Figure 5.

Next for each literal ` ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} we draw a piecewise linear segment
containing all vertices labelled with that literal according to the following rules (follow Fig-
ure 5).

• The segments start on the right of the graphs K1,3 in the top down order x1,¬x1,
x2,¬x2, . . . , xn,¬xn.

• They continue to the left while we permute them to the order x1, . . . , xn, ¬x1, . . . ,¬xn.
We also require that x1, . . . , xn occur above the graphs K1,3 and ¬x1, . . . ,¬xn occur
below these graphs (everything is still on the right of the graphs).

13



Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1 x2

x3

¬x1
x2

¬x3

¬x1 ¬x2

x4

x1
¬x3

¬x4

x1
x2
x3
x4

¬x1
¬x2
¬x3
¬x4

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

c1 c2 c3 c4

Figure 5: A blueprint for the construction of D(Φ).

x1

γ1[x1]

γ1[x1]

γ2[x1]
γ2[x1]

Step I

Figure 6: Step I: Replacing segments.

• Next, for each literal ` the segment for ` continues to the left while it makes a ‘detour’
to each vertex v labelled `. If v is not the leftmost vertex labelled `, then the detour is
performed by a ‘finger’ of two parallel lines. We require that the finger avoids the graphs
K1,3 except of the vertex v. If v is the leftmost vertex labelled `, then we perform only
a half of the finger so that v becomes the endpoint of the segment.

Note that the segments often intersect each other; however, for any i ∈ [n] the segments
for xi and ¬xi do not intersect (using the assumption that no clause contains both xi and
¬xi).

The final diagram. Finally, we explain how to build the diagram D(Φ) from the blueprint
above.

Step I (four parallel segments): We replace each segment for a literal ` with four parallel
segments; see Figure 6. The outer two will correspond to the arc γ1[`] from the variable
gadget and the inner two will correspond to γ2[`]; compare with Figure 3.

Step II (clause gadgets): We replace each copy of K1,3 by a clause gadget for the corre-
sponding clause c; see Figure 7. Now we aim to describe how is the clause gadget connected
to the quadruples of parallel segments obtained in Step I. Let v be a degree 1 vertex of the
K1,3 we are just replacing. Let ` be the literal which is the label of this vertex. Then c may
or may not be the leftmost clause containing a vertex labelled `.

14



¬x1 ¬x2

x4

¬x1

¬x2

x4

γ1[¬x2]

γ1[¬x2]

γ2[x4]

Step II

γ1[¬x1]

γ1[¬x1]

Figure 7: Step II: Replacing the K1,3.

Step I Step III
`
`′

γ1[`′]
γ2[`′]
γ2[`′]
γ1[`′]

γ1[`]

γ2[`]

Figure 8: Step III: Resolving crossings.

If c is the leftmost clause containing a vertex labelled `, then there are four parallel
segments for ` with pendent endpoints (close to the original position of v) obtained in Step I.
We connect them to the pendent endpoints of the clause gadget (on the ring for `); see ¬x2

and x4 in Figure 7. Note also that at this moment the two γ1[`] arcs introduced in Step I
merge as well as the two γ2[`] arcs merge.

If c is not the leftmost clause labelled ` then there are four parallel segments passing close
to v (forming a tip of a finger from the blueprint). We disconnect the two segments closest
to the tip of the finger and connect them to the pendent endpoints of the clause gadget (on
the ring for `); see ¬x1 in Figure 7.

Step III (resolving crossings): If two segments in the blueprint, corresponding to literals
` and `′ have a crossing, Step I blows up such a crossing into 16 crossing of corresponding
quadruples. We resolve overpasses/underpasses at all these crossings in the same way. That
is, one quadruple overpasses the second quadruple at all 16 crossings; see Figure 8.

However, we require one additional condition on the choice of overpasses/underpasses. If
` and `′ appear simultaneously in some clause c we have 8 crossings on the rings for ` and
`′ in the clause gadget for c. We can assume that the ring of ` passes over the ring of `′ at
all these crossings (otherwise we swap ` and `′). Then for the 16 crossings on segments for `
and `′ we pick the other option, that is we want that the γ1[`] and γ2[`] arcs underpass the
γ1[`′] and γ2[`′] arcs at these crossings. This is a globally consistent choice because we assume
that there is at most one clause containing both ` and `′, this is the third condition in the
statement of Lemma 5.

Step IV (the variable gadgets): Now, for every variable xi, the segments γ1[xi], γ2[xi], γ1[¬xi]
and γ2[¬xi] do not intersect each other. We extend them to a variable gadget as in Figure 9.

15



δ(x1)

ε(x1)

γ1[x1]

γ1[x1]

γ1[¬x1]

x1

¬x1

Step I Step IV

Figure 9: Step IV: Adding the variable gadgets.

δ(x1)

V (x1)

V (x2)

a4(x1) = a1(x2) a6(x1) = a5(x2)

Figure 10: Step V: Interconnecting the variable gadgets.

Namely, to the bottom right endpoints of γ1[xi], γ2[xi], γ1[¬xi] and γ2[¬xi] we glue the parts
of the variable gadget containing the crossings p[xi] and p[¬xi] and to the top right endpoints
of γ1[xi], γ2[xi], γ1[¬xi] and γ2[¬xi] we glue the remainder of the variable gadget. At this
moment, we obtain a diagram of a link, where each link component has a diagram isotopic
to the diagram on Figure 3.

Step V (interconnecting the variable gadgets): Finally, we form a connected sum of indi-
vidual components. Namely, for every i ∈ [n − 1] we perform the knot sum along the arcs
δ(xi) and ε(xi+1) by removing them and identifying a4(xi) with a1(xi+1) and a6(xi) with
a5(xi+1) as on Figure 10. The arcs δ(x1) and ε(xn) remain untouched. This way we obtain
the desired unknot diagram D(Φ); see Figure 11.

The core of the NP-hardness reduction is the following theorem.

Theorem 10. Let Φ be a formula in conjunctive normal form with n variables satisfying the
conditions in the statement of Lemma 5. Then def(D(Φ)) ≤ n if and only if Φ is satisfiable.

Theorem 1 immediately follows from Theorem 10 and Lemma 5:

Proof of Theorem 1 modulo Theorem 10. Due to the definition of the defect, the minimum
number of Reidemeister moves required to untangle D equals 1

2(def(D(Φ)) + cross(D(Φ))).
Therefore, setting k = 1

2(n + cross(D(Φ)), Theorem 10 gives that D(Φ) can be untangled
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Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1

x2 x3
x4

¬x1
¬x2

¬x3
¬x4

Figure 11: The final construction for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧
(¬x1∨¬x2∨x4)∧ (x1∨¬x3∨¬x4). For simplicity of the picture, we do not visualize how the
crossings are resolved in Step III. (Unfortunately, we cannot avoid tiny pictures of gadgets.)

I− II− II− II−p[`]

Figure 12: Initial simplifications.

with at most k moves if and only if Φ is satisfiable. This gives the required NP-hardness via
Lemma 5. (Note also, that D(Φ) and k can be constructed in polynomial time in the size of
Φ.)

The remainder of this section is devoted to the proof of Theorem 10.

5.1 Satisfiable implies small defect

The purpose of this subsection is to prove the ‘if’ implication of Theorem 10. That is we are
given a satisfiable Φ and we aim to show that def(D(Φ)) ≤ n.

Let us consider a satisfying assignment. For any literal ` assigned true we first remove
the loop at the p[`] vertex in the variable gadget (see Figure 3) by a I− move. This way, we
use one I− move on each variable gadget, that is n such moves. Next we aim to show that it
is possible to finish the untangling of the diagram by II− moves only. As soon as we do this,
we get an untangling with defect n by Lemma 8 which will finish the proof.

Thus it remains to finish the untangling with II− moves only. We again pick ` assigned
true and we start shrinking the ` tentacle by II− moves. This way we completely shrink γ1[`]
and γ2[`] as due to the construction as all arcs that meet γ1[`] simultaneously meet γ2[`] and
vice versa. See Figure 12 for the initial I− move and a few initial II− moves. Furthermore we
can continue shrinking the ` tentacle until we get a loop next to the q[`] vertex; see Figure 13.
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V (xi)

q[¬`]

q[`]
p[¬`]

` = ¬xi

Figure 13: The ` tentacle was shrunk to a loop next to q[`]. In this example we have ` = ¬xi.

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)
TRUE

TRUE

FALSE

TRUE

V (x1)

V (x2)

V (x3)

V (x4)

Figure 14: Simplifying the tentacles according to a satisfying assignment x1 = x2 = x4 =
true, x3 = false.

We continue the same process for every literal ` assigned true. In the intermediate steps,
some of the other arcs meeting γ1[`] and γ2[`] might have already been removed. However, it
is still possible to simplify the ` tentacle as before. See Figure 14 for the result after shrinking
all tentacles assigned true.

Because we assume that we started with a satisfying assignment, in each clause gadget at
least one ring among the three Borromean rings disappears. Consequently, if there are two
remaining rings in some clause gadget, then they can be pulled apart from each other by II−

moves as in Figure 15.
After this step, for each ` assigned true, the γ1[¬`] and γ2[¬`] form ‘fingers’ of four

parallel curves. These fingers can be further simplified by II− moves so that any crossings
among different fingers are removed; see Figure 16. For each variable gadget V (x) we get one
of the two possible pictures at Figure 17 left. Both of them simplify to the picture on the
right by three further II− moves.

Finally, we recall how the variable gadgets are interconnected (compare the right picture
at Figure 17 with Figure 10). Then it is easy to remove all remaining 2n crossings by II−

moves gradually from top to bottom. This finishes the proof of the ‘if’ part of Theorem 10.
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2 steps

Figure 15: Untangling two rings in the clause gadget via II− moves.

Figure 16: Simplifying γ1[¬`] and γ2[¬`] via II− moves. First, we untangle the inner (hori-
zontal) ‘finger’ and then we untangle the outer (horizontal) ‘finger’.

p[x] q[x]

q[¬x]

p[¬x]

q[x]

q[¬x]

x assigned TRUE

x assigned FALSE

Figure 17: Results of the simplifications on the previous picture on the level of variable
gadgets.
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5.2 Small defect implies satisfiable

The purpose of this subsection is to prove the ‘only if’ part of the statement of Theorem 10.
Recall that this means that we assume def(D(Φ)) ≤ n and we want to deduce that Φ is satis-
fiable. (Along the way we will actually also deduce that def(D(Φ)) = n.) In this subsection,
we heavily use the terminology introduced in Section 4.

Let D = (D0, . . . , Dk) be an untangling of D with def(D) ≤ n. For a variable x let
R(x) = {p[x], p[¬x], q[x], q[¬x], s1(x), . . . , s12(x)} be the set of 16 out of the 17 self-crossings
in the variable gadget V (x) (we leave out r(x)) and let the weight of x, denoted by w(x), be
the sum of weights of the crossings in R(x).

Our first aim is to analyze the first economical II− move that removes some of the crossings
in R(x), using Lemma 9.

Claim 10.1. Let x be a variable with w(x) ≤ 1. Let r be the first crossing in R(x) which
is removed by an economical II− move (we allow a draw). Then one of the following cases
holds:

(i) {r, t(r)} = {s1(x), s2(x)}, w(p[x]) = w(x) = 1 and p[x] is removed by a I− move prior
to removing r and t(r).

(ii) {r, t(r)} = {s1(x), s3(x)}, w(p[¬x]) = w(x) = 1 and p[¬x] is removed by a I− move
prior to removing r and t(r).

Before we start the proof, we remark that the condition w(x) ≤ 1 implies that there are
(at least 15) crossings in R(x) removed by economical II− moves. In particular, r in the
statement always exists.

Proof. First, we need to identify the possible pairs {r, t(r)} where r ∈ R(x). Such pairs are
found by a case analysis, using Lemma 9 with c = 1 and R = R(x). We emphasize that
here r is a variable, not to be confused with the crossings labelled r(x), for which we have
r(x) 6∈ R(x) (by definition of R(x)).

The general strategy is the following. For each element of R(x) we consider whether it
may be r. We analyze possible arcs α and β from the definition of c-close neighbors.

There are two directions in which α may emanate from r. For each direction we allow up
to one internal crossing from R(x) on α, getting a candidate position for t(r) (even if α passes
through other variable gadgets we count only the crossings from R(x)). We immediately
disregard the cases when α passes through r again (this is not allowed by the third item of
the definition of close neighbors). We also emphasize that we are interested only in the cases
when α enters the candidate t(r) as an overpass.

Next, we refocus on β; again there are two possible directions and we again identify
possible the possible position of t(r) (this time entered as an underpass).

Finally, we compare the lists of candidate positions for t(r) obtained for α and for β; it
must be possible to obtain t(r) in both ways.

The candidate positions of t(r) as an endpoint of α and as an endpoint of β are summarized
in Table 1; and they can be easily found with the aid of Figure 3. Note that it follows from
the construction of D(Φ) that δ(x) and ε(x) are (usually) not in D(Φ). For considerations
in the table, we denote by δ′(x) the arc in D(Φ) between the points a1(x) and a5(x) which
avoids r(x) (equivalently, any other crossing in V (x)). Similarly, we let ε′(x) denote the arc
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Choice of r t(r) in α t(r) in β Overlap

p[x] γ2[x] γ1[x], s2(x), s4(x) ∅
p[¬x] γ2[¬x], s3(x), s4(x) γ1[¬x] ∅
s1(x) γ1[¬x], γ2[¬x], s3(x), s2(x) γ2[x], γ1[x], s2(x), s3(x) s2(x), s3(x)
s2(x) s1(x), γ1[¬x] γ1[x], p[x], γ2[x], s1(x), s4(x) s1(x)
s3(x) γ2[¬x], p[¬x], γ1[¬x], s1(x), s4(x) s1(x), γ2[x] s1(x)
s4(x) s3(x), γ2[¬x], p[¬x] s2(x), γ1[x], p[x] ∅
s5(x) s6(x) s7(x) ∅
s6(x) s5(x) s8(x), q[¬x] ∅
s7(x) s8(x), q[x] s5(x) ∅
s8(x) s7(x), q[x] s6(x), q[¬x] ∅
q[x] s7(x), s8(x) s9(x), s11(x) ∅
q[¬x] s9(x), s10(x) s6(x), s8(x) ∅
s9(x) separate analysis
s10(x) s9(x), q[¬x], δ′(x), r(x), ε′(x) s12(x) ∅
s11(x) s12(x) s9(x), q[x], r(x), ε′(x), δ′(x) ∅
s12(x) s11(x) s10(x) ∅

Table 1: Possible positions for t(r) depending on r in Claim 10.1.

in D(Φ) between the points a4(x) and a6(x) which avoids r(x). The table also misses values
for r = s9(x) which requires a separate analysis.

In order to avoid any ambiguity, we explain how the first row of the table is obtained,
considering the case r = p[x] (follow Figure 3):

We know that α may emanate to the left or to the right. Emanating to the left is
immediately ruled out as we reach p[x] again in the next crossing. Emanating to the right
allows t(r) to be some crossing on γ2[x] or seemingly it may be s1(x) or s3(x); however s1(x)
and s3(x) are entered by α as an underpass, so they cannot be t(r). Therefore the only option,
from the point of view of α, is that t(r) belongs to γ2[x], as marked in Table 1. Similarly
when focusing on β, emanating to the left is immediately ruled out whereas emanating to the
right allows t(r) to belong γ1[x] or to be s2(x) or s4(x) (as in the table). We conclude that
for r = p[x] there is no t(r) suitable both for α and β, using the fact that γ1[x] and γ2[x]
do not intersect (in the whole D(Φ)). (This is marked by the ∅ in the overlap column.) We
deduce that r cannot be p[x].

In general, for identifying the overlaps for other options of r, we use that no two of the
arcs γ1[x], γ2[x], γ1[¬x], γ2[¬x] intersect.

Next, we want to rule out the case r = s9(x) because this is not covered by Table 1.
Considering the possible arcs α, we get the following options for t(r): q[¬x], s10(x), δ′(x),
r(x), ε′(x), and from the point of view of β, we have the following options for t(r): q[x],
s11(x), r(x), ε′(x), δ′(x). Therefore, there are r(x), δ′(x) and ε′(x) in the overlap (in addition
δ′(x) and ε′(x) may intersect). However, if we want to reach r(x), δ′(x) or ε′(x) with α we
have to pass through s10(x). Similarly, β has to pass through s11(x). But this violates the
condition that α and β together have at most c = 1 point of R(x) in their interiors.

By checking Table 1 and by the paragraph above we deduce that the only two options for
{r, t(r)} are {s1(x), s2(x)} and {s1(x), s3(x)}. By checking possible α and β we get:

• {r, t(r)} = {s1(x), s2(x)}, α is the arc directly connecting s1(x) and s2(x) containing
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no other crossings and β is the arc connecting s1(x) and s2(x) passing (twice) through
p[x]; or

• {r, t(r)} = {s1(x), s3(x)}, α is the arc connecting s1(x) and s3(x) passing (twice)
through p[¬x] and β is the arc directly connecting s1(x) and s3(x) containing no other
crossings.

Let us first focus on the first case above. Before removing s1(x) and s2(x) the crossing p[x]
has to be removed from the arc β. This can be done, in principle, by a I− move, a wasteful
II− move, or p[x] can be swapped with s1(x) or s2(x) by a III move before removing s1(x)
and s2(x).

Removing p[x] by a I− move is the desired conclusion (i) given that in this case we have
w(p[x]) ≥ 1 (because of the I− move) as well as w(p[x]) ≤ w(x) ≤ 1 (from the assumptions of
the claim); therefore w(p[x]) = w(x) = 1 as required.

Removing p[x] by a wasteful II− move is impossible as we would have w(p[x]) ≥ 2 whereas
w(x) ≤ 1 by the assumption of the claim.

Similarly, swapping p[x] with s1(x) or s2(x) is impossible as we would have w(p[x]) +
w(s1(x)) + w(s2(x)) ≥ 2 · 2

3 but w(x) ≤ 1 again.
Conclusion (ii) follows analogously from the second case.

Now, let us set ` := `(x) := x if the conclusion (i) of Claim 10.1 holds and ` := `(x) := ¬x
if the conclusion (ii) holds (assuming w(x) ≤ 1). (We identify ¬¬x with x, that is, if ` = ¬x,
then ¬` = x.)

Claim 10.2. If w(x) ≤ 1, then p[¬`] and q[¬`] are twins. In addition, the preimage arcs α
and β between p[¬`] and q[¬`] contain γ1[¬`] and γ2[¬`].

Proof. Let us set R′(x) := {p[¬`], q[`], q[¬`], s9(x), s10(x), s11(x), s12(x)}. Intuitively, the
crossings of R′(x) are those crossings of R(x) that do not meet the arc from q[`] to q[`]
containing p[`]; see Figure 18.

All r′ ∈ R′(x) have w(r′) = 0 as w(x) = w(p[`]) = 1 by Claim 10.1. In particular, all such
r′ are removed by an economical II− move. Let r be the first of these elements removed by
an economical II− move. Let α and β be the arcs from Lemma 9 with R = R′ and c = 0.

Now we perform a similar inspection as in the proof of Claim 10.1. This time c = 0, thus
we do not allow any internal crossing on arcs α and β. Most of the cases are straightforward
and we refer to Table 2 for the possible α and β; δ′(x) and ε′(x) play the same role as in the
proof of the previous claim. The only exception is that we need to rule out the case r = q[`]
separately:

Let us therefore assume that r = q[`]. First we want to observe that both α and β
emanate from q[¬`] to the left. Indeed, if α emanates to the right, then necessarily ` = ¬x
and t(r) = s9(x) but we do not have a suitable β for this case. Similarly, if β emanates to
the right, then ` = x and t(r) = s9(x) but we do not have a suitable α.

Now we know that both α and β emanate to the left. This means that both α and β are
subarcs of the arc with both endpoints q[`] left from q[`] (if ` = x, this is the grey arc on
the Figure 18). In particular, t(r) has to be a selfcrossing of this arc, and there is only one
option, namely t(r) = p[`]. However, here we crucially use Claim 10.1, the twin of q[`] cannot
be p[`] as p[`] is removed by a I− move. This rules out the case r = q[`].
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δ′(x)

q[x]

p[¬x] q[¬x]
r(x)

s10(x)

s12(x)s9(x)

s11(x)

γ1[¬x]

γ2[¬x]

` = x

p[x]

s5(x)

s6(x)

s8(x)

s7(x)

s2(x)

s4(x)s1(x)

s3(x)

γ1[x]

γ2[x]

ε′(x)

a1(x)

a4(x)

a5(x)

a6(x)

Figure 18: The crossings of R′(x) in the variable gadget in case ` = x.

Choice of r t(r) in α t(r) in β Overlap

p[¬`] if ` = x γ2[¬`], s3(x), s4(x), q[¬`] γ1[¬`], s6(x), s8(x), q[¬`] q[¬`]
p[¬`] if ` = ¬x γ2[¬`], s7(x), s8(x), q[¬`] γ1[¬`], s2(x), s4(x), q[¬`] q[¬`]
q[`] separate analysis
q[¬`] if ` = x s4(x), s3(x), γ2[¬`], p[¬`], s9(x) s8(x), s6(x), γ1[¬`], p[¬`] p[¬`]
q[¬`] if ` = ¬x s8(x), s7(x), γ2[¬`], p[¬`] s4(x), s2(x), γ1[¬`], p[¬`], s9(x) p[¬`]
s9(x) q[¬x], s10(x) q[x], s11(x) ∅
s10(x) s9(x), δ(x), r(x), ε(x) s12(x) ∅
s11(x) s12(x) s9(x), r(x), ε(x), δ(x) ∅
s12(x) s11(x) s10(x) ∅

Table 2: Possible positions for t(r) depending on r in Claim 10.2.
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Therefore, it follows from Table 2 that {r, t(r)} = {p[¬`], q[¬`]}. In addition, a further
inspection of the variable gadget also reveals that α contains γ2[¬`] and β contains γ1[¬`] as
desired.

Now, we have acquired enough tools to finish the proof of the theorem. By Claim 10.1,
we have w(x) ≥ 1 for any variable x. By Lemma 7, we deduce

def(D) ≥
∑
x

w(x) ≥ n,

where the sum is over all variables. On the other hand, we assume def(D) ≤ n. Therefore
both inequalities above have to be equalities and in particular w(x) = 1 for any variable x.
In particular, the assumptions of Claims 10.1 and 10.2 are satisfied for any variable x.

Given a variable x, we assign x with true if the conclusion (i) of Claim 10.1 holds (that
is, if x = `(x)). Otherwise, if the conclusion (ii) of Claim 10.1 holds (i.e. ¬x = `(x)), we set
x to false. It remains to prove that we get a satisfying assignment this way.

For contradiction, suppose there is a clause c = (`1 ∨ `2 ∨ `3) which is not satisfied with
this assignment. Let xi be the variable of `i, that is, `i = xi or `i = ¬xi. The fact that c is
not satisfied with the assignment above translates as `(xi) = ¬`i for any i ∈ {1, 2, 3}.

By Claim 10.2, we get that p[`i] and q[`i] are twins for any i ∈ {1, 2, 3}. Let R′′(c) be
the set of crossings in these Borromeans union the sets {p[`i], q[`i]} for i ∈ {1, 2, 3}. All the
crossings in R′′(c) have weight 0 and they have to be removed by economical II− moves as
all defect is realized on points p[`(x)] for all variables x (but p[`i] = p[¬`(xi)] are not among
these points).

Let r be the first removed crossing among the crossings in R′′(c). First, we observe that r
cannot be any of p[`i] or q[`i] for i ∈ {1, 2, 3}. This follows from Claim 10.2 as the arcs γ1[`i]
and γ2[`i] contain some crossings in R′′(c).

Next we apply Lemma 9 (for 0-close neighbors) with R = R′′(c). By symmetry of the
clause gadget, it is sufficient to consider the cases that r is one of the crossings u1, . . . , u8 on
Figure 19 between the rings for `1 and `2.

Let α and β be the arcs between r and t(r) from the definition of 0-close neighbors. We
can immediately rule out r ∈ {u4, u5, u6, u7, u8} by an easy inspection as in Claim 10.2 (this is
easy because we always hit a crossing from R′′(c) by possible α and β). Therefore it remains
to consider the case r ∈ {u1, u2, u3}.

Now let us consider the case r = u3. The only option for α is to emanate to the left reaching
the crossing u1 as emanating to the right reaches a crossing from R′′(c) as an underpass.
Consequently, β has to emanate to the right since emanating to the left would reach u4.
However, before β reaches u1, it has to pass through p[`2] or q[`2] which rules out this option.

The case r = u2 is ruled out analogously.
It remains to consider the case r = u1. We have already ruled out the case that the twin

t(r) would be u2 or u3 (it is sufficient to swap r and t(r) in the previous considerations). Thus
α has to emanate to the left from u1 whereas β has to emanate to the right. The first point
of R′′(c) that α reaches is p[`1] or q[`1] while the first point of R′′(c) that β reaches is p[`2] or
q[`2]. Therefore t(r) must be some crossing of γ1[`1] and γ1[`2] while α is a subarc of γ1[`1]
and β is a subarc of γ1[`2]. On the one hand, such crossing may exist. On the other hand, α
reaches such a crossing always as an underpass and β as an overpass due to our convention
in Step III of the construction of D(Φ). Therefore, we do not get admissible α and β. This
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γ1[`1] γ1[`2]

γ1[`3]

u1

u2 u3

u4

u5

u6 u7

u8

γ2[`2]γ2[`1]

γ2[`3]

Figure 19: The clause gadget with crossings u1, . . . , u8.

contradicts the existence of r. Therefore, the suggested assignment is satisfying. This finishes
the proof.

Part III

Hard link invariants

6 Intermediate invariants

In this section we describe the family of link invariants from the statement of Theorem 2. The
material presented here is standard and details can be found in various textbooks; since every
piecewise linear knot can be smoothed in a unique way, we assume that the knots discussed
are smooth. In Part III we work in the smooth category. We first define:

Definition 11. Let L be a link in the 3-sphere. We now give a list of the invariants that we
will be using; for a detailed discussion see, for example, [Rol90].

1. A smooth slice surface for L is an orientable surface with no closed components, properly
and smoothly embedded in the 4-ball, whose boundary is L. Recall that every link
bounds an orientable surface in S3 (a Seifert surface); by pushing the interior of that
Seifert surface into the 4-ball we see that every link bounds a smooth slice surface.

2. The 4-ball Euler characteristic of L, denoted χ4(L), is the largest integer so that L
bounds a smooth slice surface of Euler characteristic χ4(L). Since a smooth slice surface
has no closed components, its Euler characteristic is at most the number of components
of L; in particular, χ4(L) exists.

3. A link is called smoothly slice if it bounds a slice surface that consists entirely of disks;
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equivalently, the χ4(L) equals the number of components of L. Note that unlinks are
smoothly slice (but not only unlinks).

4. The unlinking number, denoted u(L), is the smallest nonnegative integer so that L
admits some diagram D so that after u(L) crossing changes on D a trivial link is
obtained.

5. The ribbon number, denoted ur(L), is the smallest nonnegative integer so that L admits
some diagram D so that after ur(L) crossing changes on D a ribbon link is obtained
(see [Rol90] for the definition of ribbon link).

6. The slicing number, denoted us(L), is the smallest nonnegative integer so that L admits
some diagram D so that after us(L) crossing changes on D a smoothly slice link is
obtained.

7. Links L0, L1 ⊂ S3 are called concordant if there exists a smooth embedding f : L0 ×
[0, 1] → Sn × [0, 1], so that f(L0 × {0}) = L0 × {0} and f(L0 × {1}) = L1 × {1}.
Equivalently, there exists a union of smooth annuli A, properly embedded in S3× [0, 1],
so that A ∩ (S3 × {0}) = L0 × {0} and A ∩ (S3 × {1}) = L1 × {1}.

8. The concordance unlinking number, denoted uc(L), is the minimum of the unlinking
number over the concordance class of L.

9. The concordance ribbon number, denoted ucr(L), is the minimum of the ribbon number
over the concordance class of L.

10. The concordance slicing number, denoted ucs(L), is the minimum of the slicing number
over the concordance class of L.

11. By transversality, every link L bounds smoothly immersed disks in B4 with finitely many
double points. The 4-dimensional clasp number (sometimes called the 4-ball crossing
number) of L, denoted cs(L), is the minimal number of double points for such disks.

Finally, we define intermediate invariants, whose existence follows from Theorem 2 of [Shi74].

Definition 12 (intermediate invariant). A real valued link invariant i(L) is called an inter-
mediate invariant if

u(L) ≥ i(L) ≥ cs(L).

Many invariants are known to be intermediate (see, for example, [Shi74]). We list a few
here:

Lemma 13. The invariants u, ur, us, uc, ucr, ucs and cs are all intermediate.

Proof. It is well known that the unlink is ribbon and a ribbon link is slice, and therefore

u ≥ ur ≥ us and uc ≥ ucr ≥ ucs

Since any link is in its own concordance class we have

us ≥ ucs and u ≥ uc
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Combining these we see that

u ≥ ur ≥ us ≥ ucs and u ≥ uc ≥ ucr ≥ ucs

Therefore it suffices to show that ucs ≥ cs. To see this, decompose B4 (the unit ball in R4)
as B4 = X1 ∪X2 ∪X3 where here:

X1 =
{
~x ∈ R4

∣∣ 0.6 < |~x| ≤ 1
}

(∼= S3 × (0, 1])

X2 =
{
~x ∈ R4

∣∣ 0.3 < |~x| < 0.7
}

(∼= S3 × (0, 1))

and
X3 =

{
~x ∈ R4

∣∣ |~x| < 0.4
}

(∼= intB4)

We used open intersections to guarantee smoothness.
Let L′ be a link in the concordance class of L that minimizes us, that is, us(L

′) = ucs(L).
Since L and L′ are concordant there exists disjoint annuli A, smoothly embedded in S3×[0, 1],
so that A ∩ (S3 × {0}) = L × {0} and A ∩ (S3 × {1}) = L′ × {1}. Since X1

∼= S3 × (0, 1],
there exist disjoint annuli A1, smoothly embedded in X1, so that A1 ∩ ∂X1 = L (note that
∂X1 = S3) and

A1 ∩ (S3 × (0.6, 0.7)) = L′ × (0.6, 0.7)

Suppose that L′ has µ components and let k denote us(L
′). Let L′′ be a slice link obtained

from L′ after k crossing changes, and let S denote the disjoint union of µ circles (so L′ is an
embedding of S into S3). Then there is a smooth homotopy F : S × (0.3, 0.7)→ S3 realizing
k crossing changes, that is:

(i) F (·, t) = L′ for 0.6 < t < 0.7.

(ii) F (·, t) = L′′ for 0.3 < t < 0.4.

(iii) There are k values 0.4 < t1 < · · · < tk < .06 so that F (·, ti) has exactly one transverse
double point.

(iv) For any other value t we have that F (·, t) is a smooth embedding of S.

Define F̂ : S × (0.3, 0.7)→ X2 by

F̂ (p, t) = (F (p, t), t)

Denote the image of F̂ by A2. Then A2 are µ smoothly immersed annuli with exactly k
transverse double points. Note that

A1 ∩ (X1 ∩X2) = A2 ∩ (X1 ∩X2)

Since L′′ is a smoothly slice link with µ components it bounds µ smooth disks disjointly
embedded in B4. Since X3

∼= intB4, this induces a smooth embedding D ⊂ X3, where here
D are µ disks, so that D ∩ (S3 × (0.3, 0.4)) = L′′ × (0.3, 0.4). Note that

A2 ∩ (X2 ∩X3) = D ∩ (X2 ∩X3)

It is now clear that
A1 ∪A2 ∪D
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is a smooth immersion of µ disks with exactly k double points, showing that

ucs(L) ≤ cs(L)

Finally we prove:

Lemma 14. Let L be a link with µ components. Then

χ4(L) ≥ µ− 2cs(L).

Sketch of proof. This was shown by Shibuya [Shi74]; for the convenience of the reader we
sketch the proof here. Given µ disks with cs(L) double points, we endow each disk with an
orientation. One can replace a neighborhood of a double point with an annulus in a way that
agrees with the chosen orientation. The result is a smooth orientable surface F whose Euler
characteristic is µ− 2cs(L).

7 A certain signature calculation.

In this section we calculate the signature of certain links; this will be used in the next section.
The signature is an integer valued link invariant, defined for knots by Trotter in [Tro62] and
generalized for links by Murasugi in [Mur65].

Since the signature is covered in many standard texts about knots and links we will only
summarize how to calculate it:

1. Given a link a L, first construct a Seifert surface for L, that is, an embedded, orientable
surface F , with no closed components, whose boundary is L. F need not be connected.

2. Next construct embedded oriented curves {ai} on F that form a basis for H1(F ;Z).

3. Arbitrarily fix a co-orientation on each component of F (that is, directions “above” and
“below” F ). We define a+

i and a−i to be parallel copies of ai pushed slightly above and
below F .

4. The Seifert matrix M is the square matrix whose ijth entry is lk(a+
i , a

−
j ), the linking

number of a+
i and a−j . Note that although the linking number is a symmetric function,

the matrix M need not be symmetric. Note also that whenever ai ∩ aj = ∅, the ijth
entry of M is simply lk(ai, aj).

5. The signature of L, denoted σ(L), is the signature of the symmetric bilinear form on
H1(F ;Z) defined by M +MT ; explicitly, it is the number of positive entries minus the
number of negative entries after diagonalizing M +MT .

It is quite surprising that σ(L) is a link invariant, that is, independent of the choices made.
Nevertheless, it is known to be an invariant and a very useful one at that, as we shall see in
the next section.

We now define:
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positive twisted (twist knot) positive negative

Figure 20: Some Whitehead doubles

Definition 15 (Whitehead Double). Let L be a link. A Whitehead double of L is a link
obtained by taking two parallel copies of each component of L and joining them together
with a clasp (see Figure 20). A Whitehead double is called positive if the crossings at the
clasp are positive. If the linking number of the two copies of each component is zero the
Whitehead double is called untwisted. It is easy to see that the untwisted positive Whitehead
double is uniquely determined by L.

Lemma 16. The signature of the positive untwisted Whitehead double of the Hopf link is 2.

Proof. An untwisted Whitehead double of the Hopf link bounds F , two disjointly embedded
once punctured tori (see Figure 21). In that figure each torus is seen as a “flat” annulus with
a twisted band attached near the top. The tori are co-oriented to the positive side above the
“flat” annulus. In that figure we marked a1, a2, a3, a4, ordered generators for H1(F,Z). This
gives the Seifert matrix:

M =


1 0 0 0
1 0 0 1
0 0 1 0
0 1 1 0

 (1)

Symmetrizing M we get

M +MT =


2 1 0 0
1 0 0 2
0 0 2 1
0 2 1 0


A straightforward calculation shows that the signature is 2.

Before stating the next lemma we describe the type of link we will be dealing with.
Let L be a link with an even number of components, say 2n, so that L can be written as
L = L1 ∪ · · · ∪ Ln satisfying the following conditions:

1. (∀i) Li is the positive untwisted Whitehead double of the Hopf link.

2. Each Li bounds Fi, a co-oriented disjoint union of two once punctured tori, as in Fig-

ure 21. Let a
(i)
1 , a

(i)
2 , a

(i)
3 , a

(i)
4 denote the generators for H1(Fi;Z), again as in the figure.

3. (∀i 6= i′) Fi ∩ Fi′ = ∅.
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a2

a1 a3

a4

∪ =

Figure 21: Top: the untwisted Whitehead double of an unknot bounds a flat annulus with a
twisted band. Bottom: the positive untwisted Whitehead double of the Hopf link, a Seifert
surface and generators of its homology.
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4. (∀i 6= i′)(∀j, j′) lk(a
(i)
j , a

(i′)
j′ ) = 0.

For a link L as above we have:

Lemma 17. σ(L) = 2n.

Proof. With the conventions above we have that F = F1 ∪ · · · ∪ Fn is an oriented Seifert
surface for L. We will use

a
(1)
1 , a

(1)
2 , a

(1)
3 , a

(1)
4 , . . . , a

(n)
3 , a

(n)
4

as an ordered set of generators for H1(F ;Z). We obtain a Seifert matrix that along the
diagonal has 4×4 identical blocks, each identical to the Seifert matrix of the positive untwisted
Whitehead double of the Hopf link (given in the proof of Lemma (16)). For generators

corresponding to i 6= i′ we have, by assumption, that lk(a
(j)
i , a

(j′)
i′ ) = 0. Thus all the remaining

entries are zero. This shows that the signature is the sum of the signatures of the 4×4 blocks,
and the lemma follows from Lemma 16.

8 Unlinking, 4-ball Euler characteristic, and intermediate in-
variants.

In this section we will show that several link invariants are NP-hard (see the invariants
defined in Definition 11). Recall the definition of the positive untwisted Whitehead double
(Definition 15 and Figures 20 and 21). One last piece of background we will need is a result
of A. Levine [Lev12]. Theorem 1.1 of [Lev12] implies, in particular:

Lemma 18. The untwisted positive Whitehead double of the Hopf link, and that of the Bor-
romean rings, are not smoothly slice.

We are now ready to describe our construction:

The construction of LWH
Φ . Given a 3-SAT instance Φ, recall the link LΦ from Part I

(Figure 1), and let LWH
Φ be its positive untwisted Whitehead double. Note that there is a

natural bijection between components before and after taking a Whitehead double; let κWH
xi

denote the component corresponding to κxi and let κWH
¬xi denote the component corresponding

to κ¬xi

Remark 19. If we in addition assume3 that no clause of Φ is of the form (`∨ `∨ `) then, by
construction, every component of LΦ is unknotted. Since the Whitehead double of the unknot
is unknotted, we may assume that the components of LWH

Φ in Theorem 20 are all unknotted.

Recall the definition of intermediate invariants (Definition 12) and the examples given in
Lemma 13. The goal of this section is to prove:

Theorem 20. Given a 3-SAT instance Φ with n variables, let LWH
Φ be the link constructed

above. Then the following are equivalent, where here i is any intermediate invariant:

1. Φ is satisfiable.

3This can be easily assumed without affecting NP-hardness. Similarly as in the proof of Lemma 5, we can
replace (` ∨ ` ∨ `) with (` ∨ ¬t1 ∨ ¬t2) where t1 and t2 are new variables forced to be true via the formula Ψ
from the proof of Lemma 5.
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2. u(LWH
Φ ) = n.

3. i(LWH
Φ ) = n.

4. cs(L
WH
Φ ) = n.

5. χ4(LWH
Φ ) = 0.

6. LWH
Φ admits a smoothly slice sublink with n components.

Theorem 2(b)–(d) directly follows from Theorem 20.

Proof. The proof of this Theorem is split in the following steps:

(a) Φ is satisfiable implies that u(LWH
Φ ) ≤ n.

(b) cs(L
WH
Φ ) ≤ i(LWH

Φ ) ≤ u(LWH
Φ ).

(c) χ4(LWH
Φ ) ≥ 2n− 2cs(L

WH
Φ ).

(d) If χ4(LWH
Φ ) ≥ 0 then the following two conditions hold:

(d.I) χ4(LWH
Φ ) = 0

(d.II) LWH
Φ admits a smoothly slice sublink with n components.

(e) If LWH
Φ admits a smoothly slice sublink with n components, then Φ is satisfiable.

We first show how (a)—(e) prove Theorem 20. Assume first that Φ is satisfiable. Then
by (a) and (b) we have that cs(L

WH
Φ ) ≤ n, and by (c) we have that χ4(LWH

Φ ) ≥ 0. Then (d.I)
shows that χ4(LWH

Φ ) = 0. Working our way back, we see that cs(L
WH
Φ ) = i(LWH

Φ ) = u(LWH
Φ ) =

n, establishing (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5). In addition, (d.II) shows directly that (5)⇒ (6).
Finally, (e) establishes (6)⇒ (1).

We complete the proof of Theorem 20 by establishing (a)—(e):

(a) Suppose we have a satisfying assignment for Φ (for this implication, cf. the proof of
Theorem 4). By a single crossing change we resolve the clasp of every component that
correspond to a satisfied literal, that is, if xi = true we change one of the crossings
of the clasp of κWH

xi and if xi = false we change one of the crossings of the clasp of
κWH
¬xi ; as a result, the components corresponding to satisfied literals now form unlinks

that are not linked with the remaining components, and we can isotope them away. Since
the assignment is satisfying, from each copy of the Borromean rings at least one ring is
removed, and the remaining components retract into the first n disks that contained the
Hopf links. In each disk we have an untwisted Whitehead double of the unknot which is
itself an unknot. Thus we see that the unlink on 2n component is obtained, showing that
u(LWH

Φ ) ≤ n.

(b) By definition of intermediate invariant we have that cs ≤ i ≤ u.

(c) This is Lemma 14.

(d) Let F be a slice surface for LWH
Φ ; recall that F has no closed components. We will use

the following notation:
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• ν is the number of components of F ;

• {Fi}νi=1 are the components of F ;

• g(Fi) and #∂Fi denote the genus of Fi and the number of its boundary components.

Murasugi [Mur65, Equation 9.4 on Page 416] proved:

∣∣σ(LWH
Φ )

∣∣ ≤ 2
( ν∑
i=1

g(Fi)
)

+ µ− ν (2)

where here µ denotes the number of components of LWH
Φ ; applying Murasugi’s Theorem

with µ = 2n allows us we estimate β1(F ), the first Betti number of F :

Claim 20.1. β1(F ) ≥ 2n.

Proof. Since LWH
Φ has 2n components we have that

∑ν
i=1 #∂Fi = 2n; this is used in ?

below: Since no component of F is closed, β1(Fi) = 2g(Fi) + #∂Fi − 1; this is used in ??
below.

2n =
∣∣σ(LWH

Φ )
∣∣ Lemma 17

≤ 2
( ν∑
i=1

g(Fi)
)

+ 2n− ν Equation (2)

=

ν∑
i=1

(
2g(Fi) + #Fi − 1

)
?

=
ν∑
i=1

β1(Fi) ??

= β1(F )

This completes the proof of the claim.

Next we prove:

Claim 20.2. ν ≥ 2n+ χ(F ).

Proof. Let F≤0 be the ν − r components of F that have nonpositive Euler characteristic;
after reordering we may assume that the components of F≤0 are F1, . . . , Fν−r. Since the
disk components of F contribute exactly +r to χ(F ) we have

ν−r∑
i=1

χ(Fi) = −r + χ(F )

Solving for r we see:

r =
ν−r∑
i=1

(
− χ(Fi)

)
+ χ(F )

=

ν−r∑
i=1

(
2g(Fi) + #Fi − 2

)
+ χ(F ) (3)
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Disk components contribute zero to β1(F ), so β1(F ) =
∑ν−r

i=1 β1(Fi). Thus we have (here
?? is as in Claim 20.1):

ν = r + (ν − r)

=

ν−r∑
i=1

(
2g(Fi) + #∂Fi − 2

)
+ χ(F ) + (ν − r) Equation (3)

=
ν−r∑
i=1

(
2g(Fi) + #∂Fi − 1

)
+ χ(F )

=
ν−r∑
i=1

β1(Fi) + χ(F ) ??

= β1(F ) + χ(F )

≥ 2n+ χ(F ) Claim 20.1

This completes the proof of the claim.

Since F has no closed components we have that ν ≤ 2n. Thus by Claim 20.2 we have
that χ(F ) ≤ 0; this establishes Conclusion (d.I).

Now suppose that χ(F ) = 0. By Claim 20.2 we have that ν = 2n, that is, F has exactly
2n components. Thus each component of F has exactly one boundary component. This
means that F≤0 has exactly 2n − r components and each has strictly negative Euler
characteristic; thus χ(F≤0) ≤ −(2n− r). The r disk components of F contribute exactly
+r to χ(F ) we have that

0 = χ(F ) ≤ −(2n− r) + r = 2r − 2n

that is,
n ≤ r

By construction, the link formed by the boundaries of the disks {Fν−r+1, . . . , Fν} is an
r component smoothly slice sublink of LWH

Φ , and since r ≥ n, this establishes Conclu-
sion (d.II).

(e) Finally, assume that LWH
Φ admits an n component smoothly slice sublink LSLICE. By

Lemma 18 we have that the positive untwisted Whitehead double of the Hopf link is not
a sublink of LSLICE and therefore for each i exactly one of κWH

xi and κWH
¬xi is in LSLICE. If

κWH
xi is in LSLICE we set xi = false and if κWH

¬xi is in LSLICE we set xi = true.

Using Lemma 18 again we see that LSLICE does not admit the positive untwisted White-
head double of the Borromean rings as a sublink. Therefore, from every set of Borromean
rings, at least one component does not belong to LSLICE; it follows that the assignment
above satisfies Φ.
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