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On the Asymptotic Decorrelation of the Wavelet Packet Coefficients
of a Wide-Sense Stationary Random Process

Abdourrahmane M. Atto 1, Dominique Pastor 2, Alexandru Isar 3

Abstract— Consider the wavelet packet coefficients issued from
the decomposition of a random process stationary in the wide-
sense. We address the asymptotic behaviour of the autocorre-
lation of these wavelet packet coefficients. In a first step, we
explain why this analysis is more intricate than that already
achieved by several authors in the case of the standard discrete
orthonormal wavelet decomposition. In a second step, it is shown
that the autocorrelation of the wavelet packet coefficients can be
rendered arbitrarily small provided that both the decomposition
level and the regularity of the quadrature mirror filters are large
enough.

I. INTRODUCTION

CONSIDER a second-order random process and assume
that this random process is stationary in the wide-sense.

The discrete orthonormal wavelet and the wavelet packet
decompositions of this process yield coefficients that are
random variables. Many authors have studied the statistical
correlation of these coefficients, see [1]–[6] amongst others.
In the case of discrete orthonormal wavelet transform, in-scale
coefficients tend to be uncorrelated when the decomposition
level increases. At first sight, it would seem quite reasonable
to consider that the same property remains valid for wavelet
packet coefficients. Unfortunately, the analysis of the auto-
correlation of these wavelet packet coefficients is significantly
more intricate than expected, mainly because of the role played
by the regularity of the quadrature mirror filters. This analysis
is presented below. The proofs of the several theoretical results
stated hereafter are postponed to a forthcoming paper because
of the limited size of the present one.

This paper in organized as follows. In section II, the reader
is reminded with basic results concerning the wavelet packet
decomposition of a wide-sense stationary random process. In
particular, for a given decomposition level, we give the expres-
sion of the autocorrelation function of the discrete sequence
formed by the wavelet packet coefficients. The asymptotic
behaviour of this function is then achieved in two steps. In

1 ENST Bretagne, am.atto@enst-bretagne.fr
2 ENST Bretagne, dominique.pastor@enst-bretagne.fr
3 Univ. ’Politehnica’ din Timisoara, alexandru.isar@etc.upt.ro

section III, the analysis is worked out in the case of the ideal
Shannon wavelet packet decomposition, which employs ideal
quadrature mirror filters [7]. Since quadrature mirror filters
such as the Daubechies and Battle-Lemarié filters tend to
ideal filters when their regularity increases, the asymptotic
behaviour of the autocorrelation function of the wavelet packet
coefficients when such filters are used derives from that
described in section III. This asymptotic behaviour is stated
in section IV. It depends on the wavelet packet decomposition
level as well as the regularity of the filters at hand.

II. THE WAVELET PACKET DECOMPOSITION OF A
WIDE-SENSE STATIONARY RANDOM PROCESS

A. Wavelet packet decomposition
Let m0 and m1 be the Fourier transform of two quadrature

mirror filters such that

m0(ω) =
1√
2

∑

`∈Z

h0[`]e
−i`ω, (1)

and
m1(ω) =

1√
2

∑

`∈Z

h1[`]e
−i`ω. (2)

Let Φ be the scaling function associated to m0. We define
the sequence (Wn)n≥0 of elements of L2(R) by recursively
setting

W2n(t) =
√

2
∑

`∈Z

h0[`]Wn(2t − `) (3)

and
W2n+1(t) =

√
2
∑

`∈Z

h1[`]Wn(2t − `) (4)

with W0 = Φ. We then have W1 = Ψ, where Ψ is the
wavelet function associated to the quadrature mirror filters
under consideration. If we now put

Wj,n(t) = 2−j/2Wn(2−jt), (5)

and

Wj,n,k(t) = τ2jkWj,n(t) = 2−j/2Wn(2−jt − k), (6)



the set {Wj,n,k : k ∈ Z} of wavelet packets is an orthonor-
mal system of vectors of the Hilbert space L2(R). With a
slight abuse of language, the vector space Wj,n generated by
{Wj,n,k : k ∈ Z} will hereafter be called the packet Wj,n. For
every j = 0, 1, 2, · · · , and every n ∈ Ij = {0, 1, · · · , 2j − 1},
the wavelet packet decomposition of the function space W0,0

is obtained by recursively applying the so-called splitting
lemma [8] to every space Wj,n. We thus can write that

Wj,n = Wj+1,2n ⊕Wj+1,2n+1. (7)

The sets {Wj+1,2n,k : k ∈ Z} and {Wj+1,2n+1,k : k ∈ Z}
are orthonormal bases of the vector spaces Wj+1,2n and
Wj+1,2n+1, respectively. The decomposition tree of figure 1
illustrates such a decomposition
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Fig. 1. Wavelet packet decomposition tree down to decomposition level
j = 3.

Remark 1: given j ∈ N, consider a binary sequence
(ε`)`∈{1,2,...,j} of {0, 1}j. Basically, this sequence corresponds
to the sequence mε1 , mε2 , . . . , mεj

of filters successively ap-
plied to calculate the coefficients of the packet Wj,n where

n =

j
∑

`=1

ε`2
j−`. (8)

Readily, n is an element of Ij and the sequence (ε`)`∈{1,2,...,j}

is the unique path issued from W0,0 that leads to Wj,n in the
wavelet packet decomposition tree. Conversely, let n ∈ Ij .
There exists a unique sequence (ε`)`∈{1,2,...,j} of {0, 1}j such
that equation (8) holds true. In the sequel, when a natural
number n and a binary sequence (ε`)`∈{1,2,...,j} of {0, 1}j

satisfy (8), we will say that n and (ε`)`∈{1,2,...,j} are associated
to each other.

Proposition 1: Consider a function Wn (defined from the
recurrence (3) and (4)) where n has the form (8) for some
j > 0. The Fourier transform Ŵn of Wn is given, for every
real value ω, by

Ŵn(ω) =

[

j
∏

`=1

mε`
(

ω

2j+1−`
)

]

Ŵ0(
ω

2j
), (9)

where (ε`)`∈{1,2,...,j} is the binary sequence associated to n.

B. The autocorrelation function of the wavelet packet coeffi-
cients of a wide-sense stationary random process

Let X : R×Ω −→ R be a second-order, centred and wide-
sense stationary random process where Ω is some probability
space. The autocorrelation function of this random process
is denoted by RX (t, s) = E[X(t)X(s)] = RX(t − s). We

assume that X is continuous in quadratic mean. Then, RX is
a continuous function. We also assume that X has a power
spectral density γX , which is the Fourier transform of RX .

Given a decomposition level j and n ∈ Ij , the wavelet
packet decomposition of X returns, at node (j, n), the random
variables

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt, k ∈ Z, (10)

provided that the integral
∫∫

R2

RX(t, s)Wj,n,k(t)Wj,n,k(s)dtds

exists [2].
Let Rcj,n

stand for the autocorrelation function of the
discrete processus cj,n defined by (10). It can be shown that,
for every m ∈ Z

Rcj,n
[m] =

1

2π

∫

R

γX(
ω

2j
)|Ŵn(ω)|2eimωdω. (11)

Our purpose is then to analyse the behaviour of this function
for large values of j. Since n ∈ Ij , the analysis must
take this dependence into account. If n is constant with j,
Lebesgue’s dominated convergence theorem can be used to
compute the limit of Rcj,n

[m] when j grows to infinity. If
n = 0, the result thus obtained is that given in [4], [5]. The
situation becomes more intricate if n is a function of j. For
instance, if we choose n = 2j−L where L ∈ {1, . . . , j − 1},
the behaviour of Rcj,n

[m] when j grows to infinity is no
longer a straightforward consequence of Lebesgue’s dominated
convergence theorem.

The approach proposed below embraces these several cases
by considering the binary sequence associated to a node (j, n)
of the decomposition tree. By so proceeding, the crucial role
played by the regularity of the quadrature mirror filters is
enhanced.

III. ASYMPTOTIC BEHAVIOUR OF THE WAVELET PACKET
COEFFICIENTS FOR THE SHANNON WAVELET PACKET

DECOMPOSITION

The Shannon wavelet packet decomposition corresponds to
the case where the scaling function Φ is ΦS = sinc. The
quadrature mirror filters of this decomposition are the ideal
low and high pass filters mS

0 (ω) =
√

2
∑

`∈Z
χ∆0

(ω − 2π`)

and mS
1 (ω) =

√
2

∑

`∈Z
χ∆1

(ω − 2π`), where χ∆ stands for
the indicator function of the set ∆, ∆0 =

[

−π
2 , π

2

]

, and ∆1 =
[

−π,−π
2 ] ∪ [π

2 , π
]

. The Fourier transform Ŵ S
0 of the scaling

function is then Ŵ S
0 = Φ̂S = χ[−π,π].

According to Coifman et Wickerhauser ( [9], [7, pp. 326-
327]), for every j > 0 and every n ∈ Ij , there exists a unique
p = G[n] ∈ Ij such that |Ŵ S

j,n(ω)| = 2j/2χ∆j,p
(ω), where

W S
n stands for the map Wn recursively defined by (3, 4) when

the pair of quadrature mirror filters is (mS
0 , mS

1 ) and

∆j,p =

[

− (p + 1)π

2j
,−pπ

2j

]

∪
[

pπ

2j
,
(p + 1)π

2j

]

. (12)

The map G permutes the elements of Ij and we can prove
that

G[2n + ε] = 3G[n] + ε − 2

⌊

G[n] + ε

2

⌋

, (13)



where ε ∈ {0, 1} and bzc is the largest integer less than or
equal to z.

With the same notations as those introduced above, we
define, for every natural number j,

γj(ω) =

2j−1
∑

`=0

γX(
`π

2j
) χ∆j,`

(ω), (14)

where ∆j,` is defined according to (12). We then have the
following result.

Proposition 2: Let j be some natural number and n be any
element of Ij . We have that

1

2π

∫

R

γj(
ω

2j
)|Ŵ S

n (ω)|2eimωdω = γX(
pπ

2j
)δ[m], (15)

where δ[m] = 1 if m = 0 and δ[m] = 0 otherwise, p = G[n]
and G is given by (13).

In what follows, given an arbitrary infinite binary sequence
κ = (εk)k ∈ {0, 1}N and any integer j, nj will stand
for the natural number associated to the finite subsequence
(εk)k=1,2,...,j and we set pj = G[nj ].

It is easy to see that the sequences (
njπ
2j )j and (

pjπ
2j )j are

Cauchy. As such, each of them has a unique limit. In particular,
the limit

a(κ) = lim
j→+∞

pjπ

2j
, (16)

will play a crucial role in the sequel. Table I displays the
value of a(κ) for the sequences κ that were employed to
carry out the experiments whose results are given in sec-
tion V. These sequences are κ1 = (0, 0, 0, 0, 0, · · · ), κ2 =
(0, 0, 1, 0, 0, · · · ), κ3 = (0, 1, 0, 0, 0, · · · ), and κ4 =
(1, 0, 0, 0, 0, · · · ). The sequences (nj)j and (pj)j correspond-
ing to these sequences are given in table I.

TABLE I
VALUE OF a(κ) = limj→+∞

pjπ

2j WITH RESPECT TO (nj)j

Sequence κ1 κ2 κ3 κ4

nj for j ≥ 3 0 2j−3 2j−2 2j−1

pj for j ≥ 3 0 2j−2 − 1 2j−1 − 1 2j − 1

a(κ) 0 π
4

π
2

π

Theorem 1: Let κ = (εk)k∈N be a binary sequence of
{0, 1}N. With the notations introduced just above, consider
the packets W

S
j,nj

, j ∈ N.
Let RS

cj,nj
be the autocorrelation function of the Shannon

wavelet packet coefficients cj,nj
at node (j, nj). If a(κ) is a

continuity point of γX , then

lim
j→+∞

RS
cj,nj

[m] = γX(a(κ))δ[m], (17)

Remark 2: the autocorrelation function RS
cj,nj

of the Shan-
non wavelet packet coefficients cj,nj

at node (j, nj) derives
from (11) and is thus given by

RS
cj,nj

[m] =
1

2π

∫

R

γX(
ω

2j
)|Ŵ S

nj
(ω)|2eimωdω. (18)

IV. ASYMPTOTIC BEHAVIOUR OF THE AUTOCORRELATION
FUNCTION OF THE WAVELET PACKETS ASSOCIATED TO A

WIDE-SENSE STATIONARY PROCESS

We now consider non-ideal quadrature mirror filters m0 et
m1. It is known that the multiplicity of the zero of m0 in π

equals the number of null moments of the analysing wavelet
when m0 is either a Daubechies or a Battle-Lemarié filter.
Furthermore, the wavelet regularity increases with the number
of its null moments. We then say that the regularity of a pair
(m0, m1) of quadrature mirror filters is r if the scaling filter
can be written in the form

m0(ω) =

(

1 + e−iω

2

)r

Q(e−iω). (19)

The scaling filter has thus a zero with multiplicity r in ω = π.
This notion of regularity relates to the flatness of the filter
magnitude response.

According to [10]–[12], the standard Daubechies filters
converge pointwise to the ideal Shannon filters when their
regularity tends to infinity. Figure 2 illustrates this convergence
by displaying the magnitude response of the Daubechies
scaling filters with regularity 1, 2, 4, 10, 20, and 40.
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0

0.5

1

1.5

m 0(w)
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Fig. 2. Magnitude response of Daubechies scaling filters. In this figure, dbr
stands for the rth-order Daubechies scaling filter.

The Battle-Lemarié filters satisfy the same property [13].
In what follows, we consider rth-order quadrature mirror

filters that are denoted by (m
[r]
ε )ε∈{0,1}. We then can state the

subsequent result where the notations introduced so far are
used with the same meaning as above.

Theorem 2: Let X be a second-order random process.
Assume that X is centred, stationary in the wide-sense and
continuous in quadratic mean.

Assume that the power spectral density γX of X is bounded,
with support in [−π, π] and continuous at a(κ) where κ is
some binary sequence of {0, 1}N.

For every given regularity r, the wavelet packet coefficients
of W

[r]
j,nj

form a second-order discrete random process whose
correlation function derives from (11) and is equal to

R[r]
cj,nj

[m] =
1

2π

∫

R

γX(
ω

2j
)|Ŵ [r]

nj
(ω)|2eimωdω. (20)

For every given positive real number η > 0, there exists an
integer j0 with the following property : for every natural
number j ≥ j0, there exists r0 = r0(j, nj) such that, for
every r ≥ r0, |R[r]

cj,nj
[m] − γX(a(κ))δ[m]| < η.



V. EXPERIMENTAL RESULTS

A. The role played by the decomposition level
We consider a wavelet packet decomposition tree whose

depth is J = 6. We constructed a random process as follows.
The wavelet coefficients of every packet at decomposition level
6 were set to centred, independent and identically Gaussien
distributed random variables. The value of the variance of
these random variables was randomly chosen. By using the
standard wavelet packet reconstruction algorithm, we obtained
the random process whose spectral density is given by figure
3. When we decompose this random process by using the
same quadrature mirror filters as those used for synthesizing it
and consider the packets Wj,nj

when nj is associated to the
sequences κ1, κ2, κ3, and κ4 of table I, we note that, for j = 3,
some coeffients cj,nj

remain strongly correlated whereas some
others are not (see figure 5).
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Fig. 3. Spectral density of the random process used to illustrate the role
played by the decomposition level.

B. Influence of the regularity
We decompose the same random process as that used above

and whose spectral density is displayed in figure 3. Now, we
use the Daubechies filters with regularity 1 and 20. For the
third decomposition level (j = 3), the results thus obtained
are those of figure 6. This illustrates the role played by the
regularity of the quadrature mirror filters.

C. The limit value of the correlation function
According to theorem 2, if the decomposition level and the

regularity of the filters are both large enough, the correlation
functions must tend to γX(a(κ))δ[m] where γX(a(κ)) is the
value of the spectral density of the random process at a(κ),
a(κ) is given by (16) and κ is some binary sequence.

Let us consider the random process whose spectral density
is that of figure 4.

Quite rapidly, the value of the autocorrelation function at
the origin becomes close to γX(a(κ)). This is pointed out
by figure 7. This figure displays the autocorrelation functions
obtained at the sixth level of the wavelet packet decomposition
tree for the wavelet packets respectively associated to the
sequences κ1, κ2, κ3, and κ4 of table I when the quadrature
mirror filters are the Daubechies filters with regularity 1, 4
and 10. The same figure also pinpoints that all the wavelet
packet coefficients become reasonably uncorrelated when the
regularity of the filters is large enough. This illustrates also
and once again the crucial role played by the regularity of the
quadrature mirror filters.

0 0.5 1 1.5 2 2.5 3 3.5
0.4

0.5

0.6

0.7

0.8

0.9

1

S X(w
)

Fig. 4. Spectral density function of the random process employed to
compute the limit value of the correlation function. This random process was
synthesized by filtering some white noise with an autoregressive filter.

VI. CONCLUSION

This paper provides further details concerning the asymp-
totic behaviour of the autocorrelation function of the wavelet
packet coefficients issued from the decomposition of a wide-
sense stationary random process. By choosing a sufficiently
large decomposition level and, then, by increasing the regular-
ity of the filters with respect to the chosen decomposition level,
the wavelet packet coefficients tend to become uncorrelated.

The result presented in this paper complements thos es-
tablished in [1]–[5] and justifies the assumption on which
many signal processing techniques based on wavelet packet
decompositions are based, namely, that signals are corrupted
by white noise.
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Fig. 5. Autocorrelation function of the wavelet packet coefficients returned
by the decomposition of the random process whose spectral density is that of
figure 3. The decomposition was achieved by using the Daubechies filters with
regularity 7. The first column displays results obtained for j = 3 whereas the
second column concerns j = 6 where j stands for the decomposition level.
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Fig. 6. Autocorrelation functions of the wavelet packet coefficients at
decomposition level j = 3 for the random process with power spectral density
given by figure 3. The first column displays the results obtained with the
Daubechies filters of regularity 1; the second column presents the results
obtained by using the Daubechies filters with regularity 20.
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Fig. 7. The first third columns display the autocorrelation functions of the wavelet packet coefficients obtained by decomposing the random process whose
spectral density is given by figure 4. The values of these functions are representated by −�’s. On each figure, the value of the spectral density function at
a(κ), where κ is a binary sequence, is represented by a �. For each packet, the maximum of the autocorrelation function must be close to this square. The
fourth column displays the differences |R

[r]
cj,nj

[0] − Sx(a(κ))| when the regularities of the Daubechies filters range from 1 to 10, j = 6 et nj = 0, 26−3,
26−2, et 26−1 .


