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FROM NON-PARAMETRIC STATISTICS TO SPEECH DENOISING
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ABSTRACT This paper proposes a new estimator of the noise stan-
dard deviation. The theoretical foundation of this estima-
tor is proposition 3.1, stated in section 3 after exposing

. . . . me preliminary material in ion 2. This theoretical
we present a new estimator of This estimator derives some pre ary material in sectio S theoretica

) ) result is non-parametric in the sense that it makes no as-
from a theoretical result presented and commented in the . G .
: L : . . sumption about the probability distributions of the signal
paper. Without any preliminary signal detection, the esti-

; . . and assumes neither that these signals are identically dis-
mate is performed on the basis of the time-frequency com-_. o
._tributed nor that they have equal probabilities of presence
ponents returned by a standard spectrogram where the Dis- . : T
Section 4 then presents the estimator deriving from

crete Fourier Transform is simply weighted by the square proposition 3.1 and a few preliminary experimental re-

window. No assumption about the signal statistics is made'sults. This estimator is then employed in section 5 to ad-

The 5'9.”.8." time-frequency components are assumed to ha\ﬁﬁst the standard Wiener filtering of the noisy speech signal
probabilities of presence less than or equal to one half.

. . ; : - . introduced above. According to objective performance
This estimator is suited to speech denoising. It avoids y 9 ) P

the use of any Voice Activity Detector and is an alternative measurements, the denoised speech signals are not signif-
Y y icantly more distorted than those achieved when the fil-

solution to subspace approaches. Objective performanc%ering is tuned with the exact value of the noise standard
measurements show that the standard Wiener filtering Ofdeviation

speech signals can be tuned with the outcome of this es- Conclusions and perspectives are given in section 6,
timator without a significant loss in comparison with the

Given some signal additively corrupted by independent
white Gaussian noise with unknown standard deviatipn

measurements obtained when the noise standard deviation 2. PRELIMINARY MATERIAL
is known.
1. MOTIVATION The random vectors and variables are supposed to be de-

fined on the same probability space denoted®yM, P)

Lets[t], ¢ = 1,...,T be the samples of some speech sig- and for every element € €. As usual, if propertyP

nal and suppose that theSesamples are corrupted by ad- Nolds true almost surely, we writé (a-s).

ditive and independent stationary noigé, t = 1,2,..., T Given a positive real value, a sequenc’ = (Xy)ren

so that the samples of the observed signal are of random complex variables is said to beamplex white
Gaussian nois¢CWGN) with standard deviation if the

y[t] = s[t] +z[t],t =1,...,T. (1) random variableX(;, k = 1,2, ..., are complex, mutually

independent and identically Gaussian distributed with nul
We assume that noise is white and Gaussian with null meammean and variance?. The real and imaginary parfsX;,

and standard deviation: for everyt € {1,2,...,T}, andS X, of eachX), form a two-dimensional random vec-

x[t] ~ N(0,02). tor such thatR X, 3X;) ~ N (0, (62/2)1) wherel stands
The Wiener filtering of the noisy speech signate- for the2 x 2 identity matrix.

quires prior knowledge of the noise standard deviation Theminimum amplituda(S) of a sequencs = (Sk)ren

A basic and popular solution consists in using a Voice Ac- of random complex variables is defined by

tivity Detector (VAD): the estimate of is the square root )

of the Maximum Likelihood Estimate (MLE) computed a(§) = sup{a € [0,00] : ¥k € N, [S4] = o (@-5} . (2)
on the basis of the samples of the time frames that thelf f is some map of the set of all the sequences of complex
VAD has detected as noise alone. Subspace approachesandom variables int®, we say that the limit off is ¢ €

can also be used to estimateby computing the smallest R whena(S) tends taxo and write thatim, sy f(S) =
eigenvalues of the noisy speech autocorrelation matréx; th ¢ if, for any positive real value, there exists somd, €
model order is difficult to choose and the computation of (0, co) such that, for everyl > A, and everyS such that

the eigenvalues may prove unstable. a(S) > A, |f(S) -4 <n.



The setL?((2, C) stands for the set of those complex
random variable§” such thatt[|Y'|?] < co. We then de-
fine > (N, L*(Q2, C)) as the set of those sequences=
(Sk)ren Of complex random variables such théif <
L*(Q, C) for everyk € N andsup,,n E[| Sk |?] is finite.

Given arandom variabl€ and a real number, Z(Y <
7) stands for the indicator function of the eveiff < 7}.

As usual, ], is the zeroth-order modified Bessel function
of the first kind. Throughout the rest of the text, we say 'in-
dependent’ instead of 'mutually independent’ for brevity.

3. ATHEORETICAL RESULT

Proposition 3.1 stated below is a corollary of a more gen-

matter of fact, regarding the choice fot we can be very
specific as follows.

For any given non negative real numbeiet 7, stand
for the map defined for every complex valuéy

1 ifz>T
T-(2) = { 0 otherwise.

Clearly, for everyk € N, 7, is a statistical test for mak-
ing a decision on the value ef, since the composite map
T, (Uk) is measurable and@, (Uy) € {0,1}. In what fol-
lows, 7. is called the thresholding test with threshold height
7. The error probability of this test is then the probability
P ({7.(Uy) # e }) of the event{7.(Uy) # ex}. This

(5)

eral theorem established in [6] As an introduction to PFOPO error probabmty does not depend arsince the observa-

sition 3.1, we begin with an intuitive approach. It makes

tionsUy, k € N, are assumed to be iid. This is the reason

the reader understand the main ideas behind propositionyhy we simply denote it by?.{7;}, without mentioning

3.1 and the results given in [6].

Consider a sequenéé = (Yj)ren Of complex ran-
dom variables where ead, is either the sum of some
signal S, and noiseX;, or noise X; alone. We assume
that X = (Xj)ren is @ CWGN with standard deviation
o. For every givenk € N, the presence of noise alone

the observation under consideration.

Since the probability of presence of any sigfal k£ €
nN, is assumed to be less than or equall f&@ and by
taking into account that (see [1, Eq. 9.6.47, p. 377])
Io(x) = oF1(1;22/4), [4, Theorem VII.1] tells us the fol-
lowing. For everyr € R, set

is the null hypothesis whereas the presence of some signal

in noise is the alternative one. We assume that, for ev-

ery k € N, the index of the true hypothesis is a random
variablee, valued in{0, 1} and independent witl§;, and
Xi. We thus can write that, = ¢S, + Xx. Thea

K(z) = Iy (e") /2x 6)

with %(0) 1; for making a decision on the value of
er wherek is any natural number, the error probability

priori probabilities of presence and absence of the signalPe{Zox(4/0) } Of the thresholding test; ;4 /) With thresh-

Ay, are thenP({e;, = 1}) andP({e, = 0}), respectively.

old heightox(A/0o) is less than or equal t@( A /o) where,

Proposition 3.1 significantly reduces the importance of the for any given non-negative real number

choice of these probabilities since they will be assumed to

be upper-bounded.

At this stage, assume that the random variaklgs
k € N, are independent and identically distributed (iid)
as well as the random signafg, £ € N. It follows that
the random vectordy, k € N, are iid as well. Letp
stand for the common value of the probabilities of pres-
enceP({e; = 1}). We assume that < 1/2.

Given some real numbér, set

1 m
Am(T) = — > IIZ(Y| < T)
k=1

According to Kolmogorov's classical strong limit theorem,

lim A,(T) = B[Vi|Z(Y] <T)] @s) ()

m— 00

wherek is any element of1, ..., m}. An easy computa-
tion shows that we can write that

B[V Z(|Yx| <T)]
= (1-p)E[| Xk |Z(| X <T)] x
<1+ p E[|5k+Xk|I(5k+Xk|<T)]). @

l—p  E[X|Z(| Xk <T)]
Let A be a lower bound for the amplitudes of the signals
Sk, k € N. If Ais large enough in comparison with

Q(x)

eiZZ/ | )eftQtIO(th)dt + 367“(1)2. @)
0

We thus can write thalP. {7, (4/,)} < Q(A/0). Inequa-
tion (4), set nowl’ = oh with h = k(A/o). The function
Q(x) decreases very rapidly whenincreases. Hence, for
large values of4, the probabilitiesP ({|X%| > oh}) and
P({|Sr+ Xi| < oh}) are small and, thus, the expectation
E[|Sk + Xk|Z(|Sk + Xk| < oh)] can reasonably be ex-
pected to be significantly smaller th&h| X |Z(| Xx| < oh)].
Sincep is assumed to be less than or equal to one half,
p/(1 — p) is less than or equal tb. Consequently, in a
certain sense to specify, we should be able to prove that

E[Yi|Z(Yi| < oh)]l = (1 = p) E[| Xk|Z(|Xk| < oh)].

Without caring about mathematical exactness, we com-
bine this approximation to the almost surely convergence
of equation (3) to obtain that, in a certain sense,

Am(oh) = (1 =p)E[|Xk|Z(|Xk| < oh)]  (8)

whenm and the amplitudes of the signals are both large.
If we now setB,,(T') = L >\ | Z(|Yx| < oh), the
same type of intuitive approach suggests that

B, (ch) = (1 —p)E [Z(|Xk| < oh)]. 9)

we can reasonably expect the existence of some threshold Consider now the ratiod,,(ch)/B,,(ch). This ra-

T that makes it possible to distinguish noisy signals from
noise alone with a rather small probability of error. As a

tio makes it possible to get rid of the unknown priar



4. ANEW ALGORITHM FOR ESTIMATING THE
NOISE STANDARD DEVIATION

Moreover, sinceX, ~ N.(0,0?), the distribution of Xj|

is known and its density(z) is that of the square of a
Rayleigh distributed variable. Taking into account that th
variance of the real and imaginary partsXf both equal
0?2 /2, this density is given by :

_ [ Cafot)et
Therefore, we easily obtain that[| X |Z(| Xx| < oh)] =
20 [ t2e~t"dt and thatE [Z(|X,| < oh)] = P({X}, <
oh})=1 —e~h, According to these equalities, equations
(3) and (8), we conclude that

On the basis of proposition 3.1, we start by introducing
a discrete cost. A minimum of this discrete cost can be
computed and considered as a first estimate of the noise
standard deviation. This estimate will be called the Es-
sential Supremum Estimate of typ€ESEI) because of
the crucial role played by the essential supremum norm in
its computation. The term ESEwill also stand for the
estimator itself.
Experimental results aimed at assessing the E Sl
gest another estimate of the noise standard deviation. This
new estimate is hereafter called the Essential Supremum
Estimate of typdI (ESEII). The term ESHI will also
d designate the estimator itself. According to Monte-Carlo
experiments of the same type as those mentioned above,
the ESEH performs better than the ESE-

if x>0,

otherwise (10)

h 2 2
Ay (oh) /B (oh) ~ 20/0 e~ dt/(1—e ™). (1)

Once again, this approximation must be understoo
with respect to a certain convergence criterion. This one
is introduced in proposition 3.1. Its more general form is
given in [6]. As a matter of fact, the same type of intuitive
approach as that presented above can be used to guess partl1. The ESEI
of the results established in [6]. Proposition 3.1 and its
extension not only specify the exact meaning of equation Let L be some natural number and sgt= ¢/L, ¢ =

(11) but also significantly extend the conditions of vaiidit

1,2,..., L. Suppose tha#l is some known lower bound

of (11) because they state that the convergence holds trudor the amplitudes of the signal. We thus have) >

even for non iid signals and non iid priors.

Proposition 3.1 LetY = (Y} )xen be a sequence of com-
plex random variables such that, for evérye N, Y, =
xSk + Xy whereS = (S) € £2°(N,L*(Q,C)), X =
(Xk)ren is @ CWGN with standard deviationande =
(ex)ren is a sequence of random variables valuedlini }
respectively.

Assume that
(A1) for everyk € N, Sk, X\ ande;, are independent;
(A2) the random variable’,, k € N, are independent;
(A3) the random variablesy, k € N, are independent;

(A4) the priors P({ex, =
equal to one half.

1}),k € N, are less than or

Given any natural numbem and any pair(z,T) of
positive real numbers, define the random variablg (z, T)

by
i T
> VlZ(i| < 2T) / e du
k=
D, (z,T) = 1m —2x 01 — |
> I(|Yi| < 2T)
k=1

Then, the standard deviatian is the unique positive
real numberz such that, for every, € (0, 1],

hm HhmD (z, Br(a(S )/x))” =0 (12)
uniformly ing € [6y, 1] where, for every € R,
K(w) =I5 (e”) /20 (13)

with £(0) = 1.

A. These new notations are kept hereafter with the same
meaning.

Considerm observationd7,Y5,...,Y,,. If Aandm
are large enough, proposition 3.1 suggests estimating the
noise standard deviation by a possibly local minimum of

sup  {Dp(z, Ber(A/z))} (14)
te{1,...,.L}
whenx ranges over a suitable search interval. However,

in practice, no lower bound for the amplitudes of the sig-
nals is known. Surprisingly enough since 3.1 states that
the largerA the better the estimate, the experimental re-
sults presented in [5] and [6] suggest that the asymptotic
condition on the minimum amplitude of the signals can
be relaxed significantly. Therefore, we consider the trivia
lower boundA = 0 and the discrete cost we minimize is

then
" Be )
Z |Yk|Z(|Yk| S Iﬁf) / u2€_u du
¢ S1up L k:1"' — 20 1—e P ’
B S (1w < wB)
k=1
(15)

which straightforwardly derives from (14) with = 0 and
seeing thak(0) = 1. Any possibly local minimun® of

(15) can be considered as an estimate of the noise standard
deviation. Because of the crucial role played by the essen-
tial supremum norm in proposition 3.&, will be called

the Essential Supremum Estimate of tfd&SE1).

To compute the ESE-we choosel. = m as a rea-
sonable trade-off between the expected accuracy of the es-
timate and the computational load incurred by the mini-
mization routine. However, a better choice can certainly
be thought up. This will be made elsewhere.



The search interval used to compute the estimate is
[ Yikwinlls [Yim)|] WhereYyyy, k = 1,2,...,m stands for
the sequenc&’, k = 1,2,...,m sorted by increasing
modulus,kmin, = m/2 — hm andh = 1/\/4m(1 — Q)
where@ is some value irf0, 1), close tol but less than or
equal tol — m. The reasons of this choice for the
search interval are given in [5] and [7].

4.2. Accuracy of the ESEL

Let k¥ be some natural number ag stand for the Mini-
mum-Probability-of-Error (MPE) test ([8, section I1.B])
for making a decision on the value of. The null hypoth-
esis is thug;, = 0 and the alternative one i, = 1. For
the decision problem under consideration, the likelihood
ratio testL; guarantees the smallest possible probability
of error amongst all the possible binary hypothesis tests.
Given Y1,Ys,...,Y,,, the testZ(] - | < 6k(A4/5))
simply consists in substituting the estimateto the ex-
act values in the expression o, (4,,. It assigns the
valuel to any complex value whose modulus less than or
equal toox(A /&) and0 otherwise. This test s not, strictly

speaking, a thresholding test in the sense given above for

its “thresholding height” is the random varialdte (A/5).
However, with a slight abuse of language, we denote it by
T5r(A)5)-

If & is a reasonably good estimate ®f the perfor-
mance of7;,. 4 /5) can be expected to approach that of the
thresholding test,,.(4,.). In other words, the use of the
estimates instead of the true value should not induce a
significant performance loss even when the minimum am-
plitude A is known, provided, of course, that is large
enough. In particular, when the signdls, £ € N, are
independent, have their probabilities of presence alllequa
to 1/2 and are such tha§, = Ae®* where®;, is uni-
formly distributed in[0, 27], the error probability of the
test7,..(a/0) €qualsQ(A/o) ([4]); therefore, the error
probability of the tes;,. 4 ,5) should be close t@Q(A /o)
when A andm are both large. Even though the compu-
tation of the error probability of the tesF,.(4/5) is an
open issue, this intuitive claim can easily be verified via
Monte-Carlo simulations aimed at comparing the Binary
Error Rate (BER) of this test t@(A /o). To achieve this
simulations, we follow the standard experimental protocol
adopted by practitioners in telecommunication systems.

Fix o = 1. We carry outindependent trials of obser-
vations each by considering a numbkeof successive in-
dependent random copies of the observations. ., Y,,.
These copies are henceforth denoted’by, Y; 2, ..., Y} m,
j=1,2,...,J. Of course, they are constructed by using
independent random copiesy, S; , and X 5, of 4, S
and X, respectively. For every copy and every given
ke{l,...,m}, wethus hav&; , = ¢; 1.5k + X, k-

Foreachj =1,2,...,J, letg; be the ESH-of o ob-
tained during theth trial, that is on the basis af; ;, k =
1,...,m; denote byn; the number of errors made by the
testTs.a/5,) = Z(| - | < 6;x(A/5;) applied to them
observationy’; ,,k =1,...,m.

Since the decision is made on the same observations
as those used to estimate the noise standard deviation, the
accuracy of the estimate affeetsdecisions at one go. To
reduce this effect, we proceed as practitioners in telecom-
munication systems usually do by fixing a minimum num-
ber J..in Of trials to achieve and a minimum numh¥y,;,
of errors to obtain during the experiments.

Trials are thus carried out until the total numhepf
trials is larger than or equal tf,,;,, and the total number of
errorsz;.]:1 n; obtained after thesg trials is larger than
or equal toN,i,. The BER of the test;,,(4/5) is then
defined as the ratiy7_, n;/(J x m).

All the results presented below were achieved with a
minimum number of trials equal t@,,;, = 150 and a min-
imum number of errors equal W¥,,;, = 400.

Figure 1 displays the BER of the t€&},. 4/, for dif-
ferent values ofA andm in comparison with the theo-
retical valueQ(A/o) of the probability of error. Table 1
gives the empirical mean and empirical Mean Square Error
(MSE) of the ESEF obtained during these experiments.

T
Error Probability

0.5

+ m=100
m =200

x m=500

0O  m=1000

041

0.3

0.2

0.5

Figure 1. BER of the tes;,,4,5) versus the error prob-
ability Q(A/o) for different values oin and A. The sig-
nals Sy, k € N, are independent, have their probabilities
of presence equal tb/2 and are such that, = Ae'®*
where®,, is uniformly distributed in0, 27].

These results suggest the construction of a new estima-
tor, namely the ESHE!, which basically derives from the
ESE.

4.3. The ESEII

With the same notations as those used so faw Jebe the

random variable defined by
) (Erous< )
k=1

(

The empirical mean and standard deviationdgf were
computed during the experiments described in the previ-
ous section. The results are those of table 2.

The empirical mean of,, is rather steady whem
varies and the empirical standard deviation of this same

m

D IVElZ(Yel < 6)

k=1

1

g

(25



Sample Size m=100 m=200 m=500 m=21000

Empirical mean  1.2187 1.2289 1.2094 1.2262
Empirical MSE  0.1275  0.0995  0.0737 0.0756

Table 1. Empirical mean and empirical MSE of the ES Eor different values ofn

Sample Size m=100 m=200 m=500 m=1000

Empirical mean 0.7102 0.7120 0.7069 0.7093
Empirical standard deviation  0.0255  0.0152  0.0082 0.0064

Table 2. Empirical mean and standard deviationlof, for different values ofn

random variable decreases with the sample size. Everb.l. Standard deviation estimation via the ESEH
though we only give the results obtained far = 100,
200, 500 and 1000, the values obtained for other sample
sizes less than000 are quite the same. The foregoing
then suggests defining another estintatesy setting

- ;(Z |Yi|Z(|Ye| < &)

k=1

We split theT" available sampleg|t], t = 1,2,...,T, into
non-overlapping frames oV = 27 successive samples
each. As usualy is chosen so thaV F; =~ 20ms whereF
is the sampling frequency. Lét stand for the number of

m frames such constructed. Thh frame is then the finite
) <ZZ Y| <& ) sequence of sample§(k—1)5 +n],n =0,1,...,N—1.

The N-Discrete Fourier Transform (DFT) of this frame is
(16)  then the sequendg, ,,n = 0,1,..., N — 1, with
where K = 0.7096 is the average value of the empirical
means ofl,,, for m = 100, 200, . .., 1000. This new esti- v, c Z
mates is called the ESHI. kot =
We conducted the same type of experiments as those

presented in section 4.2. The BERs obtained when theC being some constant, usually chosefinl /N, 1/v/N}.
noise standard deviation is estimated by the HEBre ~ We thus obtain the matrify o], ., xy sco. N1y -
then those of figure 2. The empirical mean and empirical Because of the Hermitian symmetry of the DFT we can
MSE of this estimate are given in table 3. According to restrict attention to half of this matrix, namely the com-

these results, the ESH-is more accurate than the ESE-  plex valuesyy ¢, k € {1,..., K}, € {0,...,N/2 — 1}.
Given a framek and a bin¢, we should write that

Yy ¢ = Sk.e + Xk ¢ Where, obviouslySy, , and X, , stand
respectively for the speech and noise time-frequency com-

Q)

1 N_i_t} —L271'Zt/N7 (17)
t=0

Error Probability

08— ‘ bomexo I ponents for théth frame and théth bin. Since the frames
'*1\ ;o m=so do not overlap, the complex random variablég ;, k =
04f g\ ] {1,...,K}, £ € {0,1,...,N — 1}, are iid with X, , ~

N.(0,7?) andy = 0CV/N.
Depending on the type of speech signal present during
frame k, some speech time-frequency componesits
can be neglected in comparison with noise and other speech
time-frequency components. For instance, high frequency
components of voiced speech signals are often negligi-
- ble in comparison with noise and low-frequency compo-
0 ‘ ‘ ‘ ‘ ‘ nents of the same speech signals; many unvoiced frica-
A ‘ tive speech signals have low-frequency components sig-
nificantly smaller than those in high frequency and those
Figure 2. BER of the testT;, (4,3 versus the error prob- due to noise: We model the presence and the .absence of
ability Q(A/o) for different values ofn and A. These € speech time-frequency componéft, by a discrete

results were obtained with the same signals and the sam&@ndom variable:;. , valued in{0,1} and write that the

experimental protocol as those employed to obtain the re-0PSerVation i€y ¢ = ek ¢Sk ¢ + Xy ¢. With respect to this
sults of figure 1. model,P({ex,, = 1}) is the probability that some speech

component be present in bihduring the framek. This
probability of presence may be larger than one half for low
5. APPLICATION TO SPEECH ENHANCEMENT frequency components; however, for high frequency com-
ponents, this probability of presence becomes less than or
With the same notations and under the same assumptiongqual tol /2 and even relatively small.
as those of section 1, we use the EBHe estimate the The ESELH is used as follows to estimate We split
noise standard deviation and adjust the Wiener filtering of the observation sefY; .} wherek € {1,..., K}, ¢ €
the noisy speech signal

0.3

0.2r

0.1r




Sample Size

m=100 m=200 m=500 m=1000

Empirical bias  1.0029

1.0103

1.0001 1.0041

Empirical MSE  0.0520 O

.0302

0.0159 0.0115

Table 3. Empirical bias and empirical MSE

{0,...,N/2 — 1}, into subsets ofn observations each;
each subset is used to perform an estimate ofa the
ESEII; we then compute the average value of W& /2m
estimates thus obtained to derive an estimate. dbivid-
ing this average by’v/N yields an estimate af.

In order to deal withm observations that can reason-

ably be considered as mutually independent, these obser

vations can be chosen randomly amongstitheomplex

values we have. However, this randomization does not af-

fect significantly the results obtained below.

5.2. The Wiener filtering

The T available sampleg(t), t = 1,2,...,T, are still
split into frames of N = 29 samples each but, in contrast

with the preceding subsection, the frames overlap now by
one half and the samples of each frame are weighted. De-

spite these differences with the foregoing, the notations
used above are kept.

The Wiener filtering of théth frame consists in seek-
ing the complex value®y, ,, such that, for every bif €
{0,1,..., N —1}, E[|Sk,e — Wy¢Ys.c|*] is the least value
among all the possible quadratic med#{Sy. , — A ¢|*]
when \ ranges over the set of complex values. The well-
known solution to this problem is

B[|Sk,e ]

p— 2 ~2 1 e 2]
Wk,[ = E[‘Sk,[l ]/E[lyk;’@ '}/2 —+ EHS};,ZP]

2]:

(18)

sinceXy ¢ ~ N.(0,7%) andy = oC+/N. Defining thea
priori Signal to Noise Ratio (SNR) by

pie = E[|Skel?]/7?, (19)
equation (18) can be re-written in the form
Wi = pr,e/(1+ pre). (20)

The denoised speech signal in tht frame is then the
inverse DFT of the sequend& ,, ¢ =0,1,..., N — 1.

The main difficulty in performing an estimate of the
priori SNR is that speech signals are not stationary. Ac-
cording to the standard recursive filtering procedure erigi
nally introduced in [3], we estimaté’;, , by

Wi = pre/ (1 + proe) (21)

where
e = (L—a)h (Cue — 1) +a[Wi_1Yio1,0? /72 (22)

can be regarded as an estimate of @hgriori SNR py, ¢.
In (22), h(z) = « if z > 0 andh(x) = 0 otherwise,«

of the ESE+n) for different values oin

is some weighting factor such that< « < 1 (we chose
a = 0.98 in our experiments commented below), and

2/72

is the so-callec posterioriSNR.

_ Wheno is unknown, the valug can be estimated by
proceeding as described in subsection 5.1. Denotirng by
the estimate returned for by the ESEH, we modify the
recursive filtering approach defined by equations (21) and
(22) as follows. The coefficientd’;, , are now estimated
by

Chye = |Yiye

Wit = pre/(1+ Do), (23)
where the estimatg;, , of thea priori SNR is given by

Pre = (1—a)h (Ck,@ - 1) + | Wi—1,0Yi-1.1* /77,

R (24)
and (e = |Yie?/3% is an estimate ofy,. The de-
noised speech signal obtained in fraknie then the inverse
DFT of the sequenc@k,g, ¢ =0,1,...,N — 1. Since
it follows from section 4.3 that the estimajeshould ap-
proach significantly well the exact unknown valygthe
performance of the recursive procedure defined by equa-
tions (23) and (24) can be expected to be close to that ob-
tained by the filtering approach defined by (21) and (22).

5.3. Performance evaluation

We consider twenty sentences of the TIMIT database, down-
sampled t® kHz before adding white Gaussian noise. We
estimate the noise standard deviation as described in sec-
tion 5.1 with frames ofV = 256 samples each. A frame
corresponds t82ms of noisy speech signals. For estimat-
ing the noise standard deviation, these frames do not over-
lap and are not weighted. As far as the Wiener filtering is
concerned, there is &% overlap between two adjacent
frames and each frame is weighted by a Hanning window
before computing the DFT.

We evaluate the quality of the filtered speech signals
by means of the standard Segmental Signal to Noise Ratio
(SSNR) (see [9]) and the Modified Bark Spectral Distor-
tion (MBSD) (see [10]). The SSNR is the average of the
SNR values on short segments. The SSNR is not relevant
enough to measure the distortion of the denoised speech
signals. This is the reason we use the MBSD. The MBSD
proves to be highly correlated with subjective speech qual-
ity assessment [10].

The average SNNR and MBSD obtained over the twenty
sentences randomly chosen within the TIMIT database are
presented in figures 3 and 4. The solid curves are the
performance measurements achieved with the filtering de-
fined by equations (23) and (24) where the EBE used



to estimate the noise level. The dashed curves are the rethus performed serves to adjust a standard Wiener filter-
sults obtained when the filtering is achieved along equa- ing without resorting to any VAD or subspace approaches.
tions (21) and (22), that is when the noise standard devia-The SSNR and the MBSD of the denoised speech signals
tion is known. Clearly, the Wiener filtering adjusted with returned by the resulting filtering are very close to those
the noise standard deviation estimate yields results teat a achieved when the noise standard deviation is known.
significantly close to those obtained when the noise stan- A rather natural extension of this work is perceptual
dard deviation is known. filtering. For instance, in [2], the same type of estimator is
used to adjust some perceptual filtering. Our current work
_ involves the use of the estimator proposed in the present
paper to carry out perceptually motivated speech denoising
| in presence of white and coloured noise.
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