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ABSTRACT

Given some signal additively corrupted by independent
white Gaussian noise with unknown standard deviationσ,
we present a new estimator ofσ. This estimator derives
from a theoretical result presented and commented in the
paper. Without any preliminary signal detection, the esti-
mate is performed on the basis of the time-frequency com-
ponents returned by a standard spectrogram where the Dis-
crete Fourier Transform is simply weighted by the square
window. No assumption about the signal statistics is made.
The signal time-frequency components are assumed to have
probabilities of presence less than or equal to one half.

This estimator is suited to speech denoising. It avoids
the use of any Voice Activity Detector and is an alternative
solution to subspace approaches. Objective performance
measurements show that the standard Wiener filtering of
speech signals can be tuned with the outcome of this es-
timator without a significant loss in comparison with the
measurements obtained when the noise standard deviation
is known.

1. MOTIVATION

Let s[t], t = 1, . . . , T be the samples of some speech sig-
nal and suppose that theseT samples are corrupted by ad-
ditive and independent stationary noisex[t], t = 1, 2, . . . , T
so that the samples of the observed signal are

y[t] = s[t] + x[t], t = 1, . . . , T. (1)

We assume that noise is white and Gaussian with null mean
and standard deviationσ: for every t ∈ {1, 2, . . . , T},
x[t] ∼ N (0, σ2).

The Wiener filtering of the noisy speech signaly re-
quires prior knowledge of the noise standard deviationσ.
A basic and popular solution consists in using a Voice Ac-
tivity Detector (VAD): the estimate ofσ is the square root
of the Maximum Likelihood Estimate (MLE) computed
on the basis of the samples of the time frames that the
VAD has detected as noise alone. Subspace approaches
can also be used to estimateσ by computing the smallest
eigenvalues of the noisy speech autocorrelation matrix; the
model order is difficult to choose and the computation of
the eigenvalues may prove unstable.

This paper proposes a new estimator of the noise stan-
dard deviation. The theoretical foundation of this estima-
tor is proposition 3.1, stated in section 3 after exposing
some preliminary material in section 2. This theoretical
result is non-parametric in the sense that it makes no as-
sumption about the probability distributions of the signals
and assumes neither that these signals are identically dis-
tributed nor that they have equal probabilities of presence.

Section 4 then presents the estimator deriving from
proposition 3.1 and a few preliminary experimental re-
sults. This estimator is then employed in section 5 to ad-
just the standard Wiener filtering of the noisy speech signal
y introduced above. According to objective performance
measurements, the denoised speech signals are not signif-
icantly more distorted than those achieved when the fil-
tering is tuned with the exact value of the noise standard
deviation.

Conclusions and perspectives are given in section 6.

2. PRELIMINARY MATERIAL

The random vectors and variables are supposed to be de-
fined on the same probability space denoted by(Ω,M, P )
and for every elementω ∈ Ω. As usual, if propertyP
holds true almost surely, we writeP (a-s).

Given a positive real valueσ, a sequenceX = (Xk)k∈N

of random complex variables is said to be acomplex white
Gaussian noise(CWGN) with standard deviationσ if the
random variablesXk, k = 1, 2, . . ., are complex, mutually
independent and identically Gaussian distributed with null
mean and varianceσ2. The real and imaginary partsℜXk

andℑXk of eachXk form a two-dimensional random vec-
tor such that(ℜXkℑXk) ∼ N

(
0, (σ2/2)I

)
whereI stands

for the2 × 2 identity matrix.
Theminimum amplitudea(S) of a sequenceS = (Sk)k∈N

of random complex variables is defined by

a(S) = sup {α ∈ [0,∞] : ∀k ∈ N, |Sk| ≥ α (a-s)} . (2)

If f is some map of the set of all the sequences of complex
random variables intoR, we say that the limit off is ℓ ∈
R whena(S) tends to∞ and write thatlim

a(S)→∞ f(S) =
ℓ if, for any positive real valueη, there exists someA0 ∈
(0,∞) such that, for everyA ≥ A0 and everyS such that
a(S) ≥ A, |f(S) − ℓ| ≤ η.



The setL2(Ω,C) stands for the set of those complex
random variablesY such thatE[|Y |2] < ∞. We then de-
fine ℓ∞(N, L2(Ω,C)) as the set of those sequencesS =
(Sk)k∈N of complex random variables such thatSk ∈
L2(Ω,C) for everyk ∈ N andsupk∈N

E[|Sk|2] is finite.
Given a random variableY and a real numberτ , I(Y ≤

τ) stands for the indicator function of the event{Y ≤ τ}.
As usual,I0 is the zeroth-order modified Bessel function
of the first kind. Throughout the rest of the text, we say ’in-
dependent’ instead of ’mutually independent’ for brevity.

3. A THEORETICAL RESULT

Proposition 3.1 stated below is a corollary of a more gen-
eral theorem established in [6]. As an introduction to propo-
sition 3.1, we begin with an intuitive approach. It makes
the reader understand the main ideas behind proposition
3.1 and the results given in [6].

Consider a sequenceY = (Yk)k∈N of complex ran-
dom variables where eachYk is either the sum of some
signalSk and noiseXk or noiseXk alone. We assume
that X = (Xk)k∈N is a CWGN with standard deviation
σ. For every givenk ∈ N, the presence of noise alone
is the null hypothesis whereas the presence of some signal
in noise is the alternative one. We assume that, for ev-
ery k ∈ N, the index of the true hypothesis is a random
variableε, valued in{0, 1} and independent withSk and
Xk. We thus can write thatYk = εkSk + Xk. The a
priori probabilities of presence and absence of the signal
Λk are thenP ({εk = 1}) andP ({εk = 0}), respectively.
Proposition 3.1 significantly reduces the importance of the
choice of these probabilities since they will be assumed to
be upper-bounded.

At this stage, assume that the random variablesεk,
k ∈ N, are independent and identically distributed (iid)
as well as the random signalsSk, k ∈ N. It follows that
the random vectorsYk, k ∈ N, are iid as well. Letp
stand for the common value of the probabilities of pres-
enceP ({εk = 1}). We assume thatp ≤ 1/2.

Given some real numberT , set

Am(T ) =
1

m

m∑

k=1

|Yk|I(|Yk| ≤ T )

According to Kolmogorov’s classical strong limit theorem,

lim
m→∞

Am(T ) = E [|Yk|I(|Yk| ≤ T )] (a-s) (3)

wherek is any element of{1, . . . ,m}. An easy computa-
tion shows that we can write that

E [|Yk|I(|Yk|≤T )]

= (1−p)E [|Xk|I(|Xk|≤T )] ×(
1+

p

1 − p

E [|Sk+Xk|I(|Sk+Xk|≤T )]

E [|Xk|I(|Xk|≤T )]

)
. (4)

Let A be a lower bound for the amplitudes of the signals
Sk, k ∈ N. If A is large enough in comparison withσ,
we can reasonably expect the existence of some threshold
T that makes it possible to distinguish noisy signals from
noise alone with a rather small probability of error. As a

matter of fact, regarding the choice forT , we can be very
specific as follows.

For any given non negative real numberh, letTτ stand
for the map defined for every complex valuez by

Tτ (z) =

{
1 if |z| ≥ τ
0 otherwise.

(5)

Clearly, for everyk ∈ N, Tτ is a statistical test for mak-
ing a decision on the value ofεk since the composite map
Tτ (Uk) is measurable andTτ (Uk) ∈ {0, 1}. In what fol-
lows,Tτ is called the thresholding test with threshold height
τ . The error probability of this test is then the probability
P ({Tτ (Uk) 6= εk}) of the event{Tτ (Uk) 6= εk}. This
error probability does not depend onk since the observa-
tionsUk, k ∈ N, are assumed to be iid. This is the reason
why we simply denote it byPe{Tτ}, without mentioning
the observation under consideration.

Since the probability of presence of any signalSk, k ∈
nN, is assumed to be less than or equal to1/2 and by
taking into account that (see [1, Eq. 9.6.47, p. 377])
I0(x) = 0F1(1;x2/4), [4, Theorem VII.1] tells us the fol-
lowing. For everyx ∈ R, set

κ(x) = I−1
0 (ex2

)/2x (6)

with κ(0) = 1; for making a decision on the value of
εk wherek is any natural number, the error probability
Pe{Tσκ(A/σ)} of the thresholding testTσκ(A/σ) with thresh-
old heightσκ(A/σ) is less than or equal toQ(A/σ) where,
for any given non-negative real numberx,

Q(x) = e−x2

∫ κ(x)

0

e−t2tI0(2xt)dt +
1

2
e−κ(x)2 . (7)

We thus can write thatPe{Tσκ(A/σ)} ≤ Q(A/σ). In equa-
tion (4), set nowT = σh with h = κ(A/σ). The function
Q(x) decreases very rapidly whenx increases. Hence, for
large values ofA, the probabilitiesP ({|Xk| > σh}) and
P ({|Sk +Xk| ≤ σh}) are small and, thus, the expectation
E [|Sk + Xk|I(|Sk + Xk| ≤ σh)] can reasonably be ex-
pected to be significantly smaller thanE [|Xk|I(|Xk| ≤ σh)].
Sincep is assumed to be less than or equal to one half,
p/(1 − p) is less than or equal to1. Consequently, in a
certain sense to specify, we should be able to prove that

E [|Yk|I(|Yk| ≤ σh)] ≈ (1 − p)E [|Xk|I(|Xk| ≤ σh)] .

Without caring about mathematical exactness, we com-
bine this approximation to the almost surely convergence
of equation (3) to obtain that, in a certain sense,

Am(σh) ≈ (1 − p)E [|Xk|I(|Xk| ≤ σh)] (8)

whenm and the amplitudes of the signals are both large.
If we now setBm(T ) = 1

m

∑m
k=1 I(|Yk| ≤ σh), the

same type of intuitive approach suggests that

Bm(σh) ≈ (1 − p)E [I(|Xk| ≤ σh)] . (9)

Consider now the ratioAm(σh)/Bm(σh). This ra-
tio makes it possible to get rid of the unknown priorp.



Moreover, sinceXk ∼ Nc(0, σ
2), the distribution of|Xk|

is known and its densityf(x) is that of the square of a
Rayleigh distributed variable. Taking into account that the
variance of the real and imaginary parts ofXk both equal
σ2/2, this density is given by :

f(x) =

{
(2x/σ2)e−x2/σ2

if x ≥ 0,
0 otherwise.

(10)

Therefore, we easily obtain thatE [|Xk|I(|Xk| ≤ σh)] =

2σ
∫ h

0
t2e−t2dt and thatE [I(|Xk| ≤ σh)] = P ({Xk ≤

σh}) = 1−e−h2

. According to these equalities, equations
(3) and (8), we conclude that

Am(σh)/Bm(σh) ≈ 2σ

∫ h

0

t2e−t2dt/(1 − e−h2

). (11)

Once again, this approximation must be understood
with respect to a certain convergence criterion. This one
is introduced in proposition 3.1. Its more general form is
given in [6]. As a matter of fact, the same type of intuitive
approach as that presented above can be used to guess part
of the results established in [6]. Proposition 3.1 and its
extension not only specify the exact meaning of equation
(11) but also significantly extend the conditions of validity
of (11) because they state that the convergence holds true
even for non iid signals and non iid priors.

Proposition 3.1 LetY = (Yk)k∈N be a sequence of com-
plex random variables such that, for everyk ∈ N, Yk =
εkSk + Xk whereS = (Sk) ∈ ℓ∞(N, L2(Ω,C)), X =
(Xk)k∈N is a CWGN with standard deviationσ andε =
(εk)k∈N is a sequence of random variables valued in{0, 1}
respectively.

Assume that

(A1) for everyk ∈ N, Sk, Xk andεk are independent;

(A2) the random variablesYk, k ∈ N, are independent;

(A3) the random variablesεk, k ∈ N, are independent;

(A4) the priorsP ({εk = 1}), k ∈ N, are less than or
equal to one half.

Given any natural numberm and any pair(x, T ) of
positive real numbers, define the random variableDm(x, T )
by

Dm(x, T ) =

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

|Yk|I(|Yk| ≤ xT )

m∑

k=1

I(|Yk| ≤ xT )

− 2x

∫ T

0

u2e−u2

du

1 − e−T 2

∣∣∣∣∣∣∣∣∣∣

.

Then, the standard deviationσ is the unique positive
real numberx such that, for everyβ0 ∈ (0, 1],

lim
a(S)→∞

∥∥∥lim
m

Dm(x, βκ(a(S)/x))
∥∥∥
∞

= 0 (12)

uniformly inβ ∈ [β0, 1] where, for everyx ∈ R,

κ(x) = I−1
0 (ex2

)/2x (13)

with κ(0) = 1.

4. A NEW ALGORITHM FOR ESTIMATING THE
NOISE STANDARD DEVIATION

On the basis of proposition 3.1, we start by introducing
a discrete cost. A minimum of this discrete cost can be
computed and considered as a first estimate of the noise
standard deviation. This estimate will be called the Es-
sential Supremum Estimate of typeI (ESE-I) because of
the crucial role played by the essential supremum norm in
its computation. The term ESE-I will also stand for the
estimator itself.

Experimental results aimed at assessing the ESE-I sug-
gest another estimate of the noise standard deviation. This
new estimate is hereafter called the Essential Supremum
Estimate of typeII (ESE-II). The term ESE-II will also
designate the estimator itself. According to Monte-Carlo
experiments of the same type as those mentioned above,
the ESE-II performs better than the ESE-I.

4.1. The ESE-I

Let L be some natural number and setβℓ = ℓ/L, ℓ =
1, 2, . . . , L. Suppose thatA is some known lower bound
for the amplitudes of the signal. We thus havea(S) ≥
A. These new notations are kept hereafter with the same
meaning.

Considerm observationsY1, Y2, . . . , Ym. If A andm
are large enough, proposition 3.1 suggests estimating the
noise standard deviation by a possibly local minimum of

sup
ℓ∈{1,...,L}

{Dm(x, βℓκ(A/x))} (14)

whenx ranges over a suitable search interval. However,
in practice, no lower bound for the amplitudes of the sig-
nals is known. Surprisingly enough since 3.1 states that
the largerA the better the estimate, the experimental re-
sults presented in [5] and [6] suggest that the asymptotic
condition on the minimum amplitude of the signals can
be relaxed significantly. Therefore, we consider the trivial
lower boundA = 0 and the discrete cost we minimize is
then

sup
ℓ∈{1,...,L}





∣∣∣∣∣∣∣∣∣∣

m∑

k=1

|Yk|I(|Yk| ≤ xβℓ)

m∑

k=1

I(|Yk| ≤ xβℓ)

− 2x

∫ βℓ

0

u2e−u2

du

1 − e−β2

ℓ

∣∣∣∣∣∣∣∣∣∣





,

(15)
which straightforwardly derives from (14) withA = 0 and
seeing thatκ(0) = 1. Any possibly local minimum̃σ of
(15) can be considered as an estimate of the noise standard
deviation. Because of the crucial role played by the essen-
tial supremum norm in proposition 3.1,̃σ will be called
the Essential Supremum Estimate of typeI (ESE-I).

To compute the ESE-I, we chooseL = m as a rea-
sonable trade-off between the expected accuracy of the es-
timate and the computational load incurred by the mini-
mization routine. However, a better choice can certainly
be thought up. This will be made elsewhere.



The search interval used to compute the estimate is[
|Y[kmin]|, |Y[m]|

]
whereY[k], k = 1, 2, . . . ,m stands for

the sequenceYk, k = 1, 2, . . . ,m sorted by increasing
modulus,kmin = m/2 − hm andh = 1/

√
4m(1 − Q)

whereQ is some value in(0, 1), close to1 but less than or
equal to1− m

4(m/2−1)2 . The reasons of this choice for the
search interval are given in [5] and [7].

4.2. Accuracy of the ESE-I

Let k be some natural number andLk stand for the Mini-
mum-Probability-of-Error (MPE) test ([8, section II.B])
for making a decision on the value ofεk. The null hypoth-
esis is thusεk = 0 and the alternative one isεk = 1. For
the decision problem under consideration, the likelihood
ratio testLk guarantees the smallest possible probability
of error amongst all the possible binary hypothesis tests.

Given Y1, Y2, . . . , Ym, the testI(| · | ≤ σ̃κ(A/σ̃))
simply consists in substituting the estimateσ̃ to the ex-
act valueσ in the expression ofTσκ(A/σ). It assigns the
value1 to any complex valuez whose modulus less than or
equal toσ̃κ(A/σ̃) and0 otherwise. This test is not, strictly
speaking, a thresholding test in the sense given above for
its “thresholding height” is the random variableσ̃κ(A/σ̃).
However, with a slight abuse of language, we denote it by
Tσ̃κ(A/σ̃).

If σ̃ is a reasonably good estimate ofσ, the perfor-
mance ofTσ̃κ(A/σ̃) can be expected to approach that of the
thresholding testTσκ(A/σ). In other words, the use of the
estimatẽσ instead of the true valueσ should not induce a
significant performance loss even when the minimum am-
plitude A is known, provided, of course, thatm is large
enough. In particular, when the signalsSk, k ∈ N, are
independent, have their probabilities of presence all equal
to 1/2 and are such thatSk = AeiΦk whereΦk is uni-
formly distributed in[0, 2π], the error probability of the
test Tσκ(A/σ) equalsQ(A/σ) ([4]); therefore, the error
probability of the testTσ̃κ(A/σ̃) should be close toQ(A/σ)
whenA andm are both large. Even though the compu-
tation of the error probability of the testTσ̃κ(A/σ̃) is an
open issue, this intuitive claim can easily be verified via
Monte-Carlo simulations aimed at comparing the Binary
Error Rate (BER) of this test toQ(A/σ). To achieve this
simulations, we follow the standard experimental protocol
adopted by practitioners in telecommunication systems.

Fix σ = 1. We carry out independent trials ofm obser-
vations each by considering a numberJ of successive in-
dependent random copies of the observationsY1, . . . , Ym.
These copies are henceforth denoted byYj,1, Yj,2, . . . , Yj,m,
j = 1, 2, . . . , J . Of course, they are constructed by using
independent random copiesεj,k, Sj,k andXj,k of εk, Sk

andXk respectively. For every copyj and every given
k ∈ {1, . . . ,m}, we thus haveYj,k = εj,kSj,k + Xj,k.

For eachj = 1, 2, . . . , J , let σ̃j be the ESE-I of σ ob-
tained during thejth trial, that is on the basis ofYj,k, k =
1, . . . ,m; denote bynj the number of errors made by the
testTσ̃κ(A/σ̃j) = I(| · | ≤ σ̃jκ(A/σ̃j) applied to them
observationsYj,k, k = 1, . . . ,m.

Since the decision is made on the same observations
as those used to estimate the noise standard deviation, the
accuracy of the estimate affectsm decisions at one go. To
reduce this effect, we proceed as practitioners in telecom-
munication systems usually do by fixing a minimum num-
berJmin of trials to achieve and a minimum numberNmin

of errors to obtain during the experiments.
Trials are thus carried out until the total numberJ of

trials is larger than or equal toJmin and the total number of
errors

∑J
j=1 nj obtained after theseJ trials is larger than

or equal toNmin. The BER of the testTσ̃κ(A/σ̃) is then

defined as the ratio
∑J

j=1 nj/(J × m).
All the results presented below were achieved with a

minimum number of trials equal toJmin = 150 and a min-
imum number of errors equal toNmin = 400.

Figure 1 displays the BER of the testTσκ(A/σ) for dif-
ferent values ofA and m in comparison with the theo-
retical valueQ(A/σ) of the probability of error. Table 1
gives the empirical mean and empirical Mean Square Error
(MSE) of the ESE-I obtained during these experiments.
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Figure 1. BER of the testTσ̃κ(A/σ̃) versus the error prob-
ability Q(A/σ) for different values ofm andA. The sig-
nalsSk, k ∈ N, are independent, have their probabilities
of presence equal to1/2 and are such thatSk = AeiΦk

whereΦk is uniformly distributed in[0, 2π].

These results suggest the construction of a new estima-
tor, namely the ESE-II, which basically derives from the
ESE-I.

4.3. The ESE-II

With the same notations as those used so far, letΨm be the
random variable defined by

Ψm =
1

σ

(
m∑

k=1

|Yk|I(|Yk| ≤ σ̃)

)
/

(
m∑

k=1

I(|Yk| ≤ σ̃)

)
.

The empirical mean and standard deviation ofΨm were
computed during the experiments described in the previ-
ous section. The results are those of table 2.

The empirical mean ofΨm is rather steady whenm
varies and the empirical standard deviation of this same



Sample Size m = 100 m = 200 m = 500 m = 1000

Empirical mean 1.2187 1.2289 1.2094 1.2262
Empirical MSE 0.1275 0.0995 0.0737 0.0756

Table 1. Empirical mean and empirical MSE of the ESE-I for different values ofm

Sample Size m = 100 m = 200 m = 500 m = 1000

Empirical mean 0.7102 0.7120 0.7069 0.7093
Empirical standard deviation 0.0255 0.0152 0.0082 0.0064

Table 2. Empirical mean and standard deviation ofΨm for different values ofm

random variable decreases with the sample size. Even
though we only give the results obtained form = 100,
200, 500 and1000, the values obtained for other sample
sizes less than1000 are quite the same. The foregoing
then suggests defining another estimateσ̂ by setting

σ̂ =
1

K

(
m∑

k=1

|Yk|I(|Yk| ≤ σ̃)

)
/

(
m∑

k=1

I(|Yk| ≤ σ̃)

)

(16)
whereK = 0.7096 is the average value of the empirical
means ofΨm for m = 100, 200, . . . , 1000. This new esti-
mateσ̂ is called the ESE-II.

We conducted the same type of experiments as those
presented in section 4.2. The BERs obtained when the
noise standard deviation is estimated by the ESE-II are
then those of figure 2. The empirical mean and empirical
MSE of this estimate are given in table 3. According to
these results, the ESE-II is more accurate than the ESE-I.
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Figure 2. BER of the testTσ̂κ(A/σ̂) versus the error prob-
ability Q(A/σ) for different values ofm andA. These
results were obtained with the same signals and the same
experimental protocol as those employed to obtain the re-
sults of figure 1.

5. APPLICATION TO SPEECH ENHANCEMENT

With the same notations and under the same assumptions
as those of section 1, we use the ESE-II to estimate the
noise standard deviation and adjust the Wiener filtering of
the noisy speech signaly.

5.1. Standard deviation estimation via the ESE-II

We split theT available samplesy[t], t = 1, 2, . . . , T , into
non-overlapping frames ofN = 2q successive samples
each. As usual,q is chosen so thatNFs ≈ 20ms whereFs

is the sampling frequency. LetK stand for the number of
frames such constructed. Thekth frame is then the finite
sequence of samplesy[(k−1)N

2 +n], n = 0, 1, . . . , N−1.
TheN -Discrete Fourier Transform (DFT) of this frame is
then the sequenceYk,ℓ, n = 0, 1, . . . , N − 1, with

Yk,ℓ = C

N−1∑

t=0

y[(k − 1)N + t]e−i2πℓt/N , (17)

C being some constant, usually chosen in{1, 1/N, 1/
√

N}.
We thus obtain the matrix[Yk,ℓ]k∈{1,...,K},ℓ∈{0,...,N−1} .
Because of the Hermitian symmetry of the DFT, we can
restrict attention to half of this matrix, namely the com-
plex valuesYk,ℓ, k ∈ {1, . . . ,K}, ℓ ∈ {0, . . . , N/2 − 1}.

Given a framek and a binℓ, we should write that
Yk,ℓ = Sk,ℓ + Xk,ℓ where, obviously,Sk,ℓ andXk,ℓ stand
respectively for the speech and noise time-frequency com-
ponents for thekth frame and theℓth bin. Since the frames
do not overlap, the complex random variablesXk,ℓ, k =
{1, . . . ,K}, ℓ ∈ {0, 1, . . . , N − 1}, are iid withXk,ℓ ∼
Nc(0, γ

2) andγ = σC
√

N .
Depending on the type of speech signal present during

frame k, some speech time-frequency componentsSk,ℓ

can be neglected in comparison with noise and other speech
time-frequency components. For instance, high frequency
components of voiced speech signals are often negligi-
ble in comparison with noise and low-frequency compo-
nents of the same speech signals; many unvoiced frica-
tive speech signals have low-frequency components sig-
nificantly smaller than those in high frequency and those
due to noise. We model the presence and the absence of
the speech time-frequency componentSk,ℓ by a discrete
random variableεk,ℓ valued in{0, 1} and write that the
observation isYk,ℓ = εk,ℓSk,ℓ +Xk,ℓ. With respect to this
model,P ({εk,ℓ = 1}) is the probability that some speech
component be present in binℓ during the framek. This
probability of presence may be larger than one half for low
frequency components; however, for high frequency com-
ponents, this probability of presence becomes less than or
equal to1/2 and even relatively small.

The ESE-II is used as follows to estimateγ. We split
the observation set{Yk,ℓ} wherek ∈ {1, . . . ,K}, ℓ ∈



Sample Size m = 100 m = 200 m = 500 m = 1000
Empirical bias 1.0029 1.0103 1.0001 1.0041
Empirical MSE 0.0520 0.0302 0.0159 0.0115

Table 3. Empirical bias and empirical MSE of the ESE-II(m) for different values ofm

{0, . . . , N/2 − 1}, into subsets ofm observations each;
each subset is used to perform an estimate ofγ via the
ESE-II; we then compute the average value of theKN/2m
estimates thus obtained to derive an estimate ofγ. Divid-
ing this average byC

√
N yields an estimate ofσ.

In order to deal withm observations that can reason-
ably be considered as mutually independent, these obser-
vations can be chosen randomly amongst theM complex
values we have. However, this randomization does not af-
fect significantly the results obtained below.

5.2. The Wiener filtering

The T available samplesy(t), t = 1, 2, . . . , T , are still
split into frames ofN = 2q samples each but, in contrast
with the preceding subsection, the frames overlap now by
one half and the samples of each frame are weighted. De-
spite these differences with the foregoing, the notations
used above are kept.

The Wiener filtering of thekth frame consists in seek-
ing the complex valuesWk,ℓ, such that, for every binℓ ∈
{0, 1, . . . , N −1}, E[|Sk,ℓ −Wk,ℓYk,ℓ|2] is the least value
among all the possible quadratic meansE[|Sk,ℓ −λYk,ℓ|2]
whenλ ranges over the set of complex values. The well-
known solution to this problem is

Wk,ℓ = E[|Sk,ℓ|2]/E[|Yk,ℓ|2] =
E[|Sk,ℓ|2]

γ2 + E[|Sk,ℓ|2]
(18)

sinceXk,ℓ ∼ Nc(0, γ
2) andγ = σC

√
N . Defining thea

priori Signal to Noise Ratio (SNR) by

ρk,ℓ = E[|Sk,ℓ|2]/γ2, (19)

equation (18) can be re-written in the form

Wk,ℓ = ρk,ℓ/(1 + ρk,ℓ). (20)

The denoised speech signal in thekth frame is then the
inverse DFT of the sequenceWk,ℓ, ℓ = 0, 1, . . . , N − 1.

The main difficulty in performing an estimate of thea
priori SNR is that speech signals are not stationary. Ac-
cording to the standard recursive filtering procedure origi-
nally introduced in [3], we estimateWk,ℓ by

W̃k,ℓ = ρ̃k,ℓ/(1 + ρ̃k,ℓ) (21)

where

ρ̃k,ℓ = (1−α)h (ζk,ℓ − 1)+α|W̃k−1,ℓYk−1,ℓ|2/γ2 (22)

can be regarded as an estimate of thea priori SNR ρk,ℓ.
In (22), h(x) = x if x ≥ 0 andh(x) = 0 otherwise,α

is some weighting factor such that0 ≤ α < 1 (we chose
α = 0.98 in our experiments commented below), and

ζk,ℓ = |Yk,ℓ|2/γ2

is the so-calleda posterioriSNR.
Whenσ is unknown, the valueγ can be estimated by

proceeding as described in subsection 5.1. Denoting byγ̂
the estimate returned forγ by the ESE-II, we modify the
recursive filtering approach defined by equations (21) and
(22) as follows. The coefficientsWk,ℓ are now estimated
by

Ŵk,ℓ = ρ̂k,ℓ/(1 + ρ̂k,ℓ), (23)

where the estimatêρk,ℓ of thea priori SNR is given by

ρ̂k,ℓ = (1 − α)h
(
ζ̂k,ℓ − 1

)
+ α|Ŵk−1,ℓYk−1,ℓ|2/γ̂2,

(24)
and ζ̂k,ℓ = |Yk,ℓ|2/γ̂2 is an estimate ofζk,ℓ. The de-
noised speech signal obtained in framek is then the inverse
DFT of the sequencêWk,ℓ, ℓ = 0, 1, . . . , N − 1. Since
it follows from section 4.3 that the estimatêγ should ap-
proach significantly well the exact unknown valueγ, the
performance of the recursive procedure defined by equa-
tions (23) and (24) can be expected to be close to that ob-
tained by the filtering approach defined by (21) and (22).

5.3. Performance evaluation

We consider twenty sentences of the TIMIT database, down-
sampled to8 kHz before adding white Gaussian noise. We
estimate the noise standard deviation as described in sec-
tion 5.1 with frames ofN = 256 samples each. A frame
corresponds to32ms of noisy speech signals. For estimat-
ing the noise standard deviation, these frames do not over-
lap and are not weighted. As far as the Wiener filtering is
concerned, there is a50% overlap between two adjacent
frames and each frame is weighted by a Hanning window
before computing the DFT.

We evaluate the quality of the filtered speech signals
by means of the standard Segmental Signal to Noise Ratio
(SSNR) (see [9]) and the Modified Bark Spectral Distor-
tion (MBSD) (see [10]). The SSNR is the average of the
SNR values on short segments. The SSNR is not relevant
enough to measure the distortion of the denoised speech
signals. This is the reason we use the MBSD. The MBSD
proves to be highly correlated with subjective speech qual-
ity assessment [10].

The average SNNR and MBSD obtained over the twenty
sentences randomly chosen within the TIMIT database are
presented in figures 3 and 4. The solid curves are the
performance measurements achieved with the filtering de-
fined by equations (23) and (24) where the ESE-II is used



to estimate the noise level. The dashed curves are the re-
sults obtained when the filtering is achieved along equa-
tions (21) and (22), that is when the noise standard devia-
tion is known. Clearly, the Wiener filtering adjusted with
the noise standard deviation estimate yields results that are
significantly close to those obtained when the noise stan-
dard deviation is known.
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Figure 3. SSNR improvement for speech signals in inde-
pendent AWGN with various SNRs.
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Figure 4. MBSD improvement for speech signals in inde-
pendent AWGN with various SNRs.

6. CONCLUSION AND PERSPECTIVE

When signals with unknown probability distributions and
priors are additively corrupted by independent WGN, the
noise standard deviation can be estimated by the ESE-II.
This estimator requires no prior knowledge on the signal
probability distributions, does not assume that the signals
are iid or that the probabilities of presence of these sig-
nals are equal. The observations should be independent;
the sample size and the signal amplitudes should be large;
however, these conditions are seemingly not so constrain-
ing in practice.

A direct application of the ESE-II is the estimation of
the noise standard deviation when observations are speech
signals in additive and independent WGN. The estimate

thus performed serves to adjust a standard Wiener filter-
ing without resorting to any VAD or subspace approaches.
The SSNR and the MBSD of the denoised speech signals
returned by the resulting filtering are very close to those
achieved when the noise standard deviation is known.

A rather natural extension of this work is perceptual
filtering. For instance, in [2], the same type of estimator is
used to adjust some perceptual filtering. Our current work
involves the use of the estimator proposed in the present
paper to carry out perceptually motivated speech denoising
in presence of white and coloured noise.
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