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Abstract  Numerical crack propagation schemes were augmented in an elegant manner by the X-FEM
method  applied  to  fracture  mechanics.  The  use  of  special  tip  enrichment  functions,  as  well  as  a
discontinuous function along the sides of the crack allows one to do a complete crack analysis virtually
without modifying the underlying mesh, which is of an evident industrial interest. 
The conventional approach for crack tip enrichment (described in [2,3]) is that only a specific layer of
elements are enriched around the crack tip. We show that this “topological” approach does not yield an
increase of the order of the asymptotic convergence rate when compared to unenriched finite elements,
as when the crack is part of the mesh. It rather modifies the proportionality factor of the asymptotic
convergence rate. In this study, we propose another enrichment scheme which yields a convergence rate
that appears to be close to that of regular finite elements used when the solution field does not show
singularities.
The enriched basis in X-FEM degrades the rigidity and mass matrices  condition numbers (the mass
matrix  typically  appears  in  case  of  time  dependent  problems such  as  wave  propagation  in  cracked
bodies).  To recover  the condition number of non enriched matrices,  we introduce a  preconditioning
strategy which acts block-wise on the set of enriched degrees of freedom associated to each node. This
strategy uses a local (nodal) Cholesky based decomposition.
Another  issue  is  brought  by  the  integration  scheme  used  to  build  the  matrices.  The  nature  of  the
asymptotic  functions  are  such  that  any  Gauss-Legendre  based  integration  scheme  will  only  poorly
converge with respect of the order of the quadrature.  We  propose a modified integration scheme to
handle that issue.
We apply the new technique developed to the estimation of stress intensity factors along the crack front
of 3D cracks and use these SIFs for crack propagation using a Paris type fatigue law.

Key words:  X-FEM, convergence rate, J-integral, preconditionner, crack propagation

INTRODUCTION 

Typical finite element analysis for crack propagation involved three major steps. The fists step consists
in the construction of a mesh that is able to describe the crack geometry, as standard finite elements for
mechanical problems are continuous. This is often cumbersome, because the geometry of the crack is
independent of the CAD model. Moreover, when the crack evolves, the mesh should evolve in parallel,
and keep its conformity with the crack geometry. The second step involves the computation of stress
intensity factors. These are used to predict the path followed by the crack if a fatigue behavior is to be
expected; or, in the case of a static load applied to the structure, to quantify the  maximum load it can
withstand  before  the  crack  becomes  unstable.  The  computation  of  stress  intensity  factors  must  be
carefully  done  using  domain  integrals,  and  cannot  be  inferred  from local  stresses  or  displacements
obtained at the crack tip. This lead to non local SIFs evaluations in 3D, as the domain integrals must be
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chosen as to avoid numerical  inaccuracies at  the crack tip.  To further lower those inaccuracies and
reduce the size of the domain integrals, special crack tip elements can be used. Among those, Barsoum
[4] elements are a good choice if one wants to keep the standard finite elements approach. Barsoum
elements rely on standard quadratic elements, on which some control points are moved to the quarter of
the  edges,  in  addition  to  the  collapse  of  one  of  its  faces  (see  Figure  1-a).  There  is  few,  if  no,
modifications  of  the  finite  element  codes  dealing  with  Barsoum  elements.  Nevertheless,  Barsoum
elements still lead to inaccuracies in the field at the crack tip impairing any attempt to determine SIFs
with local, near tip, fields. The third and last step in crack path prediction involves the update of the
crack front. As the crack is part of the mesh, this involve the update of the mesh, as well as the data
structures associated to the crack geometry.

Fig. 1 – a)  Barsoum elements around a crack tip in 2D, b) Contour integrals path. 

The X-FEM method can  handle  most  of  these  issues  by  means  of  the  partition  of  unity  [5,6].  The
asymptotic near tip displacement field is included in the finite element basis, as well as a discontinuity
eliminating the need of re-meshing. However, we will show in this study that the enrichment scheme
commonly used in this  approach lead to the same order of convergence than regular finite elements
methods.

DOMAIN INTEGRALS

The evolution of the crack depends on crack tip parameters, namely stress intensity factors. These are
computed using well known domain integrals that are easier to implement in finite element software than
their theoretical  contour integral counterpart.  The transformation is done using Green's theorem. We
recall briefly the expression of the density of energy release (3D case) from the Eshelby tensor for a
plane  crack.   x3  lies  on  the  edge  of  S x3 ,  which  is  a  planar  material  sheet  of  infinitesimal
thickness. Here, n j  is the normal to the surface. On the edge; this is the exterior normal, it is parallel to
the plane  S x3 .  vm  is  the virtual  velocity of the crack at  the considered location. The contour is
displayed on Fig. 1-b.

Pmj=
1 
2 
 klklmj− ij ui ,m (1)

j x3= ∮
 x3

vm Pmj n j ds∬
S x3

[vm Pmj n j ],3 dS (2)

The global energy release rate on a segment of the crack front is the integral of the equation (2):

J=∫


j dx3 (3)

The expression (3) can be expanded into a domain integral in 3D :
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J=−∭
V

qm , j Pmj dV∬
Su∪S l

qm Pmj n j dS (4)

where :

qm= vm (5)

In this expression,  is a weight function vanishing on the domain boundary. The resulting integral (4) is
in fact the weighted mean value of J over the domain V. If there are no forces acting on crack sides, the
second part of the integral vanishes.
We use the same idea to compute interaction integrals [3] :

I
a=−∭

V

qm , j Pmj
a dV−∭

V

qmj Pm , j
a dV∬

Su∪S l

qm Pmj
a n j dS (6)

The new eshelby-like tensor is defined as the following (see [7]), because of the main symmetry of the
elasticity tensor C ijkl=C klij :

Pmj
a =klkl

a mj− ij
a ui ,m− ij ui , m

a (7)

, where a , a and ua are the auxiliary fields for which every K i
a is known. Using three distinct sets of

auxiliary fields Aa={a ,a ,ua } (for each of them, K i
a=ia ), one can eventually determine the values of

the stress intensity factors for the actual displacement field with the relation:

Ga=2 
1−2

E
K 1  K 1

aK 2  K 2
a

1 


K 3  K 3
a (8)

in which

Ga=
I 

a

∫


 dx3
. (9)

THE X-FEM METHOD

Enrichment The X-FEM method, based on the local PUM [2,3], uses elementary displacement fields
obtained from an infinite  cracked body.  There  are  4  basic  enrichment  functions  needed to  span  the
Westergaard solution at the crack tip [8]:

F i r ,={r sin

2

,r cos

2

,r sin

2

sin ,r cos

2

sin} (10)

In these functions, r and  are polar coordinates respective to the crack front. Only elements immediately
around the crack tip are usually enriched with these functions (in the sequel, this will not be necessarily
the case).  Along the sides of the crack, the enrichment is chosen to be the Heaviside discontinuous
function so that the resulting displacement field contains a discontinuity at the location of the crack:

H n={1  if n0
−1  if n0} (11)

In this function, n is the signed distance computed normally to the crack sides. In the remaining of the
domain, there is no enrichment so the conventional finite element basis is the only one existing. The
resulting displacement field is  :

uh=∑
i∈R

Nii∑
i∈T
∑

j=1...4
Ni F j ij∑

i∈H
Ni H i (12)

Here; R, T and H are respectively the regular set of node having the regular finite element basis (i.e. all
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the domain), the set of nodes which need to be enriched for the tip functions, and the set of nodes for the
Heaviside  enrichment.  The  set  of  nodes  H is  determined  to  avoid  an  ill  posed  problem,  as  in  [2].
i ,ij ,i are the coefficients of the displacement field, those are to be determined by solving the linear

system obtained after assembly.

Integration  The integration  in standard  finite  element  codes  is  done with  a  Gauss  quadrature.  The
integration is generally exact because the terms are polynomials. In X-FEM, the same gauss quadrature
is used but as enrichment functions are not polynomials, the integrations are not exact. This issue will be
discussed in the sequel.

NEW ENRICHMENT PROCEDURES

As said previously, the enrichment in X-FEM procedures (and inherently also procedures made with the
Barsoum element)  is  such that only one layer  of elements bears the complete enrichment basis (i.e.
develop a partition of unity behaviour). In [9] this has been shown under certain circumstances to impair
the accuracy of computations because a subsequent layer of elements are only partially enriched. This
enrichment is referred later in the discussion as “topological”. The characteristic of this “topological”
behaviour  is  that  the  the  size  of  the  enriched  area  is  proportional  to  h.  In  opposite,  we propose  a
“geometrical” enrichment, that bears the characteristic of a constant enriched area within a prescribed
geometry. In fact, in [6], an implicit reference to additional layers of elements in the enriched area is
briefly made. In the following figures, a comparison showing enriched areas for both methods within
two levels of refinement is displayed. The criteria used to determine which nodes are enriched is such
that if one node lies within a circle of radius re, then it is enriched.

Fig. 2  Topological enrichment for h=1/10 (left) and h=1/50 (right)

Fig. 3  Geometrical enrichment for h=1/10 (left) and h=1/50 (right)

CONVERGENCE RESULTS

In this section we shall describe current results obtained using (a) a regular finite element procedure
without enrichment,  (b) results obtained by the X-FEM method with topological  enrichment and (c)
results obtained by a geometrical enrichment. The domain considered here is a 2-d unity patch under
tension.  The  tension  is  such  that  it  corresponds  to  an  infinite  cracked body loaded with  a  uniform
tension, so that  K 1=1  and the exact stress field is well known. Figure 4 shows the structure and the
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exact displacement field. As one can see on the mesh, the crack location is not along elements sides. The
domain is a 1x1 square. In the case of a geometrical enrichment, it is made over a circular patch with
re=0.05 . In the case of a topological enrichment, it is made on the elements immediately around the
crack tip (1 layer).

            

Fig. 4 Mesh of the computational domain and exact displacement field under prescribed 
tension. The color range shows the magnitude of the displacement u.

Error  on  strain  energy The  convergence  results  in  relation  with  the  element  size  h shows  an
improvement as one choose to enrich in a geometrical way. 

1 10 100 1000

1,0E-4

1,0E-3

1,0E-2

1,0E-1

1,0E+0

Error on strain energy

Error (w/o enrichment)

Error (Topological)

Error (Geometrical)

1/h

er
ro

r

Fig. 5 Error on the strain energy versus element density (log-log scale)

In  linear  finite  elements,  when  the  solution  displacement  field  is  smooth,  the  theoretical  rate  of
convergence of the strain energy is 2. This means that, if one reduce the size by a factor two, the error on
the energy is divided by 4. When a crack is present in the domain, the theoretical rate of convergence
decrease to 1. This appears on Fig. 5, which shows actual convergence results for unenriched as well as
enriched displacement fields. When one choose to enrich the displacement field around the crack tip in a
topological  way,  Fig.  5  also shows there  is  a  constant  shift  toward  lower errors  when compared to
unenriched  finite  elements.  This  means  that  this  enrichement  procedure  does  not  improve  the
convergence rate as one could expect by the addition of exact displacement modes in the enriched field. 
When one chooses to enrich in a geometrical way, the usual rate of convergence for linear finite element
is kept. This is shown again in Fig. 5. The convergence rate observed toward the right of the diagram is
between 1.8 and 2.1 (this is not a smooth curve because the shape of the enriched domain changes as h
decreases).  In this  calculation, the exact strain energy was computed on the exact displacement field
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(known) with a gauss quadrature, on a highly refined mesh. We have made 3-dimensional computations
as well, displaying nearly identical results (not showed here for the sake of conciseness).

Error on J and K integrals The same study is made for the J and K integrals. However, there is  one
more parameter, namely the size of the integration domain. We have defined two strategies : a domain
whose size decreases with h , and a domain whose size is constant. This is very similar to the enriched
area definition, so we shall call them later on with the same qualifiers : topological if the domain size is
proportional to h and geometrical if it is constant. Thus, there are 4 cases to study. The problem studied
here is the same as the one used for the strain energy error and, by construction, the exact solution for
this problem is such that K=1 and J=1. The integration domain is a circular patch. Its radius is defined
as :  ri = 0.15 if it is geometrical, and ri = 1.5h if it is topological (if h=1/10, both domains are the same).
In addition, it should be noted that  J and K have here a local meaning.
The convergence results for J and K are shown on following figures. It is remarkable that there is a very
slow convergence for a topological enrichment and a topological integration domain (first curve). In fact,
this  is  the  reason  why  one  always  recommend  to  increase  the  integration  domain's  size  until
convergence. There is a drawback to this : in the case of 3d calculations, the values obtained for J or K
are not local  (these are a  mean value along the crack front).  The second curve;  which displays  the
convergence for a topological enrichment and a geometrical integration domain shows a convergence
rate around 1.0, which is quite good.
In the case of  a  geometrical  enrichment,  results  are  much better.  Even in  the  case of  a  topological
integration domain, there is convergence (the rate is in this case between 1.0 and 1.5, see 3rd curve for
both J and K). This means that we are able to extract local information from the displacement field, and
this even at the crack tip, which is an interesting feature. When both the enrichment and the integration
domain are geometrical, the convergence rate is increased to around 2.0 for both J and K and provides
the best approximations.
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Fig. 6 Error on J and K versus element density (log-log scale)

PRECONDITIONNER

Description The above mentioned geometrical enrichment procedure produces ill-conditioned mass and
rigidity matrices since many  degrees of freedom  (dof) are enriched. The use of iterative solvers, even
with “out of the box” built in preconditioners (incomplete LU among others) is difficult, especially in 3D
when the number of degrees of freedom is high, as in a real industrial parts. We propose a specialized
preconditioner for enriched finite elements. This preconditioner is not a substitute for general purpose
preconditioners  found  in  iterative  solvers,  its  aim  is  to  take  advantage  of  the  knowledge  of  the
enrichment to produce linear systems that are easier to solve with out of the box preconditioners and
solvers. The idea behind this specific preconditioning scheme is to orthogonalize the finite element basis
generated for each regular degree of freedom. Let us consider the structure of the linear system Ku=f:
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〚 ⋮ ⋮
a b ⋯
b c ⋯

⋱ 〛u=f (13)

In the case displayed here,  there is only one enrichment at  a time,  for the sake of clarity.  Thus; in
addition to each regular dof, there is one enriched dof . This gives the size (2) of the sub-matrix showing
terms  a, b and c. We want those terms to be orthogonal, in order to solve the modified linear system :

〚 ⋮ ⋮
1 0 ⋯
0 1 ⋯

⋱
〛u'=f' (14)

To obtain this result, we do a Cholesky decomposition (equation 15) of the sub-matrix, and uses this
decomposition to pre- and post- multiply the adequate terms in the relation. The matrix G is completed
with diagonal 1's to match the size of the original system. Of course the implementation is not exactly as
described for evident performance issues, but it is mathematically equivalent.

〚 a b
b c 〛=G GT (15)

The resulting system is then:

G K GT u'=Gf    with   u=GT u' (16)

Results The following results were obtained on the same 2D patch used to test the new enrichment
procedure. As a comparison, it should be mentioned that for linear finite elements without enrichment,
the condition number of mass matrices tends to a constant whereas that of rigidity matrices is in order
1/h². With enrichment, and especially with geometrical enrichment; the condition number degrades very
much as 1/h increases. 
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Fig. 8 Condition number of the mass and rigidity matrices versus element density (log-log scale)

In the case of the mass matrix M, the condition number is greatly reduced for both topological and
geometrical enrichments. It is however still increasing with the mesh density in the case of a geometrical
enrichement. For the rigidiy matrix K, the results are globally the same. In the case of a topological
enrichment, one can see that the condition number for non preconditioned matrices is very close to the
curve corresponding to regular finite elements. However, we observed that preconditioning allows  one
to  solve  big  systems  that  were  otherwise  very  difficult  to  solve  using  iterative  solvers.  When  the
enrichment was geometrical, even for moderately sized problems, standard iterative methods failed if we
did not use that ad-hoc preconditioner.
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INTEGRATION

The use of X-FEM, with enrichment functions, requires the ability to integrate singular functions. The
four crack tip functions are of the following type : F(r,θ)= r *f(θ) where f is the product of harmonic
functions. The singularity occurs in the integrand of related terms, in the stiffness matrix. Those terms
are the product of the gradient of two interpolation functions, possibly “enriched”. By substitution, we
can  easily  find  that  the  functions  appearing  in  the  integrand  are  a  combination  of
1/r , 1/ r  , 1 ,  r  , r , multiplied by harmonic functions. Those harmonic functions are not singular,
only the radial parts create difficulties for the integration. In the sequel, we focus on the integration of
g r ,  on a triangle  where g is harmonic in   and singular in r.

Up to now, triangular sub-elements are created, in order to integrate continuous functions. The singular
point therefore lies on a vertex. As shown on the following example, the convergence achieved with a
standard Gauss integration is very slow. The need for a better quadrature is clear.
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Fig. 9 Integration domain and convergence of a standard Gauss integration scheme

Another  option  available  to  integrate  crack  singularities  is  the  use  of  the  so-called  “quarter-point”
Barsoum element described earlier in the text [4]. The drawback of this method is that the mesh needs to
be conforming to the problem. In 3D, this quadrature is valid only on edges of the elements.

Description of the singular mapping - The purpose is to integrate, in a fast way and within a prescribed
accuracy, the function g r ,  on a triangular patch. For this, we will map the real triangular element on
a reference  quadrangular  element.  This  way we transform singular  functions  into regular  ones.  The
mapping is shown in Fig. 10, with Node 0 (singular one) corresponding to the reference edge “u=-1”. 

Fig. 10 Triangular element  and quadrangular reference element.
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On the reference element, “u” represents the radial coordinate, and “v” represents the orthoradial one.
These coordinates are obtained after several  coordinate changes starting from a polar transformation
r , .

Details of the transformation We need to integrate the expression :

I=∬g  x , y dS (17)

Here, g is a singular radial function.
We introduce the polar coordinates : x r ,=r cos , y r ,=r sin . In the following expression, r0

is the orthogonal distance of the opposite side to the singular node; it also gives the reference angle for
 . We have then:

I=∬ g x r , , y r ,rdrd    with  r ∈ [0 ;
r 0

cos
] ,  ∈ [1 ;2] (18)

We then use the following mapping  in order to fit  u in the interval [-1;1] and have polynomial terms
with respect to r :

r=r 0 
1u2 

4 cos
, dr=r0 

1u
2 cos

du (19)

Thus,

I=∬ r0
1u

2 cos
g x r u , , , y r u , ,r u ,du d   with u ∈ [−1 ;1] ,  ∈ [1  ;2] (20)

In  this  expression,  a  term in  cos−1  appears,  which  can be  singular.  We introduce  then  another
coordinate change  “t” so that dt=cos−1 d   as proposed in [10]. It brings : 

t=
1 
2 

ln  1sin
1 −sin   or =sin−1  tanh t (21)

In a final step, to fit v in the interval [-1;1] , we set  t=
t1t2

2


t2−t1

2 v
. Then, 

=sin−1  tanh  t1t2

2


t2−t1

2 v   with  dv=
t2−t1

2cos
d  (22)

We have finally:

I=∬
r0 

4 
1ut2−t1g x r u ,v ,v , y r u ,v ,vr u ,v dudv (23)

with u , v ∈ [−1 ;1]2  .
As a result,  we have a polynomial part in “u”, and a smooth part  in “v”. Both are easily integrated
without too many sampling points.

Results  As one can see on the next  figure,  the convergence  has been highly improved for  the five
functions on which the integrand is based. The results have been performed using the same number of
Gauss points for each axis (u and v). The “singular mapping” is shown to be a good method to integrate
singular functions. We studied  mainly the radial influence, since the angular functions are smooth, and
thus, easily integrated. However, if the triangle is narrow, the angular part will be well approximated
with very few points, whereas if it is almost flat, it will have greater variations, so, more integration
points will be required.  We plan to investigate on this issue. The case of a singularity lying slightly out
of an element has also still to be investigated, as the present method only applies to singularities located
precisely  at  one  vertex  of  the  triangle.  As  for  3D  integration,  we  propose  to  cut  3D  elements
orthogonally to the crack front and integrate each of the slices with the same quadrature.
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CONCLUSIONS

We have highlighted issues in the X-FEM method that needed to be investigated. We have shown some
results concerning various aspects of the robustness and the convergence of the X-FEM method when
applied  to  fracture  mechanics.  Work  is  still  in  progress  concerning  singular  integration  aspects
(especially for 3D cases); and error estimation that may lead to a specialized tool for predicting the
optimal mesh density and the size of the enriched zone.
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