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ABSTRACT
We comprehensively analyse the cosmology dependence of counts-in-cells statistics. We focus
on the shape of the one-point probability distribution function (PDF) of the matter density field
at mildly non-linear scales. Based on large-deviation statistics, we parametrize the cosmology
dependence of the matter PDF in terms of the linear power spectrum, the growth factor,
the spherical collapse dynamics, and the non-linear variance. We extend our formalism to
include massive neutrinos, finding that the total matter PDF is highly sensitive to the total
neutrino mass Mν and can disentangle it from the clustering amplitude σ 8. Using more than
a million PDFs extracted from the Quijote simulations, we determine the response of the
matter PDF to changing parameters in the ν�CDM model and successfully cross-validate
the theoretical model and the simulation measurements. We present the first ν�CDM Fisher
forecast for the matter PDF at multiple scales and redshifts, and its combination with the
matter power spectrum. We establish that the matter PDF and the matter power spectrum are
highly complementary at mildly non-linear scales. The matter PDF is particularly powerful
for constraining the matter density �m, clustering amplitude σ 8 and the total neutrino mass
Mν . Adding the mildly non-linear matter PDF to the mildly non-linear matter power spectrum
improves constraints on �m by a factor of 5 and σ 8 by a factor of 2 when considering the three
lowest redshifts. In our joint analysis of the matter PDF and matter power spectrum at three
redshifts, the total neutrino mass is constrained to better than 0.01 eV with a total volume of 6
(Gpc h−1)3. We discuss how density-split statistics can be used to translate those encouraging
results for the matter PDF into realistic observables in galaxy surveys.

Key words: methods: analytical – methods: numerical – large-scale structure of Universe –
cosmology: theory.

1 IN T RO D U C T I O N

The �CDM model of a universe filled with a cosmological constant
and cold dark matter has proved to be an extraordinarily successful
paradigm. This concordance model is capable of explaining a large

� E-mail: cora.uhlemann@newcastle.ac.uk

variety of cosmological observations, from the anisotropies of the
cosmic microwave background (Planck Collaboration VI 2018) to
the spatial distribution of galaxies at low redshift. This ‘Standard
Model’ of cosmology can be extended by a few additional pa-
rameters representing fundamental physics quantities, e.g. the total
neutrino mass, the equation of state of dark energy, as well as the am-
plitudes and shapes of primordial non-Gaussianity. Within current
observational limits, the latter two extensions are consistent with a
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cosmological constant and Gaussian initial conditions, respectively.
By contrast, we already know that at least two neutrino families must
have a non-zero mass in order to explain the observations of neutrino
oscillations (Becker-Szendy et al. 1992; Fukuda et al. 1998; Ahmed
et al. 2004). However, both the total mass of the three neutrino
mass eigenstates, as well as the hierarchy of these mass states are
still unknown, and can provide crucial hints to physics beyond
the standard model of particle physics. The minimal total neutrino
mass in the presence of known mass splittings is Mν = ∑

mν ≥
0.056 eV for a normal hierarchy and Mν ≥ 0.095 eV for an inverted
hierarchy (Lesgourgues & Pastor 2006). Cosmological observations
from the cosmic microwave background (CMB) already provide
upper bounds on the sum of neutrino masses. Upcoming Stage-IV
CMB polarization experiments and large-scale structure surveys
like Euclid (Laureijs et al. 2011), LSST (Ivezić et al. 2019), DESI
(Levi et al. 2013), PFS (Takada et al. 2014), and WFIRST (Spergel
et al. 2015) will seek to detect the signature of total neutrino
mass in galaxy clustering and weak lensing statistics conclusively
(Abazajian et al. 2015).

Constraining the value of all the fundamental physical parameters
mentioned above is one of the most important goals of modern
precision cosmology. For that reason, many different cosmological
missions are going to survey the sky to collect data that allow to
constrain the value of the cosmological parameters as accurately
and precisely as possible. Unfortunately, a large fraction of the raw
data available from these surveys cannot be converted into tighter
constraints on cosmological parameters, because the information
is embedded on small scales and in non-Gaussian observables for
which accurate theory predictions are challenging (Scoccimarro,
Zaldarriaga & Hui 1999; Cooray & Sheth 2002; Rimes & Hamilton
2005; Neyrinck, Szapudi & Rimes 2006; Nishimichi, Bernardeau
& Taruya 2016). These scales are typically in the mildly to fully
non-linear regime due to gravitational collapse, and for this reason,
analytical predictions based on perturbation theory are invalid. At
high redshifts, the matter density fluctuations are close to a Gaussian
random field, which is fully characterized by its power spectrum or
two-point correlation function. However, as non-linear gravitational
clustering proceeds, the density field becomes non-Gaussian. The
information that initially was contained in the power spectrum,
leaks into higher order moments of the density field (Peebles 1980;
Bernardeau et al. 2002). Thus, if the analysis of large-scale structure
survey data is limited to the power spectrum, a significant amount
of information is unused. In the non-linear regime, it is unknown
what fraction of the information is contained in each statistic. In
this paper, we focus our attention on one of the simplest statistics
of a three-dimensional field: the probability distribution function
(hereafter PDF) of the matter density field smoothed on a given
scale.

Empirically, it has been found that one-point matter density PDFs
are close to lognormal (Coles & Jones 1991; Kayo, Taruya & Suto
2001), with further improvements by skewed lognormal models
(Colombi 1994; Repp & Szapudi 2018) or generalized normal
distributions (Shin et al. 2017). While the lognormal model is only a
crude approximation, it highlights that by limiting the cosmological
analysis to two-point statistics one inevitably misses a large amount
of information encoded in a non-Gaussian field. This idea has
been formalized by considering the power spectrum of log-densities
(Neyrinck, Szapudi & Szalay 2009; Seo et al. 2011; Wolk, Carron
& Szapudi 2015) and more generally sufficient statistics (Carron &
Szapudi 2014).

In order to unlock additional information in upcoming large-
scale surveys like Euclid, we need accurate predictions for non-

Table 1. Cosmological model parameters for the set of ν�CDM Quijote
simulations under consideration in this paper.

σ 8 �m �b ns h Mν (eV)

fid 0.834 0.3175 0.049 0.9624 0.6811 0
� 0.015 0.01 0.002 0.02 0.02 0.1, 0.2, 0.4

Gaussian statistics and their dependence on cosmology. Having
multiple complementary large-scale structure probes is particularly
important for breaking degeneracies when jointly constraining
fundamental physics such as neutrino masses, modified gravity,
and dynamical dark energy (Font-Ribera et al. 2014; Sahlén 2019).
Counts-in-cells statistics like density PDFs are ideal candidates
for this purpose, as they can be easily measured in surveys and
their cosmology dependence can be accurately predicted. Recently,
this idea has been applied to surveys like DES (The Dark Energy
Survey Collaboration 2005) and KiDS (de Jong et al. 2013) using
galaxy troughs and ridges (Gruen et al. 2016; Brouwer et al.
2018), moments of galaxy density and lensing convergence (Bel
& Marinoni 2014; Petri et al. 2015; Clerkin et al. 2016; Salvador
et al. 2018; Gatti et al. 2019) and density-split statistics (Friedrich
et al. 2018; Gruen et al. 2018). In particular, Gruen et al. (2018) have
shown that density-split statistics from joint counts- and lensing-
in-cells yields cosmological constraints competitive with two-point
function measurements. At the same time, density-split statistics
recover additional information about higher-order moments of the
density field and the relation between galaxy and matter density.
Their combined use of galaxy counts and lensing allowed them to
connect models of the matter density PDF to photometric data of the
galaxy density field, demonstrating that the methodology presented
here can be carried over to real data analyses.

In this work, we combine insights from an analytical model for
the matter PDF based on large-deviation statistics and spherical
collapse (Bernardeau, Pichon & Codis 2014; Uhlemann et al. 2016)
with measurements from the large suite of the Quijote simulations
(Villaescusa-Navarro et al. 2019). We quantify, for the first time, the
amount of cosmological information encoded in the matter density
PDF at multiple scales and redshifts, and compare it to the one from
the matter power spectrum. In our analysis, we take into account the
full covariance between density PDFs measured at different scales
and its cross-covariance with the power spectrum. To perform the
full analysis we extracted more than a million matter density PDFs
from the Quijote suite for different cosmologies and made them
publicly available.1 We consider the ν�CDM model, which extends
�CDM by including the sum of neutrino masses, Mν , as parameter.
In particular, we use what we call derivative simulations, which
vary exactly one parameter in the ν�CDM model compared to the
fiducial model with magnitudes given in Table 1.

Our paper is structured as follows: in Section 2, we describe a
theoretical model for the PDF of matter densities in spheres and
discuss the physical ingredients that determine the resulting shape
of the PDF. In Section 3, we generalize the PDF model to account
for the presence of massive neutrinos. We then cross-validate
our theoretical predictions with measurements from the Quijote
simulation suite in Section 4. In Section 5, we present a Fisher
analysis that demonstrates the constraining power of the matter PDF
for �CDM parameters and total neutrino mass. Section 6 provides
a conclusion and an outlook to further work.

1The PDFs can be accessed as part of the public data release of the Quijote
simulations, see github.com/franciscovillaescusa/Quijote-simulations.
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2 PH Y S I C A L I N G R E D I E N T S F O R TH E P D F O F
MATTER DENSITIES IN SPHERES

Large deviation statistics provides a means to compute the PDF
of non-linear matter densities in spheres (that is to say density
smoothed with a top-hat kernel). In this paper, we limit ourselves
to Gaussian initial conditions, but primordial non-Gaussianities can
also be implemented in the formalism (Uhlemann et al. 2018b;
Friedrich et al. 2019). For Gaussian initial conditions, the PDF
P(δL) of the linear matter density contrast δL in a sphere of radius
r is fully specified by the linear variance at that scale

P ini
r (δL) =

√
1

2πσ 2
L (r)

exp

[
− δ2

L

2σ 2
L (r)

]
. (1)

The linear variance at scale r is obtained from an integral over the
linear power spectrum with spherical top-hat filter in coordinate
space

σ 2
L (r) =

∫
dk

2π2
PL(k)k2W 2

3D(kr), (2)

where W3D(k) is the Fourier transform of the 3D spherical top-hat
kernel

W3D(k) = 3

√
π

2

J3/2(k)

k3/2
, (3)

and J3/2(k) is the Bessel function of the first kind of order 3/2.
To describe the impact of non-linear gravitational dynamics on

the shape of the initially Gaussian matter PDF, it is informative to
look at the exponential decay of the PDF with increasing density
contrast. The decay-rate function is the negative argument of the
exponent in equation (1) and reads


 ini
r (δL) = δ2

L

2σ 2
L (r)

. (4)

According to the contraction principle of large deviation statistics
(Bernardeau & Reimberg 2016), the exponential decay of the PDF
of final densities (at scale R and redshift z)2 can be obtained from
the initial one by inserting the most likely mapping between linear
and non-linear densities in spheres and their radii into


R(ρ) = σ 2
L (R)

σ 2
NL(z, R)

δL(ρ)2

2σ 2
L (Rρ1/3)

, (5)

where σ NL is the non-linear variance of the density at scale R and
redshift z. Thanks to the symmetry of the statistics and statistical
isotropy, the most probable evolution of densities in spheres δL(ρ)
can be accurately approximated by spherical collapse and the initial
and final radii are related by mass conservation r = Rρ1/3. This
argument can be made more precise by writing the final PDF as
a path integral over all possible histories relating final densities to
linear densities. As shown in Bernardeau (1994a) and Valageas

2Note that strictly speaking this result only holds before shell-crossing and
could be altered in the very high density tail which could be dominated
by cuspy halo profiles. However, Taruya, Hamana & Kayo (2003) showed
that the smoothed density profile associated with a power-law halo profile
becomes constant in the inner region. Since we focus our analysis on the
central region of the PDF around the peak and smoothing scales larger than
the size of a typical halo, the impact of halo profiles and rare events in general
is mitigated. On a more technical level, this issue could be addressed by a
density-dependent EFT-inspired approach (see Ivanov, Kaurov & Sibiryakov
2019) capturing the large-scale effects of virialization using a corresponding
cut-off.

(2002), the dominant contribution to this integral comes from
spherical collapse, which is a saddle point of the corresponding
functional integrals. Recently, non-perturbative effects not captured
by the saddle point have been analysed analytically in one dimension
(Pajer & van der Woude 2018) and estimated using a path-integral
approach based on perturbation theory with a renormalization
of small-scale physics (Ivanov et al. 2019). In practice, non-
perturbative effects mostly renormalize the non-linear variance
entering equation (5) and higher order reduced cumulants are still
reliably predicted by spherical collapse.

From the decay-rate function in equation (5), one can compute
the cumulant generating function via a Legendre transform. Then,
one obtains the final PDF from the cumulant generating function
via an inverse Laplace transform that can be computed numeri-
cally (Bernardeau et al. 2014; Bernardeau, Codis & Pichon 2015;
Friedrich et al. 2018). For a standard �CDM universe, there are
only three ingredients that enter this theoretical model for the matter
PDF:

(i) the scale-dependent linear variance and the linear growth,
(ii) the mapping between initial and final densities in spheres,
(iii) and the non-linear variance.

We will discuss each of these ingredients in the following three
subsections. Then we generalize the formalism to include the impact
of massive neutrinos in Section 3.

While in general, the transformation from the decay-rate of the
PDF (5) to the PDF itself has to be evaluated numerically, one
can find an excellent analytical approximation using a saddle-point
technique. As shown in Uhlemann et al. (2016), the inverse Laplace
transform can be evaluated with a saddle-point approximation for
the log-density μ = ln ρ, the expression reads

PR(ρ) =
√


 ′′
R(ρ) + 
 ′

R(ρ)/ρ

2π
exp (−
R(ρ)) . (6a)

Because of the use of the logarithmic variable, one has to ensure
the correct mean density 〈ρ〉 = 1 by specifying the mean of the
log-density 〈ln ρ〉. This can be implemented by properly rescaling
the ‘raw’ PDF (6a)

P̂R(ρ) = PR

(
ρ · 〈ρ̃〉

〈1〉
)

· 〈ρ̃〉
〈1〉2

, (6b)

where 〈f (ρ̃)〉 = ∫
dρ̃ f (ρ̃)P(ρ̃). Note that the normalization is only

necessary because the inverse Laplace transform is not computed
explicitly, which would automatically preserve the normalization
and ensure a correct mean. Since the saddle-point approxima-
tion makes use of the log-density, the non-linear variance that
enters the decay-rate function (5) is the one of the logarithmic
density μ = ln ρ.3 If one computes the PDF numerically using
an inverse Laplace transform (as was for instance performed in
Bernardeau et al. 2015), the non-linear variance of the density
enters directly. Since the final matter density PDFs obtained from
both approaches agree very well (Uhlemann et al. 2016), the
shape of the density PDF allows to translate the variances to each
other.

2.1 The scale-dependence of the linear variance

The amplitude of the linear density fluctuation at different scales
are calculated from the CAMB (Lewis, Challinor & Lasenby 2000)

3Note that the relevant variable is the logarithm of the smoothed density ρ

in a sphere of radius R, not the smoothed logarithm of the density.

MNRAS 495, 4006–4027 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/4/4006/5828742 by guest on 28 M
ay 2024



Counts-in-cells cosmology 4009

Figure 1. Comparison between the linear variance σ 2
L(R) as computed

from CAMB at z = 0 for �CDM cosmologies with varying �m (red), �b

(blue), ns (yellow), and h (green) with positive sign (solid lines) and negative
sign (dashed lines) as indicated in Table 1 with fixed σ 8. The lower panel
shows the differences in the predicted reduced skewness S3 for the different
cosmologies according to equation (7).

linear power spectrum at z = 0. To obtain good agreement with
the finite resolution simulations, the integral for the linear variance
should be cut at the Nyquist frequency kNy = π · Nmesh/Lbox, which is
around 1.6 h Mpc−1 for the box size L = 1000 Mpc h−1 and Nmesh =
512. In Fig. 1 we show how different cosmologies with fixed σ 8

impact the scale-dependence of the linear variance. While changes
in σ 8 simply modify the overall amplitude, changes in �m, �b, ns,
and h modify the variance in a scale-dependent way. As expected,
a change in the primordial spectral index ns results in a constant
shift of the logarithmic derivative d log σ 2

L(R)/d log R. In contrast,
changes in the matter and baryon densities, �m and �b, as well
as the Hubble parameter h induce an additional scale-dependent
running of the spectral index.

While it is possible to numerically determine the precise �CDM
parameter dependence of the linear power spectrum from CAMB
(Lewis et al. 2000) or CLASS (Blas, Lesgourgues & Tram 2011), a
closed-form expression for forecasts and data analysis is desirable.
In Fig. A1 in Appendix A, we show that the linear variance
computed from the Eisenstein–Hu formula for the linear power
spectrum (Eisenstein & Hu 1998) is accurate at about 0.5 per cent
for the fiducial model and the derivative simulations.

2.1.1 Impact on the matter PDF and its cumulants

The scale-dependence of the linear variance determines the expo-
nential decay of the PDF according to equation (5). With different
densities ρ, one scans the linear variance at scales Rρ1/3 in a range of
values around the radius R. One can also understand this behaviour
from the tree order perturbation theory prediction for the reduced
skewness, S3, of the density at scale R. In an EdS universe, this
quantity is determined by the first logarithmic derivative of the

linear variance (Bernardeau 1994b)

S3(R) = 〈δ3(R)〉
〈δ2(R)〉2

= 34

7
+ d log σ 2

L(R)

d log R
. (7)

Note that differences between the reduced skewness amplitude
before smoothing in EdS, which predicts 34/7 and the �CDM
spherical collapse prediction are below 0.0017 for the changes in �m

considered here. Hence, the main change in the reduced skewness is
indeed caused by a difference in the scale-dependent variance. Since
the clustering amplitude σ 8 cancels in the logarithmic derivative,
it does not change the reduced skewness. We show how the other
�CDM parameters impact the ratio of linear variances and hence
the differences in the reduced skewness in Fig. 1. The lower panel
demonstrates how changing cosmological parameters offsets the
reduced skewness. When focusing on a single radius R, one can
only detect the overall offset, but not distinguish between the
cosmological parameters. In particular, the skewness at one scale
cannot distinguish a constant tilt caused by ns from a running of
the tilt induced by �m, �b, and h. This degeneracy is partially
broken by considering the full PDF, whose shape is also sensitive
to a combination of the reduced kurtosis S4 and higher order
cumulants, which depend on higher order logarithmic derivatives.
In the presence of irreducible noise such as cosmic variance, the
amount of this additional information is however limited. This
is why it is important to jointly consider matter density PDFs
at multiple radii. In this study, we limit ourselves to modelling
the PDFs at different radii individually, but include their cross-
covariance, which captures some part of their joint one-point
PDF.

2.1.2 Growth of density fluctuations

In the linear regime and for a �CDM model, the amplitude of
density fluctuations grows with the growth rate such that

σ 2(z, R) = D2(z)σ 2
L (R) . (8)

For a flat �CDM universe, the linear growth of structure depends
only on the matter density �m and a closed form is known
(Matsubara 1995)

D(z) =
√

1 − �m + �m(1 + z)3
2F1

[
5
6 , 3

2 , 11
6 , −1+�m

�m(1+z)3

] )
(1 + z)5/2

2F1

[
5
6 , 3

2 , 11
6 , −1+�m

�m

] , (9)

where 2F1 is the hypergeometric function. At redshift z = 1, a
change in the matter density �m of ±3 per cent around the fiducial
value leads to ∓1 per cent difference in the square of the growth
function. From the overall amplitude of density fluctuations in
equation (8), we see that for the matter PDF at a single non-
zero redshift z > 0, the linear growth function controlled by �m

becomes degenerate with the overall amplitude σ 8, which is not
the case at z = 0, because D(z = 0) = 1. This degeneracy can
be broken by performing an analysis in multiple redshift slices,
which also helps to disentangle the matter density �m from the
spectral index ns, as we demonstrate in a Fisher forecast shown in
Fig. 15.

In Appendix A1, we discuss the impact of a dark energy equation
of state beyond a cosmological constant. In Fig. 19 in Section 6, we
compare the dependence of the growth-rate on the matter density �m

for a flat �CDM universe to a change in the dark energy equation of
state parameter w0 and to the modifications induced by the presence
of massive neutrinos.
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Figure 2. Comparison between the parametric spherical collapse dynamics
for EdS given by equation (10) (black) and the ν-parametrization given by
equation (11) for the parameters ν = 1.5 (red), ν = 21/13 (blue), and ν =
1.686 (green) compared to the numerical solution for spherical collapse in
a �CDM universe.

2.2 Spherical collapse dynamics

In an Einstein–de Sitter (EdS) universe, there is a paramet-
ric solution for spherical collapse dynamics (Peebles 1980),
which relates the linear density contrast δL to the non-linear
density ρNL

δL ≥ 0 :

⎧⎪⎪⎨
⎪⎪⎩

ρNL = 9

2

(θ − sin θ )2

(1 − cos θ )3

δL = 3

20
[6(θ − sin θ )]2/3

(10a)

and

δL < 0 :

⎧⎪⎪⎨
⎪⎪⎩

ρNL = 9

2

(sinh η − η)2

(cosh η − 1)3

δL = − 3

20
[6(sinh η − η)]2/3

, (10b)

where θ ∈ [0, 2π] is the development angle and η its counterpart
for an open universe and both parameters can be eliminated from
the relation. Note that these formulae can be extended to any
background with zero cosmological constant (see appendix A of
Bernardeau et al. 2002). Let us note that the initial and final radii of
the sphere are related by mass conservation r3 = R3ρ.

For simplicity, one can rely on an approximate explicit
parametrization for spherical collapse in an EdS universe, given
by

ρNL,ν(δL) =
(

1 − δL

ν

)−ν

, (11)

where δL is the linear density at redshift zero. The parameter ν

controls the amplitude of the skewness before smoothing 3(1 + 1/ν)
and can be matched to the prediction in equation (7), yielding
ν = 21/13. Originally, this parametric form has been suggested in
Bernardeau (1994a), with approximately ν = 1.5, which becomes
exact for � = 0 in the limit of �m → 0 and drives the shape of
the PDF in low-density regions. In excursion-set inspired models,
usually the critical linear density for collapse is used, setting ν =
δc = 1.686 (Lam & Sheth 2008).

In Fig. 2, we compare the parametric EdS form (10) (black line)
and the ν-parametrization (11) with different parameters (blue,
green, and red lines) to the numerical solution of the �CDM

Table 2. Variances of the density ρ and the log-density μ= ln ρ for different
radii R (Mpc h−1), redshifts z, and cosmological models (see Table 1) as
measured from the mean of the 100 realizations of the high resolution
fiducial simulation.

fid, HR R (Mpc h−1) z = 0 z = 0.5 z = 1 z = 2 z = 3

10 0.619 0.498 0.404 0.285 0.218
σμ 15 0.486 0.384 0.308 0.215 0.164

20 0.388 0.304 0.242 0.169 0.129

10 0.743 0.560 0.436 0.296 0.223
σρ 15 0.532 0.406 0.319 0.219 0.166

20 0.408 0.313 0.247 0.171 0.13

spherical collapse dynamics, described in Friedrich et al. (2018,
see appendix A). We find that the parametric solution for EdS
approximates the numerical �CDM solution extremely well, with
sub-percent residuals in the range of relevant densities ρ ∈ [0.1,
10]. For the fiducial cosmology (�m = 0.3175), the deviations
are less than 0.2 per cent. As expected, the agreement improves
with increasing �m. But even for a matter density of �m 
 0.21,
differences stay below 0.3 per cent. Therefore, for the purpose
of constraining cosmology with the bulk of the matter PDF, the
cosmology dependence of spherical collapse can be neglected. In
what follows, we rely on the parametric EdS spherical collapse
solution (10) for the theoretically predicted PDF.

Note that spherical collapse is potentially affected more seriously
by dynamical dark energy (Mota & van de Bruck 2004; Abramo
et al. 2007; Pace, Waizmann & Bartelmann 2010; Mead 2017) or
modified gravity (Schäfer & Koyama 2008; Barreira et al. 2013;
Kopp et al. 2013; Cataneo et al. 2016), which are beyond the scope
of this work. The impact of massive neutrinos on spherical collapse
is discussed in Section 3.

2.3 The non-linear variance

In full analogy to its linear counterpart, the non-linear variance is
defined in terms of the non-linear power spectrum

σ 2
NL(z, R) =

∫
d3k

(2π)3
PNL(z, k)W3D(kR)2. (12)

While the reduced cumulants are well predicted by spherical
collapse dynamics, the non-linear variance cannot be inferred accu-
rately enough. In Table 2 we quote the measured standard deviations
of the smoothed density and its logarithmic version in the fiducial
cosmology. In the following, we discuss how one can efficiently
parametrize the cosmology dependence of this quantity, and how
accurately this quantity can be predicted using the non-linear matter
power spectrum from fitting functions (HALOFIT from Peacock &
Smith 2014 and RESPRESSO from Nishimichi, Bernardeau & Taruya
2017) or perturbative techniques (2-loop SPT and RegPT from
Taruya et al. 2012; Osato et al. 2019).

2.3.1 Cosmology dependence

For lognormal fields with unit mean, the variance of the logarithm
of the smoothed density is related to the density variance as (Coles
& Jones 1991)

σ 2
ln ρ(z, R) = ln

[
1 + σ 2

ρ (R, z)
]
. (13)
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To estimate the impact of changing cosmology, we will use the linear
density variance in this relation.4 In the absence of massive neutri-
nos, we use a factorization of the linear variance into the growth
function and the scale-dependent linear variance extrapolated to
today, σ L(R, z) = D(z)σ L(R).

This simple relation proves useful for parametrizing the cosmol-
ogy dependence of the non-linear log-variance, which is induced
by changes in the linear variance (computed from the linear power
spectrum) and the growth rate D(z). We use this relation to predict
the scaling of the non-linear variance for cosmologies with changed
cosmological parameters from the measured variance at the fiducial
cosmology

σ 2
ln ρ,cos(z, R) = ln

[
1 + σ 2

L,cos(R, z)
]

ln
[
1 + σ 2

L,fid(R, z)
] σ 2

ln ρ,fid(z, R). (14)

We have checked that this yields residuals smaller than 0.1 per cent
for radii R = 10, 15, 20 Mpc h−1 at all redshifts and will use the
approximation (14) for predicting the change of non-linear log-
variances with cosmology.

2.3.2 Calibration for fiducial cosmology

The non-linear variance can be predicted from a given non-linear
power spectrum according to equation (12). We compare the result
from fitting functions (HALOFIT and RESPRESSO) and perturbative
techniques (SPT and RegPT) with the variance obtained from the
measured non-linear power spectrum. With this comparison, we
circumvent potential convergence issues that might affect the non-
linear variance measured from the PDF at small scales, as discussed
in Section 4.2. We compare the non-linear power spectra using the
different approaches in Fig. A2 in Appendix A1. At low redshifts
z = 0, 0.5, 1, the halofit power spectrum is accurate at a few per
cent level in the whole range up to k 
 0.4, which is relevant for
obtaining the variance down to R = 10 Mpc h−1. When using the
halofit fitting function for the non-linear power spectrum to predict
the non-linear variance at R = 15 Mpc h−1, we find about 1 per cent
and 2 per cent disagreement at redshifts z = 0.5 and z = 0. At the
smaller scale R = 10 Mpc h−1, we obtain residuals of 1.5 per cent
and 2.5 per cent for z = 0.5 and z = 0, respectively. The cosmology
dependence of the non-linear variance, measured by the residuals of
the ratio of variances in different cosmologies, is predicted at sub-
percent level for all derivative simulations with changed �CDM
parameters according to Table 1, where the largest deviations of are
found for �m and ns.

The non-linear power spectrum generated from the response
function approach (Nishimichi et al. 2016, 2017)5 is extremely
close to the measured power spectrum, having sub-percent residuals
throughout. The response function approach is aided by a few sets
of simulations, one of which is for a Planck 2015 cosmology with
a very similar set of parameters as chosen in Quijote. While this
could explain the spectacular agreement for fiducial cosmology, also
the predictions for the dependence on changed �CDM parameter
according to Table 1 are sub-percent throughout.

4As discussed in Repp & Szapudi (2017), one could introduce a free
parameter in this simple approximation in order to improve the matching
on small scales. Note that Repp & Szapudi (2017) use this approach for
obtaining expression the power spectrum of the log-density. Consequently,
their relationships are formulated for the smoothed log-density rather than
the logarithm of the smoothed density that we consider here.
5Computed using the publicly available Respresso Python package.

Obtaining accurate non-linear variances from perturbative results
for the non-linear power spectrum is difficult, since a broad range
of scales up to k 
 0.4 h Mpc−1 enters the integration from
equation (12) when decreasing radius towards R = 10 Mpc h−1,
as we demonstrate in Fig. A3 in Appendix A1. RegPT and SPT
at 2-loop order6 have residuals typically larger than 4 per cent at
redshift z = 0, with improvements at higher redshifts and larger
radii. While RegPT gives a more accurate result than SPT out to
wavenumbers of about k 
 0.2 h Mpc−1, its exponential cut-off
causes predictions for the non-linear variance to seem worse than
SPT. Note that within the framework of the effective field theory of
large-scale structure (Baumann et al. 2012; Carrasco, Hertzberg &
Senatore 2012), the non-linear variance gets renormalized in order
to account for the short-scale effects (Ivanov et al. 2019).

3 THE MATTER PDF W I TH MASSI VE
N E U T R I N O S

3.1 Basic effects of massive neutrinos

Before we start to discuss the effect of massive neutrinos on the
matter PDF, let us review the relevant basics following Lesgourgues
& Pastor (2006). The neutrino abundance is related to the total
matter density and can be approximated as

�ν = Mν

93.14h2eV
, fν = �ν

�m
. (15)

For the simulations considered here with Mν = 0.1, 0.2, 0.4 eV,
we have fν = 0.0075, 0.015, 0.030. Due to their large thermal
velocities, neutrinos do not cluster on scales below their (physical)
free-streaming length, which is defined in analogy to the Jeans
length and depends on their mass according to

λfs(z) = 7.7(1 + z)√
�� + �m(1 + z)3

1 eV

mν

Mpc h−1, (16)

where mν is the mass of the considered neutrino species. The
corresponding free-streaming wavenumber is kfs = 2πa/λfs. In this
study, we consider degenerate neutrino masses, and therefore, we
have mν = Mν /3. For total neutrino masses of Mν = 0.1, 0.2, 0.4 eV,
the free streaming lengths are λfs(z = 0) = 231, 115, 57 Mpc h−1.
While the free streaming scale sets the scale below which neutrinos
are not clumping under the influence of gravity at some redshift z,
there is an additional scale of interest in the problem. The maximum
free streaming scale in comoving units achieved at any redshift is
much larger, as it is related to the time when neutrinos become
non-relativistic

knr 
 0.018 �1/2
m

( mν

1 eV

)1/2
h Mpc−1. (17)

The associated comoving length-scale λnr = 2π/knr determines
above which scales massive neutrinos behave like an ordinary
clustering dark matter component. Below this scale, the neutrino
power spectrum is damped compared to the cold dark matter one.
For the total neutrino masses considered here, those comoving
length-scales are beyond the size of the simulation box.

In the presence of massive neutrinos, we need to extend the
list of physical ingredients for the matter PDF from Section 2 by an
additional element. In order to predict the total matter PDF, we need
to specify the non-linear matter density of the clustering component.
After discussing this key change below, we will describe the imprint

6Computed using the publicly available Eclairs code.
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Figure 3. Effect of massive neutrinos on the ratio of the normalized
densities of CDM plus baryons (cb) and total matter (m) in a given massive
neutrino cosmology. We show predictions from equation (18a) considering
only the neutrino background (dotted lines) or also the scale-dependent
neutrino clustering according to equations (18) for radius R = 10 Mpc h−1

at redshift z = 1 (dashed lines) and z = 0 (solid lines) for total neutrino
mass Mν = 0.1eV (blue), 0.2eV (green), and 0.4eV (red).

of massive neutrinos on the other standard ingredients, namely
spherical collapse and the variances.

3.2 Matter density of clustering component

Let us denote normalized densities by ρ = 1 + δ and physical
densities by ρ̃, such that ρ = ρ̃/ρ̄. The normalized total density ρm

can be expressed in terms of the normalized matter density in cold
dark matter and baryons, ρcb, and the neutrino density ρν , and the
relative abundances of the two species

ρm = ρ̃cb+ν

ρ̄cb+ν


 ρ̃cb + ρ̃ν

ρ̄cb + ρ̄ν

= ρcb
�cb

�m
+ ρν

�ν

�m
(18a)

δm = δcb
�cb

�m
+ δν

�ν

�m
. (18b)

A first estimate for the effect of neutrinos masses can be obtained
by considering a uniform background density constituted by the
massive neutrinos, thus setting ρν = 1. We illustrate this most
simplistic relationship between the total normalized matter density
and the normalized matter density in CDM and baryons as dotted
line in Fig. 3. We see that the effect is biggest for underdensities,
where the presence of massive neutrinos causes one to probe
CDM+baryon densities that are effectively even lower than the total
matter density, hence rarer and less probable. To take into account
that neutrinos do cluster on scales larger than their free-streaming
length, we assume that a portion of massive neutrinos cluster like
the cold dark matter and baryon component. We approximate the
clustering portion using the ratio between the linear variances
computed from the CAMB power spectra for massive neutrinos
and cold dark matter and baryons

δν 
 σL,ν(R, z)

σL,cb(R, z)
δcb . (18c)

This corresponds to considering a simplified scale-dependent bias
between neutrinos and cold dark matter plus baryons, and a tight
correlation between the linear fields. Hence, the total matter density
is a biased version of the cold dark matter and baryon density and
the impact of this bias on the PDF is given by a change of variables

Pm(ρm) = Pcb(ρcb(ρm))
dρcb

dρm
. (19)

In Fig. 3, we show the impact of this neutrino clustering on the
ratio between the cold dark matter and baryon component to the
total matter for two redshifts, z = 1 (dashed lines) and z = 0 (solid
lines). We see that the presence of massive neutrinos lowers the
clustering density in underdense regions. This shifts the underdense
tail of the total matter PDF to slightly higher densities, as seen in the
upper panel of Fig. 10. Additionally, there is a few per cent effect
on the shape around the peak, that is not visible in a log–log plot but
shown in the lower panels of Fig. 10. For the prediction, we inferred
the impact of massive neutrinos on the non-linear log-variance of
cold dark matter plus baryons using equation (14).

Since the weak lensing convergence is a projected version of
the total matter density contrast (18b), we expect that the scale-
dependent neutrino clustering according to equation (18c) is directly
related to the imprint of massive neutrinos in the weak lensing PDF
recently measured in simulations (Liu & Madhavacheril 2019). In
fact, the residuals between the PDFs with and without massive
neutrinos shown in Fig. B2 look qualitatively very similar. However,
we note that part of the observed signature could be due to a change
in the non-linear variance that is driven by σ 8, which is not fixed in
the MassiveNu simulations used in Liu & Madhavacheril (2019).

3.3 Spherical collapse

For realistic total neutrino masses that are in agreement with current
bounds, the effect of massive neutrinos on spherical collapse is
typically sub-percent. LoVerde (2014) demonstrated that the main
net effect of massive neutrinos with total mass Mν < 0.5 eV is
to increase the collapse threshold by at most 1 per cent. In our
theoretical model for spherical collapse, the impact of this change
can be estimated by changing the parameter ν ∝ δc entering the
spherical collapse approximation from equation (11). We have
checked that this effect remains below 1 per cent in the entire 2σ

region around the mean in logarithmic scale.
When focusing on non-linear objects like haloes and voids that

intrinsically live in the tails of the PDF, the impact of massive
neutrinos on their formation can be more significant. On the one
hand, massive neutrinos lower the abundance of massive dark matter
haloes that host galaxy clusters (Villaescusa-Navarro et al. 2011,
2013; Ichiki & Takada 2012; LoVerde 2014; Roncarelli, Carbone
& Moscardini 2015) by delaying the collapse time, which is only
slightly counteracted by the non-linear clustering of neutrinos with
the halo. On the other hand, neutrinos do not evacuate voids as
efficiently as CDM due to their thermal velocities (Massara et al.
2015). This is why the scale-dependent bias for voids defined in
the total matter field in massive neutrino cosmologies (Banerjee &
Dalal 2016) is stronger than the scale-dependent halo bias at fixed
neutrino mass and rarity of the fluctuation. Unfortunately, this signal
is difficult to use currently since it is challenging to robustly detect
voids in total matter through lensing measurements. Additionally, if
one attempts to look for these effects by defining voids using tracer
populations like galaxies or massive clusters, it has been shown that
the massive neutrino effects sensitively depends on the choice of
tracers (Kreisch et al. 2019).

3.4 Scale-dependent linear variance and non-linear variance

In Fig. 4 we show the scale-dependence in the linear variance
induced by the presence of massive neutrinos, for the total mat-
ter component (solid lines) and the clustering matter component
(dashed lines) at redshift z = 0. For the theoretical predictions that
follow, we use the linear variance computed for the clustering matter
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Figure 4. Comparison between the linear variance σ 2
L(R) computed from

the linear power spectrum of total matter (solid lines) and cold dark matter
plus baryons (dashed lines) for cosmologies with total neutrino mass Mν =
0.1eV (blue), 0.2eV (green) and 0.4eV (red) with fixed σ 8. Note that the
offset of the curves for cold dark matter and baryons is because their
clustering amplitude needs to be enhanced to compensate for the lack of
neutrino clustering on large scales to yield the desired σ 8 for total matter.

component and approximate the impact of massive neutrinos on the
non-linear log-variance according to equation (14). Note that the
non-linear variance could also be predicted from halofit (Peacock &
Smith 2014), its extensions (Bird, Viel & Haehnelt 2012; Cataneo
et al. 2020) or perturbative models including massive neutrinos
(Saito, Takada & Taruya 2009).

In Fig. 19 in Section 6, we demonstrate the impact of massive
neutrino on the growth of structure at the scales of interest here R �
10 Mpc h−1. For the case of massive neutrinos, the density of the
clustering matter component (CDM + baryons) can be estimated
from the density of the total matter according to equation (18a).

3.5 Summarized recipe and result

Combining the recipes outlined above, one can compute the total
matter density PDF in the presence of massive neutrinos from
the linear power spectrum for cold dark matter plus baryon, their
non-linear log-variance, standard spherical collapse and a mapping
between the total clustering density and the cold dark matter plus
baryon density according to equations (18).

In Fig. 10 we show the predicted and measured effect of massive
neutrinos (with fixed matter clustering amplitude σ 8). The impact
of massive neutrinos at scales around 10 Mpc h−1 is largest in the
underdense regions, where it is at the 10 per cent level (ρ 
 0.2) and
at the few per cent level for overdense (ρ 
 5) regions. This effect
is significantly stronger than cosmic variance, as we highlight in a
corresponding residual plot shown in Fig. B2 in Appendix B.

4 VA L I DAT I N G TH E O RY A N D S I M U L AT I O N S

4.1 Measurements from the Quijote simulations

The Quijote simulations are a large suite of full N-body simulations
designed for two main purposes: (1) to quantify the information
content of cosmological observables and (2) to provide enough
data to train machine learning algorithms. They contain 43 100
simulations spanning more than 7000 cosmological models in the
{�m, �b, h, ns, σ 8, Mν , w} hyperplane. At a single redshift, the
total number of particles in the simulations excess 8.5 trillions, over
a combined volume of 43100 (Gpc h−1)3. The simulations follow

the gravitational evolution of N3
p particles (2 × N3

p for simulations
with massive neutrinos) over a comoving volume of 1 (Gpc h−1)3

starting from redshift z = 127. Initial conditions for the pure �CDM
simulations (without massive neutrinos) are generated from 2LPT,
while the simulations to assess the impact of massive neutrinos
are run using initial conditions from the Zeldovich approximation
taking into account the scale-dependent growth factor and growth
rate present in these models. Simulations were run using the SPH-
TREEPM GADGET-III code. We refer the reader to Villaescusa-
Navarro et al. (2019) for further details on the Quijote simulations.
Different values of particle number Np are provided: Np = 256 (low
resolution), Np = 512 (fiducial resolution), and Np = 1024 (high
resolution).

In this section, we focus on the PDF of the matter field, smoothed
with a spherical top-hat at different scales, computed from the
Quijote simulations. The PDFs have been computed from the
Quijote simulations as follows. First, particle positions and masses
are assigned to a regular grid with Nm (typically 5123) cells using
the cloud-in-cell mass assignment scheme. Next, the value of the
normalized density field ρ = 1 + δ in each grid cell is computed
by dividing the mass of each cell by the average cell mass. We
then smooth the density field with a top-hat filter of radius R.
This procedure is done in Fourier-space, by first computing the
Fourier transform of the density field and then multiplying it by
the Fourier transform of the filter on the regular grid itself, to
avoid numerical artefacts on small scales. Finally, the smoothed
field is estimated by computing the inverse Fourier transform of
the previous quantity. The PDF is measured in 99 logarithmically
spaced bins of normalized density between 10−2 and 102 by
calculating the fraction of cells that lie in a given bin and dividing
by the bin width.

4.2 Matter PDF resolution effects

We tested the convergence of the PDF measurements with respect
to two resolution parameters – the number of particles Np, and the
number of mesh cells Nm. The fiducial resolution is Np = Nm =
5123, giving typical initial inter-particle and grid spacing of about
2 Mpc h−1. The high-resolution PDF is obtained from Np = Nm =
10243, where the initial inter-particle and grid spacing are about
1 Mpc h−1. To disentangle the impact of the particle number and
mesh resolution effects, we compared all combinations of Np, Nm

∈ {5123, 10243}.
In the upper panel of Fig. 5 we show a convergence check

for the PDF, comparing the measured fiducial cosmology PDF
in the standard resolution simulation with the high-resolution
simulation. From the plot we see that the resolutions affects the
PDF of densities in spheres of radii R = 5, 10, 15 Mpc h−1 at
6 per cent, 3 per cent, 1 per cent level even around the peak. This
effect depends only weakly on redshift. We found that in order
to obtain accurate matter PDFs, the final mesh resolution has to
be about a tenth of the radius of the spheres. For a quantitative
comparison of the standard deviation and the skewness, we therefore
focus on radii R = 10, 15, 20 Mpc h−1 and redshifts z = 0, 0.5,
1. The standard deviation σ is underestimated by 2.5−3 per cent
for radius R = 10 Mpc h−1 in the lower resolution, which is
mostly due to the smaller mesh resolution. We find that the
lower resolution overestimates the reduced skewness S3, defined in
equation (7), relatively independent of scale and redshift by about
1.5−2.5 per cent, mostly caused by the lower particle number (and
therefore more subject to rare events).
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Figure 5. Residual between the fiducial matter PDF in spheres of radius
R = 5, 10, 15, 20 Mpc h−1 (red, yellow, green, blue) at redshifts z = 0, 0.5, 1
(slightly blue-shifted in colour towards larger z), measured from the means of
different simulation runs. The dashed and solid grey lines indicate 1 per cent
and 2 per cent accuracy, respectively. (Top panel) Residual between the
mean over 100 simulations with standard resolution and high resolution.
(Bottom panel) Residual between 500 realizations with initial conditions
using the Zeldovich approximation and 2LPT.

The finite resolution effects on the matter PDF measured from
simulations highlight the importance of having reliable theoretical
predictions for the PDF available, allowing to cross-validate the
simulation measurements and the theory. We mitigate the impact
of finite resolution effects by discarding the smallest radius R =
5 Mpc h−1 and cutting a percentage of rare density spheres in
the Fisher analysis, essentially limiting the range of logarithmic
densities to the 1.5σ region around the peak.

In the lower panel of Fig. 5 we show residuals between the
matter PDF extracted from the fiducial simulations run either from
Zeldovich approximation or 2LPT initial conditions. We can see
that the impact of the initial conditions is sub-percent in the region
around the peak, but increases in the tails. Overall, we observe that
the impact of initial conditions is smaller than the finite resolution
effects and negligible in the 1.5σ region around the peak, on which
we will focus in our analysis.

4.3 Shape of the matter PDF for fiducial cosmology

In Fig. 6, we show a comparison of the theoretical prediction for the
PDF and the measurement from the mean over 100 realizations of
the high-resolution simulation for the fiducial cosmology. We find
that the theoretical prediction for the PDF, with the measured non-
linear variance as an input, performs very well. To fairly compare
the performance of the prediction at different radii and redshift, we
plot residuals in Fig. 7 as a function of the deviation of the log-
density from its mean in units of the standard deviation. Data points
with error bars indicate the mean and standard deviation of the PDF
bin measurements across the 100 realizations. Residuals are at a

Figure 6. Matter density PDF for spheres of radius R = 10 Mpc h−1 at
redshifts z = 0, 0.5, 1, 2, 3 (from red to blue, as indicated in the legend) for
the high-resolution run of the fiducial model as measured from the mean over
100 realizations (data points) compared to the theoretical prediction (lines).
We show the density PDF (upper panel), and the PDF of the logarithmic
density, with a shifted and rescaled x-axis to align the peak positions and
unify the widths (lower panel). Lognormal PDFs are shown for comparison
as thin dashed lines, which clearly deviate from the measurements towards
lower redshifts.

few per cent level in the 2σ region around the mean for all scales
and redshifts at which the non-linear variance, listed in Table 3, is
sufficiently below unity (σ 2

NL � 0.5). As expected, the agreement
between the theory and the simulation improves with decreasing
the non-linear variance, which can be achieved by increasing either
redshift or the smoothing radius.

Let us note that when going from high (blue curves) to low (red)
redshifts, the PDF is skewed towards underdensities as expected
since voids occupy more volume while overdensities become more
concentrated. While this evolution is mainly driven by the growth of
the skewness, one needs to implement a large-deviation argument
(Bernardeau 1992, 1994a; Bernardeau & Reimberg 2016) to get
the correct PDF shape by accounting for a complete (and there-
fore meaningful) hierarchy of cumulants. This has be contrasted
with an Edgeworth-like expansion which truncates this cumulant
hierarchy and therefore necessarily fails to reproduce the tails of
the distribution. In fact, the inclusion of higher order cumulants is
essential even to capture the full shape of the PDF around the peak,
as we demonstrate in Figs 14 and 17 (for a similar comparison
in the presence of primordial non-Gaussianity see Friedrich et al.
2019).
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Figure 7. Residuals between the measured and predicted matter PDF in
spheres of radius R = 10, 15, 20 Mpc h−1 (top to bottom) for redshifts
z = 0, 0.5, 1, 2, 3 (red to blue, as indicated in the legend).

Table 3. Measured variances for the log-density μ = log ρ and the density
ρ using all matter (m) or the cold dark matter and baryon component (cb)
at z = 0 for a sphere of radius R = 10 Mpc h−1.

Mν (eV) σμ,cb σμ,m σρ,cb σρ,m

0 0.6144 0.7399
0.1 0.6183 0.6124 0.7468 0.7414
0.2 0.6222 0.6113 0.7541 0.7438
0.4 0.6297 0.6107 0.7686 0.7501

4.4 Change of PDF shape with cosmological parameters

In the following, we compare the differences of the matter PDFs for
changes in �CDM parameters and total neutrino mass, as predicted
by our theoretical model and as measured in the simulation. We
show differences rather than ratios to highlight deviations in the
shape of the PDF around the peak, where the signal to noise
is highest and most constraining power is located. Even when
excluding the tails, the full shape of the PDF still carries significant
non-Gaussian information, as we will show in Fig. 9 below.
Additionally, the differences between PDFs for different parameters
determine the response of the PDF to changing cosmology that enter
in the Fisher analysis presented in Section 5. Data points with error

Figure 8. Differences between the PDFs with changed σ 8 at redshift z =
0 with radii R = 10, 15, 20 Mpc h−1 as predicted from our formalism
(solid lines), the lognormal approximation (thin dashed lines) and measured
in the derivative simulations with standard resolution (data points). The
grey vertical lines indicate the region that is used for the Fisher analysis in
Section 5.

bars indicate the mean and standard deviations of the differences in
the PDFs measured across 500 realizations.

4.4.1 �CDM cosmological parameter dependence

In Figs 8 and 9, we show differences between the matter PDFs
for changes in �CDM parameters. For the predictions shown
as solid lines, we use the theoretical model from equations (6)
along with the predicted cosmology dependence of the log-variance
from equation (14), normalized with the measured variance for the
fiducial simulations. Increasing the clustering amplitude σ 8 leads
to an increase in the non-linear variance, which broadens the PDF
and hence decreases the peak height, as can be seen by the dip
around the origin in Fig. 8. Since the PDF is normalized, this
dip around the peak is compensated by an increase of the PDF
in regions that are more significantly underdense or overdense. For
comparison, we also show the expected differences assuming a
lognormal matter PDF (thin dashed lines), which disagree with the
simulation measurements in particular in the underdense regions.

At small scales R ∼ 10 Mpc h−1, changing cosmological param-
eters other than σ 8 mostly cause an additional skewness, which
manifests in an asymmetry between densities on different sides of
the peak of the PDF. This is in line with the expectation that changes
in the amplitude of the variance are small around R = 8 Mpc h−1 due
to fixed σ 8, and the main effect is the change of the scale-dependence
shown in Fig. 1 that modifies the skewness according to equation (7).
At larger scales, the asymmetry disappears because the main effect
is a few per cent change in the variance, resembling the impact
of changing σ 8 shown in Fig. 8. To highlight the cosmological
information in the PDF shape, we contrast the full theoretical
prediction including the impact of the cosmological parameters
on the scale-dependence of the variance (solid lines) to a mere
change in the non-linear variance (thin dashed lines) in Fig. 9. The
latter closely mimics the response to cosmological parameters in
the lognormal model, which disagrees with the measurements at
the smaller smoothing scales. This demonstrates the importance of
the reduced skewness, which responds to a change in cosmological
parameters according to equation (7). Indeed, the full hierarchy
of cumulants affects the PDF shape even in the central region
excluding the tails, as we demonstrate in Figs 14 and 17 and discuss
in an accompanying paper focused on the impact of primordial non-
Gaussianity (Friedrich et al. 2019). For completeness, we show the
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Figure 9. Differences between the matter PDFs for changes in �m (red),
�b (blue), ns (orange), and h (green) as predicted (solid lines) and measured
in the simulations (data points) at redshift z = 0 with radii R = 10, 15,
20 Mpc h−1 (from top to bottom). To highlight the impact of cosmology
on the non-Gaussian shape on small scales, we add predictions that only
account for the change in the non-linear variance (thin dashed lines). The
grey vertical lines indicate the region that is used for the Fisher analysis in
Section 5.

corresponding ratios of the PDFs when varying �CDM parameters
other than σ 8 in Fig. B1 in Appendix B.

4.4.2 Total neutrino mass dependence

In Fig. 10, we show differences in the total matter PDF for the
massive neutrino models compared to the fiducial model. Note that
both simulations have been run using initial conditions generated
from the Zeldovich approximation. We find that massive neutrinos
affect the shape of the PDF in a distinct way, that is well predicted
by our model (solid lines) and not degenerate with a change in
σ 8, for which differences are displayed in Fig. 8. To highlight this,
we contrast our model with naive predictions only accounting for
the change in the non-linear variance as thin dashed lines. For the
smallest radius R = 10 Mpc h−1, we can see a significant suppression
in underdense regions, as expected from Fig. 3. Additionally, the
skewness is enhanced by the presence of massive neutrinos due to
a combination of the enhancement by the scale-dependent variance
demonstrated in Fig. 4 and the change of variables (18). This leads
to a characteristic signature that can be even distinguished by eye

Figure 10. (Upper panel) Total matter PDF in spheres of radius R = 10
Mpc h−1 for redshifts z = 0, 1 for the fiducial model without massive
neutrinos and with Mν = 0.2 eV, as indicated in the legend. (Lower panels)
The fractional difference of the PDF as measured (data points) and predicted
(solid lines) for massive neutrinos with mν = 0.1eV (blue), mν = 0.2eV
(green), and mν = 0.4eV (red) and the fiducial model (with equal σ 8) as a
function of density at redshift z = 0 and radii R = 10, 15, 20 Mpc h−1

(top to bottom). To highlight that the imprint of massive neutrinos in
the matter PDF is distinct from a change in σ 8, we add predictions that
only account for the change in the non-linear variance (thin dashed lines).
The grey vertical lines indicate the region used for the Fisher analysis in
Section 5.
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from the shapes induced by changing other �CDM parameters
shown in Fig. 9. For larger radii, this signature gets concealed,
because the range of probed densities becomes smaller and the
differences in the variances grow. The scale-dependence of the
impact of massive neutrinos on the matter PDF has a significant
advantage over the mildly non-linear matter power spectrum, where
the clustering amplitude σ 8 and the total neutrino mass Mν are
largely degenerate (Villaescusa-Navarro et al. 2018), as we show
in Fig. 17. The main effect in the matter PDF is caused by the
presence of a massive neutrino background in underdense regions
and a partial clustering of massive neutrinos encoded in the scale-
dependent bias from equations (18).

For completeness, we provide a residual plot between the total
matter PDF in the presence of massive neutrinos and the fiducial
model in Fig. B2. This plot demonstrates that our theoretical model
for massive neutrinos achieves a similar accuracy as the predictions
for changes in the �CDM parameters.

5 FI S H E R FO R E C A S T FO R ν�C D M
C O S M O L O G Y

In this section, we quantify the information content of the matter
PDF on the full set of �CDM cosmological parameters and the
total neutrino mass using a Fisher matrix formalism together with
the large suite of Quijote simulations.

After briefly reviewing the basis of the Fisher analysis in
Section 5.1, we explain our data vector in Section 5.2. We discuss
the covariance matrix in Section 5.3 and the derivatives with respect
to cosmological parameters in Section 5.4. In Section 5.5, we
determine a suitable combination of smoothing radii and redshifts
for the matter density PDF, and establish the complementarity
between the matter PDF and the matter power spectrum on mildly
non-linear scales. The final constraints on the full set of ν�CDM
parameters are presented in Fig. 18.

5.1 Basics for the Fisher analysis

The Fisher matrix on a set of cosmological parameters, θ , given a
(combination of) statistics S is defined as

Fij =
∑
α,β

∂Sα

∂θi

C−1
αβ

∂Sβ

∂θj

, (20)

where Si is the element i of the statistic S and C is the covariance
matrix, defined as

Cαβ = 〈(Sα − S̄α)(Sβ − S̄β )〉 , S̄α = 〈Sα〉 . (21)

We multiply the inverse of the covariance matrix measured in the
simulation by the Kaufman–Hartlap factor (Kaufman 1967; Hartlap,
Simon & Schneider 2006), h = (Nsim − 2 − NS)/(Nsim − 1),
to correct for a potential bias for the inverse of the maximum-
likelihood estimator of the covariance depending on the ratio of the
length of the data vector NS to the number of simulations Nsim. Since
in our case the number of simulations for covariance estimation is
very large (15 000) compared to the maximal length of the data
vector (218 for our three-redshift analysis of the PDF at three scales
and the mildly non-linear power spectrum), this factor will be close
to unity throughout. Additionally, we mimic a BOSS-like effective
survey volume by multiplying the covariance with the ratio of the
considered survey volume V and the simulation volume Vsim.

The Fisher matrix allows us to determine the error contours on
a set of cosmological parameters under the assumption that the

likelihood is Gaussian. The inverse of the Fisher matrix gives the
parameter covariance. The error on the parameter θ i, marginalized
over all other parameters, is given by

δθi ≥
√(

F−1
)

ii
. (22)

The Fisher analysis relies on three ingredients

(i) the chosen summary statistics that enter the data vector,
(ii) their covariance matrix, and
(iii) their derivatives with respect to cosmological parameters.

As discussed in Villaescusa-Navarro et al. (2019), the Quijote
simulations are designed to numerically evaluate those three pieces
for different summary statistics, including matter power spectra
and matter density PDFs. There are 15 000 simulations at fidu-
cial cosmology available to estimate covariances, along with 500
simulations each for increasing/decreasing every single �CDM
parameter. To assess the impact of massive neutrinos, there are 500
simulations run from Zeldovich approximation (instead of 2LPT)
initial conditions for fiducial cosmology, and for total neutrino
masses of Mν = 0.1, 0.2, 0.4 eV. For the Fisher analysis, we assume a
total effective cosmic volume of (6 Gpc h−1)3 spread equally across
the three lowest redshifts in the simulation z = 0, 0.5, 1. The total
volume roughly corresponds to the effective volume of the BOSS
galaxy survey (Cuesta et al. 2016) and about one-tenth of Euclid.

Note that such a Fisher analysis has a number of limitations: it
only yields realistic error bars if measurements of the considered
data vectors have Gaussian noise and if the responses of these
data vectors to changing cosmological parameters are close to
linear. We checked that the distribution of individual bins of the
PDFs measured in the Quijote sims are sufficiently close to a
Gaussian distribution to expect a small impact on the total width
of our forecasted contours. Additionally, realistic data analyses
might have to account for systematic effects by marginalizing over
nuisance parameters. However, the main focus of this study is to
explore the complementarity between the mildly non-linear power
spectrum and the matter density PDF as cosmological probes.
Hence, we expect these limitations to have limited impact on our
findings.

5.2 Data vector for matter PDFs and power spectra

In our case, the data vector S is built from the values of the matter
PDF in density bins. First, we consider a single redshift z and radius
R. Then, we combine multiple redshifts and radii. In all cases, we
only use those bins for the Fisher analysis, where the cumulative
probability distribution function (CDF) is between 0.03 and 0.9.
This amounts to removing 3 per cent of the lowest densities and
10 per cent of the highest densities. We choose this approach in
order to limit the impact of finite resolution effects that are most
severe for rare events, as shown in Fig. 5, while still capturing the
PDF shape around the peak, which is located in underdense regions.
We chose an asymmetric cut in the CDF, because the PDF rises
more steeply towards the peak in underdense regions (see Fig. 6).
Additionally, it takes into account that the theoretical modelling of
the matter density PDF and the impact of tracer bias or projections
will be more challenging in the tails (particularly for overdensities)
and correspondingly degrade the signal to noise from those regions.
Finally, we will include the matter power spectrum in Fourier bins
up to a given kmax in the data vector. The matter power spectrum
is linearly binned in k-space in steps of the fundamental frequency
kF = 2π/Lbox and the bin center is determined by averaging over
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Figure 11. Correlation matrix for the bins of the matter density PDF at
radius R = 10 Mpc h−1 and redshift z = 0.

all modes in the interval, exactly as in Villaescusa-Navarro et al.
(2019).

In the next section, we determine the covariance matrix of the
matter PDF at different scales and its cross-covariance with the mat-
ter power spectrum. The final ingredient are the partial derivatives of
the summary statistics with respect to the cosmological parameters,
which are discussed in section 5.4.

5.3 Covariance of matter PDF bins

We estimate the covariance using 15 000 realizations of the Quijote
simulation with fiducial cosmology. While the covariance matrix
defined in equation (21) is the quantity that enters the Fisher
analysis, for visualization purposes it is useful to normalize this
matrix on the diagonal. For that purpose, we consider the correlation
matrix, defined as

Corrij = Cij√
CiiCjj

, (23)

where C is the covariance matrix.
In Fig. 11, we show the correlation matrix of the matter density

PDF at z = 0 and R = 10 Mpc h−1 showing the correlation between
different density bins used for the Fisher analysis. We see that, as
expected, neighbouring bins are positively correlated, while inter-
mediate underdense and overdense bins are anticorrelated with each
other. Note that the tails of the PDF, which are excluded in the plot,
are strongly correlated with each other and anticorrelated with the
peak. Note that this is completely in line with the correlation matrix
predicted by the large-deviation formalism (see appendix C in
Codis, Bernardeau & Pichon 2016b), which can be decomposed into
a shot noise contribution, a cosmic variance term due to the finite
volume of the survey and a term describing the spatial correlation
of spheres. This last contribution dominates when enough spheres
are considered and is proportional to the product of the sphere
bias of the respective density bins, multiplied by the average dark
matter correlation function at the typical separation of the spheres.
Because the sphere bias is negative for underdensities and positive
for overdensities, this product is positive when the cross-correlations
of overdensities (or underdensities) is considered and negative for
the cross-correlations of underdensities and overdensities.

Figure 12. Correlation matrix for the matter PDF PR(ρ) at radii R = 10,
15 Mpc h−1 and the mildly non-linear power spectrum P(k), both at redshift
z = 0. The density PDF bins correspond to a range of densities as shown
in Fig. 11. The power spectrum is shown in 31 bins of the fundamental
frequency kf 
 0.0063 h Mpc−1 up to kmax = 0.2 h Mpc−1.

In an accompanying paper (Friedrich et al. 2019), we show that
the correlation matrix measured in zero-mean shifted lognormal
realizations (Hilbert, Hartlap & Schneider 2011; Xavier, Abdalla
& Joachimi 2016) closely resembles the simulation result. This
is an encouraging result, as it provides a simple way to estimate
covariances and is used in current analyses (Friedrich et al. 2018;
Gruen et al. 2018). In particular, this could be used to estimate the
impact of supersample covariance (Takada & Hu 2013; Barreira,
Krause & Schmidt 2018; Chan, Moradinezhad Dizgah & Noreña
2018), which is not captured in our analysis using the full periodic
simulation boxes.

Note that, when assuming a diagonal covariance matrix for the
matter PDF at one scale and radius, corresponding parameter errors
are significantly underestimated. For constraints on the clustering
amplitude σ 8 and matter density �m, a single PDF with diagonal
covariance underestimates the contour area by a factor of 5. On
the other hand, when combining the PDF at two different radii and
assuming a block-diagonal covariance matrix, parameter errors are
overestimated. Combining two PDFs as if they were independent
using a block-diagonal covariance leads to a wrong orientation of
the error ellipse and an overestimation of its area by a factor of
about 2. This highlights the importance of an accurate covariance
matrix and potentially valuable information in cross-correlations of
summary statistics.

Fig. 12 shows the cross-correlation matrix between the matter
PDF at two different scales and the mildly non-linear power
spectrum. First, we observe that PDFs at different scales are
relatively strongly correlated with each other. This is expected, as
the matter density fields smoothed at radii of R = 10 and R = 15
Mpc h−1 are qualitatively similar, as about of a third of the mass in
a sphere of radius R = 15 Mpc h−1 comes from a sub-sphere of R =
10 Mpc h−1. The cross-correlations between PDF bins of different
radii look very similar to the bin correlations for the individual
PDFs, because the clustering of spheres encoded in the sphere bias
changes mildly with radius (see fig. 5 in Uhlemann et al. 2017).
The variance of the PDF at the smaller scale probes a slightly
wider range in the non-linear power spectrum, as we demonstrate in
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Fig. A3. In contrast, there is hardly any cross-correlation between
the individual k-bins of the matter power spectrum since we focus
on mildly non-linear scales. The correlation between the PDFs
and the power spectrum is overall small, suggesting that the two
probes are complementary and their combination can increase the
constraining power. The correlation between the power spectrum
and the PDF bins varies very mildly with the considered k-bin,
because it reflects the correlation of the variance with the PDF bins.
As can be inferred from Fig. 8, the variance is negatively correlated
with the overall height of the PDF, but positively correlated with
the tails. Due to our conservative cut in overdense regions (chosen
to mitigate the impact of resolution effects and non-linear tracer
bias), the positively correlated overdense tail does not appear in the
correlation matrix for the Fisher analysis.

For our multi-redshift analysis, we assume no cross-correlation
between different redshift slices and build a block-diagonal co-
variance matrix. We adopt this approach as it is common practice
in cosmological analysis of galaxy clustering in current surveys
like DES (Krause et al. 2017), and because correlations between
different redshift bins are expected to be negligible for non-
neighbouring bins of size �z = 0.1 as intended for Euclid (Bailoni,
Spurio Mancini & Amendola 2017). Additionally, estimating those
correlations from our simulation suite would not lead to realistic
results, as the snapshots are extracted from identical runs and hence
highly correlated.

5.4 Derivatives with respect to cosmological parameters

The third ingredient of the Fisher matrix (20) are the derivatives of
the matter PDFs with respect to cosmological parameters. They can
be obtained from the differences between the matter PDFs with one
cosmological parameter varied each, which have been discussed in
Section 4.4. For �CDM parameters, θ ∈ {�m, �b, h, ns, σ 8}), we
compute partial derivatives from two-point finite differences

∂ S
∂θ



S(θ + dθ ) − S(θ − dθ )

2dθ
. (24)

For variations in the total neutrino mass Mν , we use finite difference
formulas to estimate the derivative at the left endpoint Mν = 0 using
two, three and four points

∂ S
∂Mν



S(Mν) − S(Mν = 0)

Mν

,

∂ S
∂Mν


 −S(2Mν) + 4S(Mν) − 3S(Mν = 0)

2Mν

,

∂ S
∂Mν



S(4Mν) − 12S(2Mν) + 32S(Mν) − 21S(Mν = 0)

12Mν

. (25)

By default, we rely on the four-point derivative and use the other
formulas for consistency checks. While for technical reasons, the
simulations have been run with zero fiducial total neutrino mass, we
know already that there is a lower limit to the total neutrino mass
of about Mν � 0.056 eV (Lesgourgues & Pastor 2006). Hence, we
will quote constraints in terms of �Mν and avoid to fold in a hard
prior to enforce a positive neutrino mass.

5.5 Constraining �CDM and massive neutrinos

In the following, we present constraints on key �CDM parameters
and the total neutrino mass using the matter PDF at different
redshifts and radii. We show that the central region of the matter

Figure 13. Fisher forecast constraints on {σ 8, �m, ns} (with fixed �b and
h) from the matter PDF at redshift z = 0 using a single radius R = 20
Mpc h−1 (yellow), R = 15 Mpc h−1 (blue), R = 10 Mpc h−1 (green) or three
radii combined (red dashed).

PDF carries more cosmological information than the first three non-
zero cumulants, which are variance, skewness, and kurtosis (for a
related result for primordial non-Gaussianity, see Friedrich et al.
2019). We compare its constraining power with results from the
matter power spectrum and combine the two large-scale structure
probes.

We have verified the convergence of our results, as constraints do
not change if the covariance and derivatives are computed from a
smaller number of realizations, or the massive neutrino derivatives
are evaluated using lower order approximations.

5.5.1 Understanding constraints from the PDF at redshift zero

A Fisher forecast for constraints on the three �CDM parameters
{�m, σ 8, ns} using one redshift z = 0 and different radii R =
10, 15, 20 Mpc h−1, as well as their combination is presented in
Fig. 13. The degeneracy between the matter density �m and the
spectral index ns arises because the shape of the PDF around its
peak is sensitive to the overall ‘tilt’ of the scale-dependent linear
variance, as explained in Section 2.1. Since the magnitude of the
induced additional tilt depends on scale, the degeneracy direction
between �m and ns slightly rotates when increasing the radius.
When increasing the radius of the spheres, most of the change in
the PDF shape is due to a change in the non-linear variance, which
induces a degeneracy between σ 8 and {�m, ns}, as expected from
Fig. 9. When combining the matter PDF at different radii, those
degeneracies are broken and the constraining power on �m and ns

is significantly enhanced.
In Fig. 14, we demonstrate that the shape of the PDF in the central

region, even excluding the tails, contains more information than the
first three non-zero cumulants.7 We use two radii for this analysis,

7Note that the cumulants were measured directly from the grid of smoothed
densities instead of from the matter PDF histogram.
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Figure 14. Fisher forecast for constraints on {σ 8, �m} at redshift z = 0
from the matter PDF (green), the first three non-zero cumulants (red dotted,
dashed, solid) using two radii R = 10 and R = 15 Mpc h−1, and the matter
power spectrum up to kmax = 0.2 h Mpc−1 (blue). By considering the shape
of the PDF the area of the contours shrinks by a factor of about 2.5 compared
to the variance and by more than a factor of 3.5 compared to the mildly non-
linear power spectrum.

because the variance measured at N scales can only constrain N
parameters. We show the Fisher forecasts at redshift z = 0 for
the two �CDM parameters {σ 8, �m}, with all other parameters
fixed. We compare constraints from the matter PDF (green), the
non-linear variance (red dotted), variance & skewness (red dashed)
as well as variance, skewness & kurtosis (red solid). Although
the range of the PDF has been limited to the region around the
peak by excluding very high and low densities, the PDF shape
carries more information than the first few cumulants.8 This is in
particular relevant for the matter density, �m, which affects all
higher-order reduced cumulants through the change in the scale-
dependent linear variance. By considering the shape of the PDF
rather than just the variance, the area of the contours shrinks by a
factor of 2.5. For comparison, we also show Fisher constraints for
the matter power spectrum on mildly non-linear scales up to kmax =
0.2h Mpc−1 (blue), whose constraints are weaker by a factor of
3.5. This demonstrates that the matter PDF measured at two scales
contains more information on �m and σ 8 than both the non-linear
variance and the matter power spectrum, when all other parameters
are fixed.

5.5.2 Increasing constraining power with multiple redshifts

From theoretical grounds, we expect that the PDF at non-zero
redshift will have a degeneracy between the clustering amplitude
σ 8 and the matter density �m, which affects the linear variance
through the growth D(z) according to σ L(z, R) ∝ D(z)σ 8. In

8Note that an Edgeworth expansion (Kendall & Stuart 1977) of the matter
PDF using the first three cumulants is not enough to reconstruct the shape of
the peak accurately. In the case of a lognormal PDF even the entire series of
moments does not capture the full PDF information (Coles & Jones 1991).

Figure 15. Fisher forecast for constraints on {σ 8, �m, ns} (with fixed
�b and h) from the matter PDF with three radii R = 10, 15, 20 Mpc h−1

at redshifts z = 0 (green), 0.5 (blue), and 1 (yellow) Mpc h−1, each for
one-third of the volume, and combined to the total volume (red dashed).
Note that the green contours here correspond to the red contours in
Fig. 13.

Fig. 15 we show that measuring the matter PDF at different
redshifts breaks this degeneracy between σ 8 and �m. A split in
redshift slices also helps to disentangle a change in matter density
�m, that changes both the scale-dependence and the growth of
the linear variance, from a change in the spectral index ns. We
consider three redshifts z = 0, 0.5, 1, which are of particular
interest for upcoming galaxy surveys like Euclid and LSST. For
simplicity, we split the total volume V evenly across the supposedly
independent redshift slices, such that the constraints shown for
the three individual redshifts use only one third of the total
volume.

5.5.3 Combining the matter PDF and power spectrum

Using the matter power spectrum and the matter PDF at mildly
non-linear scales as complementary probes, one can enhance the
constraining power by combining both observables. To demonstrate
this, we first focus on the five �CDM parameters. In Fig. 16 we
show constraints on {�m, σ 8, ns} (marginalized over �b and h)
obtained from the matter PDF at three radii and the mildly non-
linear matter power spectrum, both analysed at three redshifts. The
1σ constraints quoted in the Table are obtained by marginalizing
over all other parameters. We find that the matter PDF is strong
at constraining the clustering amplitude σ 8 and matter density �m,
as expected from Fig. 14. Constraints on those two parameters
improve only by about 10–15 per cent when adding the matter
power spectrum. However, the matter power spectrum is stronger at
constraining ns by about a factor of 2, and adding the PDF improves
constraints by another factor of 2. As expected, the matter power
spectrum shape can more easily distinguish between changes in �b,
h, and ns, which all lead to a similar signature in the matter PDF as
demonstrated in Fig. 1.
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Figure 16. Fisher forecast for marginalized constraints on {σ 8, �m, ns}
from an analysis at three redshifts z = 0, 0.5, 1 for the matter PDF at three
radii R = 10, 15, 20 Mpc h−1 (green), the matter power spectrum up to
kmax = 0.2 h Mpc−1 (blue) and both probes combined (red dashed).

5.5.4 Joint �CDM and neutrino mass constraints

Having established the complementarity of the matter PDF and
matter power spectrum at mildly non-linear scales for �CDM
parameters, we now include the total mass of massive neutrinos
Mν = ∑

mν as additional parameter.
For the matter power spectrum, the total neutrino mass is known

to be largely degenerate with the amplitude of matter fluctuations σ 8

(Villaescusa-Navarro et al. 2018). In Fig. 17, we contrast constraints
from the matter power spectrum up to kmax = 0.2 h Mpc−1 (blue) to
the first three non-zero cumulants (red dashed) and the matter PDF at
two radii R = 10, 15 Mpc h−1 (green), both using three redshifts and
fixing all parameters except for σ 8 and Mν . We observe that while
the matter power spectrum presents a strong degeneracy (which is
not alleviated by extending the range to kmax = 0.5 h Mpc−1) the
matter PDF can easily disentangle the two parameters, as expected
from the imprint of scale-dependent neutrino clustering shown in
Fig. 10. Additionally, we demonstrate that the constraining power
of the central region of the PDF with regards to massive neutrinos
is significantly stronger than the one of the first few cumulants.
Indeed, the impressive constraining power of the matter PDF for
the total neutrino mass is hardly diminished by opening up all
�CDM parameters.

In Fig. 18 we show constraints on the full set of ν�CDM
parameters from an analysis in three redshift slices at z = 0,
0.5, 1 with a combined volume of 6 (Gpc h−1)3. We show 1σ

and 2σ contours obtained using the matter power spectrum up to
kmax = 0.2 h Mpc−1 (blue), the matter PDF at three radii R = 10,
15, 20 Mpc h−1 (green) and their combination (dashed, red). We
choose the scales to be in a regime where theoretical predictions,

Figure 17. Fisher forecast for PDF constraints on {σ 8, Mν} (fixing all
other parameters) from a joint analysis at three redshifts z = 0, 0.5, 1 for
the matter power spectrum up to kmax = 0.2 h Mpc−1 (blue), the first three
nonzero cumulants at two radii R = 10, 15 Mpc h−1 (red dashed) and the
matter PDF at the same radii (green).

based on perturbation theory for the matter power spectrum, and
large-deviation statistics with spherical collapse for the density PDF,
can be expected to be accurate. For comparison, we show results
from a Gaussian likelihood approximation of the Planck CMB data
with free neutrino mass using only temperature and low multiple
polarization data (yellow). While the matter power spectrum has
virtually no sensitivity to neutrino mass, as demonstrated in Fig. 17
and fig. 5 in Villaescusa-Navarro et al. (2019), it helps to improve
constraints on �CDM parameters and combining it with the matter
PDF tightens neutrino mass constraints by 30 per cent to less than
0.01 eV. Combining the matter PDF and matter power spectrum
improves constraints for the matter density �m by a factor of 5, and
for the clustering amplitude σ 8 by a factor of 2 compared to power
spectrum only.

The improvement of neutrino mass constraints by considering
the matter PDF compared to the matter power spectrum is much
bigger than the one expected from adding the matter bispectrum. As
demonstrated in Coulton et al. (2019), the tomographic weak lensing
convergence bispectrum has a similar degeneracy between Mν and
the clustering amplitude σ 8 (or a combination of As and �m) than the
power spectrum. This suggest that the additional constraining power
of the PDF is rooted in its ability to detect differences in clustering
between underdense and overdense regions, which are sensitive
to neutrino mass as shown in Fig. 3 but get mixed up in N-point
spectra. While focused on different scales, recent simulation results
for massive neutrino constraints from the weak lensing convergence
PDF in the presence of shape noise (Liu & Madhavacheril 2019)
indeed show a turning of the degeneracy direction between Mν

and the clustering amplitude compared to the power spectrum.
On the other hand, the non-linear redshift-space halo bispectrum
was recently shown to significantly improve constraints from the
redshift space halo power spectrum due to the shape-dependent
imprint of massive neutrinos measured in simulations (Hahn et al.
2020).
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Figure 18. Fisher forecast for constraints on ν�CDM parameters at redshifts z = 0, 0.5, 1 using the matter PDF for three radii R = 10, 15, 20 Mpc h−1 (green),
the matter power spectrum P(k) up to kmax = 0.2 h Mpc−1 (blue) or both in combination (red dashed). The combination with the power spectrum improves
the constraints on the �CDM parameters, while the information on the total neutrino mass Mν comes almost exclusively from the PDF. For comparison,
we also show contours from Planck (yellow) obtained from the chains for free neutrino mass from temperature and low multipole polarization data only
(base mnu plikHM TT lowl lowE).

5.6 Applicability to survey data

In this study, we have investigated the statistical power of the
3D matter density PDF as a cosmological probe. In realistic
observational data we cannot access those 3D matter density in
cells directly. Observables that probe the matter density field fall
into two broad categories: tracer densities and weak lensing fields.

One possibility is to avoid tracer bias altogether by extracting
the weak lensing convergence or shear field, which probes the
total projected matter field. In the spirit of our analysis, one could
parametrize the cosmology dependence for PDFs of the weak

lensing convergence (Valageas 2000; Clerkin et al. 2016; Patton
et al. 2017; Barthelemy et al. 2020), aperture mass (Bernardeau
& Valageas 2000; Reimberg & Bernardeau 2018) or cosmic shear
(Takahashi et al. 2011; Friedrich et al. 2018). Recently, the conver-
gence PDF in tomographic redshift slices has been predicted from
large-deviation statistics and cylindrical collapse (Barthelemy et al.
2020), using ingredients similar to the ones discussed here. While
weak lensing is insensitive to tracer bias, the presence of baryons
could affect the total matter field on small scales. According to
Foreman et al. (2019), baryonic effects do not change the scaling
relations between the matter bispectrum and the power spectrum on
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mildly non-linear scales. This suggests that baryonic effects on the
PDF could potentially be modelled through their impact on the non-
linear variance, while leaving the reduced skewness S3 untouched.
Shape noise effects that encapsulate the uncertainties on the intrinsic
shape of galaxies can be modelled by convolving the weak lensing
PDF with a Gaussian filter of appropriate width (Barthelemy et al.
2020; Liu & Madhavacheril 2019).

A second option is to extract biased tracer densities from discrete
counts of galaxies (Yang & Saslaw 2011; Bel et al. 2016; Hurtado-
Gil et al. 2017), Lyman-alpha absorption in quasar spectra (Lidz
et al. 2006; Munshi, Coles & Viel 2012) or 21 cm emission of
neutral hydrogen (Leicht et al. 2019). The impact of tracer bias on
the shape of the PDF can be modelled using scatter plots between
the matter and tracer density in cells extracted from simulations
(Manera & Gaztañaga 2011; Jee et al. 2012), measured moments
(Salvador et al. 2018) or abundance-matching inspired techniques
that directly operate on the PDFs (Sigad, Branchini & Dekel 2000;
Szapudi & Pan 2004). As shown in Uhlemann et al. (2018a), suitable
weightings by halo mass or galaxy luminosity can substantially
reduce the scatter around the mean bias relation, and redshift space
distortions can potentially be absorbed in the bias model.

When focusing solely on the tracer density PDF, a partial
degeneracy between the linear bias coefficient b1 and the amplitude
of matter fluctuations σ 8 arises. Breaking this degeneracy can be
achieved by considering the density-dependent clustering of spheres
(called sphere bias Bernardeau 1996; Codis et al. 2016a; Uhlemann
et al. 2017, 2018a), which can also be used to quantify the cosmic
error induced by extracting counts-in-cells statistics from a finite
number of tracers in a finite volume (Colombi, Bouchet & Schaeffer
1995; Szapudi & Colombi 1996; Szapudi, Colombi & Bernardeau
1999; Codis et al. 2016a).

A middle ground in between measuring weak lensing and
modelling bias are the so-called density-split statistics (Gruen
et al. 2016; Friedrich et al. 2018; Gruen et al. 2018) that measure
the galaxy density PDF and use lensing measurements to relate
it to the matter density PDF quantile-by-quantile. Gruen et al.
(2018) have successfully applied this technique in an analysis of
observational data taken from the Dark Energy Survey and SDSS,
thus demonstrating that tracer bias can be dealt with in a PDF-based
analyses. With photometric galaxy surveys, we do not have access
to the undistorted 3D density field, but instead probe line-of-sight
projections of the density field with a certain, irreducible uncertainty
in the radial (redshift) direction. However, the formalism employed
in this work can be extended to account for such projections
(Bernardeau 1995; Uhlemann et al. 2018c) and has already been
successfully applied to observational data in Friedrich et al. (2018)
and Gruen et al. (2018).

6 C O N C L U S I O N

In this work, we determined the information content of the matter
density PDF with regards to all �CDM parameters and the total
neutrino mass. Based on a theoretical model for the matter PDF from
large-deviation statistics, we analysed the impact of cosmological
parameters on the ingredients that determine the shape of the matter
PDF. We demonstrated that the �CDM parameter dependence of
the matter PDF can be predicted from the scale-dependence of
the linear variance, the growth of structure, spherical collapse, and
the non-linear variance at the considered radius. For the first time,
we modelled the impact of massive neutrinos on the total matter
PDF, finding that their distinct imprint on the shape is due to a
massive neutrino background affecting underdensities and their

partial clustering along with the cold dark matter plus baryon
component. In all cases, we find an excellent agreement between
the theoretically predicted and numerically measured response of
the matter PDF to changing cosmological parameters.

Finally, we performed a Fisher analysis and demonstrated that
measuring the PDF in multiple redshift slices and at different radii
breaks parameter degeneracies and tightens constraints. In Fig. 18,
we demonstrated the significant constraining power of the matter
PDF for the matter density �m, the clustering amplitude σ 8 and
the total neutrino mass Mν , highlighting its complementarity to the
matter power spectrum and cosmic microwave background data
from Planck. Combining the total matter density PDFs at three radii
and the matter power spectrum up to mildly non-linear scales in
three redshift slices with a total BOSS-like volume of 6 (Gpc h−1)3

gives a marginalized constraint on the total neutrino mass of order
0.01 eV. This would allow to place a 5σ constraint on the minimum
sum of the neutrino masses with a rather small volume. Our finding
of the sensitivity of underdense regions to the presence of massive
neutrinos is in line with other recent results for marked power
spectra (Massara et al. 2020) and Minkowski Functionals (Liu et al.
2020). With regards to �CDM parameters the inclusion of the
PDF improves constraints on {�m, σ 8, ns} by a factor of 5, 2, 2.5
compared to the matter power spectrum alone (see the table in Fig.
18).

This is an exciting prospect for density-split statistics (Friedrich
et al. 2018; Gruen et al. 2018), whose combined analysis of counts-
and lensing-in-cells allows to constrain bias and stochasticity along
with cosmological parameters, as discussed in Section 5.6.

6.1 Outlook: primordial non-Gaussianity and dark energy

In this work, we focus on Gaussian initial conditions, while an
accompanying paper (Friedrich et al. 2019) generalizes the theo-
retical model to include arbitrary non-Gaussian initial conditions.
In particular, the focus is on the imprint of a general primordial
bispectrum and illustrate effects of orthogonal and equilateral
primordial non-Gaussianity in the matter PDF, complementing
previous results for local non-Gaussianity (Uhlemann et al. 2018b).
We find that the amplitude of primordial non-Gaussianity fNL can
be constrained from the matter PDF at two scales even when
marginalizing over their variances.

While it is beyond the scope of this paper, we plan to include
changes in the dark energy equation of state in a future analysis.
From our theoretical model, we expect that dark energy affects
the matter PDF trough a redshift-dependent change in the variance
driven by the growth of structure, see equation (A1). In principle,
this allows us to constrain the dark energy equation of state in a
multi-redshift analysis (Codis et al. 2016a). In Fig. 19 we compare
modifications in the linear growth induced by a constant change in
the dark energy equation of state (black) to a change in the matter
density (red lines) and the imprint total neutrino mass (blue and
green). Since the characteristic imprint of massive neutrinos in the
PDF is mainly driven by a scale-dependent bias instead of a change
in the non-linear variance induced by the growth, we expect it to
be distinguishable from dark energy. When focusing on the time-
dependence of the variance at low redshifts, a constant change in the
dark energy equation of state could be degenerate with a change in
matter density. However, since the matter density also changes the
scale-dependence of the linear variance, one could hope to jointly
constrain both parameters without losing too much constraining
power.
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Figure 19. Fractional changes in the linear growth factor D(z) for cosmolo-
gies with varying �m = ±0.01 (red solid/dashed) and w0 = ±0.05 (black
solid/dashed). We also show the impact of massive neutrinos on the growth
of the linear variance for cold dark matter plus baryons at radius R = 15
Mpc h−1 for a total neutrino mass of Mν = 0.1eV (blue solid) and 0.2eV
(green solid).

AC K N OW L E D G E M E N T S

CU kindly acknowledges funding by the Science and Technology
Facilities Council (STFC) grant RG84196 ‘Revealing the Structure
of the Universe’. OF gratefully acknowledges support by the Kavli
Foundation and the International Newton Trust through a Newton-
Kavli-Junior Fellowship and by Churchill College Cambridge
through a postdoctoral By-Fellowship. We thank Ken Osato and
Takahiro Nishimichi for making their codes for computing non-
linear matter power spectra publicly available. Part of the work of
FVN has been supported by the Simons Foundation. SC’s work
is partially supported by the SPHERES grant ANR-18-CE31-
0009 of the French Agence Nationale de la Recherche and by
Fondation MERAC. The authors thank Alexandre Barreira, Francis
Bernardeau, Daniel Gruen, ChangHoon Hahn, Christophe Pichon,
and Blake Sherwin for discussions and comments on the draft.

RE FERENCES

Abazajian K. N. et al., 2015, Astropart. Phys., 63, 66
Abramo L. R., Batista R. C., Liberato L., Rosenfeld R., 2007, J. Cosmol.

Astropart. Phys., 2007, 012
Ahmed S. N. et al., 2004, Phys. Rev. Lett., 92, 181301
Bailoni A., Spurio Mancini A., Amendola L., 2017, MNRAS, 470,

688
Banerjee A., Dalal N., 2016, J. Cosmol. Astropart. Phys., 2016, 015
Barreira A., Li B., Baugh C. M., Pascoli S., 2013, J. Cosmol. Astropart.

Phys., 2013, 056
Barreira A., Krause E., Schmidt F., 2018, J. Cosmol. Astropart. Phys., 2018,

015
Barthelemy A., Codis S., Uhlemann C., Bernardeau F., Gavazzi R., 2020,

492, 3420
Baumann D., Nicolis A., Senatore L., Zaldarriaga M., 2012, J. Cosmol.

Astropart. Phys., 2012, 051
Becker-Szendy R. et al., 1992, Phys. Rev. D, 46, 3720
Bel J., Marinoni C., 2014, A&A, 563, A36
Bel J. et al., 2016, A&A, 588, A51
Bernardeau F., 1992, ApJ, 392, 1
Bernardeau F., 1994a, ApJ, 427, 51
Bernardeau F., 1994b, ApJ, 433, 1
Bernardeau F., 1995, A&A, 301, 309
Bernardeau F., 1996, A&A, 312, 11

Bernardeau F., Reimberg P., 2016, Phys. Rev. D, 94, 063520
Bernardeau F., Valageas P., 2000, A&A, 364, 1
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Ivezić, Ž. et al., 2019, ApJ, 873, 111
Jee I., Park C., Kim J., Choi Y.-Y., Kim S. S., 2012, ApJ, 753, 11
Kaufman G. M., 1967, Report No. 6710, Center for Operations Research

and Econometrics. Catholic University of Louvain, Heverlee, Belgium
Kayo I., Taruya A., Suto Y., 2001, ApJ, 561, 22
Kendall M., Stuart A., 1977, The Advanced Theory of Statistics. Vol. 1:

Distribution Theory, John Wiley & Sons Inc
Kopp M., Appleby S. A., Achitouv I., Weller J., 2013, Phys. Rev. D, 88,

84015
Krause E. et al., 2017, preprint (arXiv:1706.09359)
Kreisch C. D., Pisani A., Carbone C., Liu J., Hawken A. J., Massara E.,

Spergel D. N., Wandelt B. D., 2019, MNRAS, 488, 4413
Lam T. Y., Sheth R. K., 2008, MNRAS, 386, 407
Laureijs R. et al., 2011, preprint (arXiv:1110.3193)

MNRAS 495, 4006–4027 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/4/4006/5828742 by guest on 28 M
ay 2024

http://dx.doi.org/10.1016/j.astropartphys.2014.05.014
http://dx.doi.org/10.1088/1475-7516/2007/11/012
http://dx.doi.org/10.1103/PhysRevLett.92.181301
http://dx.doi.org/10.1093/mnras/stx1209
http://dx.doi.org/10.1088/1475-7516/2016/11/015
http://dx.doi.org/10.1088/1475-7516/2013/11/056
http://dx.doi.org/10.1088/1475-7516/2018/06/015
http://dx.doi.org/10.1088/1475-7516/2012/07/051
http://dx.doi.org/10.1103/PhysRevD.46.3720
http://dx.doi.org/10.1051/0004-6361/201321941
http://dx.doi.org/10.1051/0004-6361/201526455
http://dx.doi.org/10.1086/171398
http://dx.doi.org/10.1086/174121
http://dx.doi.org/10.1086/174620
http://dx.doi.org/10.1103/PhysRevD.94.063520
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://dx.doi.org/10.1103/PhysRevD.90.103519
http://dx.doi.org/10.1093/mnrasl/slv028
http://dx.doi.org/10.1111/j.1365-2966.2011.20222.x
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://dx.doi.org/10.1093/mnras/sty2589
http://dx.doi.org/10.1007/JHEP09(2012)082
http://dx.doi.org/10.1093/mnrasl/slt167
http://dx.doi.org/10.1088/1475-7516/2016/12/024
http://dx.doi.org/10.1093/mnras/stz3189
http://dx.doi.org/10.1103/PhysRevD.97.043532
http://dx.doi.org/10.1093/mnras/stw2106
http://dx.doi.org/10.1093/mnras/stw1084
http://dx.doi.org/10.1093/mnras/stw1103
http://dx.doi.org/ 10.1093/mnras/248.1.1 
http://dx.doi.org/10.1086/174834
http://dx.doi.org/10.1086/192125
http://dx.doi.org/10.1016/S0370-1573(02)00276-4
http://dx.doi.org/10.1088/1475-7516/2019/05/043
http://dx.doi.org/10.1093/mnras/stw066
http://dx.doi.org/10.1007/s10686-012-9306-1
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1088/1475-7516/2014/05/023
http://arxiv.org/abs/1910.03597
http://dx.doi.org/10.1103/PhysRevD.98.023508
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://arxiv.org/abs/1911.05568
http://dx.doi.org/10.1093/mnras/stv2506
http://dx.doi.org/10.1103/PhysRevD.98.023507
http://dx.doi.org/ 10.1088/1475-7516/2020/03/040 
http://dx.doi.org/10.1051/0004-6361:20066170
http://dx.doi.org/10.1051/0004-6361/201117294
http://dx.doi.org/10.1051/0004-6361/201629097
http://dx.doi.org/10.1103/PhysRevD.85.063521
http://dx.doi.org/10.1088/1475-7516/2019/03/009
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1088/0004-637X/753/1/11
http://dx.doi.org/10.1086/323227
http://dx.doi.org/10.1103/physrevd.88.084015
http://arxiv.org/abs/1706.09359
http://dx.doi.org/10.1093/mnras/stz1944
http://dx.doi.org/10.1111/j.1365-2966.2008.13038.x
http://arxiv.org/abs/1110.3193


Counts-in-cells cosmology 4025

Leicht O., Uhlemann C., Villaescusa-Navarro F., Codis S., Hernquist L.,
Genel S., 2019, MNRAS, 484, 269

Lesgourgues J., Pastor S., 2006, Phys. Rep., 429, 307
Levi M. et al., 2013, preprint (arXiv:1308.0847)
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Lidz A., Heitmann K., Hui L., Habib S., Rauch M., Sargent W. L. W., 2006,

ApJ, 638, 27
Liu J., Madhavacheril M. S., 2019, Phys. Rev. D, 99, 083508
Liu Y., Yu Y., Yu H.-R., Zhang P., 2020, Phys.Rev.D, 101, 063515
LoVerde M., 2014, Phys. Rev. D, 90, 083518
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APPENDI X A : A PPROX I MATI NG THE
VA R I A N C E

A1 Approximating the cosmology-dependent linear variance

In Fig. A1, we show how well the Eisenstein–Hu transfer function
(Eisenstein & Hu 1998) captures the cosmology dependence of the
linear variance.

For a cosmology with dark energy beyond a cosmological
constant, the growth function describing the time-dependence of the
variance according to equation (8) can be modelled as (Glazebrook
& Blake 2005)

D(z) = 5�m

2

H (a)

H0

∫ a

0

da′H 3
0

a′3H 3(a′)
, (A1)

Figure A1. Comparison between the linear variance σ 2
L(R) computed from

the Eisenstein–Hu approximation versus CAMB for the fiducial cosmology
(black) and variations of �m (red), �b (blue), ns (yellow), and h (green)
with positive sign (solid lines) and negative sign (dashed lines) as indicated
in Table 1 with fixed σ 8. The lower panel shows the fractional difference
of the ratio of the linear variance between the positive and negative sign
derivative cosmologies. We find that derivatives from the Eisenstein–Hu
approximation have sub-percent accuracy with respect to CAMB.
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Figure A2. Comparison between the measured non-linear power spectrum
averaged over 150 000 realizations of the fiducial simulation at redshift z =
0 (upper panel) and z = 0.5 (lower panel) with predictions using respresso
(brown), halofit (red), 2-loop perturbation theory in RegPT (green dashed)
or SPT (blue dashed), and linear theory (black dotted). The thin grey lines
indicate 2 per cent error (solid) and 1 per cent error (dashed).

H (a)

H0
=

√
�m

a3
+ �� exp

(
3
∫ z

0

1 + w(z′)
1 + z′ dz′

)
, (A2)

with the dark matter density, �m, the dark energy density, ��, the
Hubble constant at zero redshift, H0, the expansion factor a ≡ 1/(1
+ z), and the dark energy equation of state w(z). For a flat wCDM
universe with a constant equation of state, the linear growth of
structure depends only on the matter density �m and the equation
of state parameter w0 and can be written as (Silveira & Waga 1994;
Percival 2005)

D(z) =
2F1

[
−1
3w0

, w0−1
2w0

, 1 − 5
6w0

, (1 + z)3w0 �m−1
�m

]
(1 + z)2F1

[
−1
3w0

, w0−1
2w0

, 1 − 5
6w0

, �m−1
�m

] , (A3)

where 2F1 is the hypergeometric function. In Fig. 19 in Section 6,
we compare the growth for a changed equation of state parameter
w = w0 = −1 ± 0.05 with a change in �m ± 0.01.

A2 Approximating the non-linear variance

In Fig. A2, we compare the measured non-linear power spectrum
from the Quijote simulations to standard fitting function (respresso
and halofit) as well as perturbative methods at 2-loop order (SPT
and RegPT) at redshifts z = 0 and z = 0.5.

In Fig. A3 we show the integrand that enters the computation of
the non-linear variance for different radii.

APPENDI X B: R ESI DUA LS OF MATTER
DENSITY PDFS

In Figs B1 and B2, we show the ratios of matter PDFs when varying

Figure A3. The integrand for the non-linear variance from equation (12) at
scales R = 10, 15, 20 Mpc h−1 at redshift z = 0 using different expressions
for the power spectrum as indicated in the legend.

�CDM parameters and the total neutrino mass.

Figure B1. The measured ratios of the PDFs for the derivative simulations
at z = 0 with radius R = 10, 20 Mpc h−1 (top and bottom, points with error
bars) compared to the predictions using the measured non-linear variance
at the reference scale as input parameter (solid lines) or predicting the non-
linear variance from the measured non-linear variance of the fiducial model
(dashed lines) for changes in �m (red), �b (blue) ns (yellow), and h (green).
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Figure B2. Residuals between the total matter density PDFs with massive
neutrinos for a total mass Mν = 0.1, 0.2, 0.4 eV (blue, green, red) at redshift
z = 0 and radius R = 10 Mpc h−1.
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