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Abstract 

Urban soils, like other soils, can be sink or source for atmospheric carbon dioxide, and due to 

urban expansion, are receiving increasing attention. Studying their highly variable attributes 

requires high-density sampling, which can hardly be achieved using conventional approaches. 

The objective of this work was to determine the ability of visible and near infrared reflectance 

spectroscopy (VNIRS) to quantify soil organic carbon (SOC) concentration (gC kg
-1

) and 

stock (gC dm
-3

, or MgC ha
-1

 for a given depth layer) in parks and sealed soils of two French 

cities, Marseille and Nantes, using spectra collected on pit walls or in laboratory conditions 

(air dried, 2 mm sieved samples). 

Better VNIRS predictions were achieved using laboratory than in situ spectra (R² ≈ 0.8-0.9 vs. 

0.7-0.8 in validation), and for sample SOC concentration than stock (R²val up to 0.83 in situ 

and 0.95 in the laboratory vs. 0.78 and 0.89, respectively). Stock was conventionally 

calculated according to four methods that variably account for coarse particles (> 2 mm); and 

it was better predicted when coarse particles were not taken into account. This was logical 

using laboratory spectra, collected on 2 mm sieved samples; but concerning in situ spectra, 

this suggested the operator tended to put the spectrometer beside the coarsest particles during 

spectrum acquisition. This point is worth considering for urban soils, often rich in coarse 

particles.  

Stocks were then aggregated at the profile level: SOC stock prediction was more accurate at 

profile than sample level when using laboratory spectra (R²val = 0.94 vs. 0.89, respectively), 

probably due to uncertainty compensation; but this was not the case when using in situ 
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spectra, possibly because samples collected for SOC analysis and corresponding VNIRS 

scans were not at the exact same location. 

This work demonstrates VNIRS usefulness for quantifying SOC stock time- and cost-

effectively, in urban soils especially. 

 

Keywords 

Diffuse reflectance spectroscopy; Soil organic carbon concentration; French cities; Sealed 

soils; Coarse particles 

 

1. Introduction 

Soils represent the largest terrestrial pool of organic carbon and they are in strong interaction 

with the atmosphere (Jacobson et al., 2000; Scharlemann et al., 2014). Soils can behave as a 

sink or source for atmospheric carbon dioxide (CO2), depending on many factors such as land 

use and management (Dignac et al., 2017). Thus soil organic carbon (SOC) maintenance is an 

important issue in the current context of climate change, beside the long-acknowledged and 

key role of SOC in soil physical, chemical and biological fertility (Reeves, 1997). Initiatives 

have been launched to support states and non-governmental actors in promoting better soil 

management, for a long-term maintenance of SOC. However, efforts have mainly been 

focusing on cultivated and forested soils (http://4p1000.org/
1
; Paustian et al., 2016). 

Currently, artificialized lands represent nearly 3% of terrestrial areas and this proportion will 

increase as a result of increasing urban population, which is expected to reach 66% of the 

World population by 2050 (Liu et al., 2014; United Nations, 2014). Some attention has begun 

to be paid to SOC of artificialized soils since the 2000s, and several studies over the World 

have shown that SOC amount was generally higher in urban open soils than in cultivated soils 

and could be the same order of magnitude as under forest and grassland (Pouyat et al., 2009; 

Edmondson et al., 2012; Vasenev et al., 2014; Cambou et al., 2018). Urban soil attributes, 

including SOC, are highly variable spatially and temporally, and can be highly disturbed over 

short periods of time and short distances due to strong anthropic pressure (Bae & Ryu, 2015; 

Lorenz & Lal, 2015). Thus, quantifying soil attributes in urban areas requires high-density 

sampling and numerous analyses, which is time consuming and expensive. As a consequence, 

studies on SOC concentrations (gC kg
-1

) and stocks (kgC m
-2

 or MgC ha
-1

 for a given soil 

depth) in urban areas have only been able to provide one-off states of play to date. 

                                                           
1
 Last accessed 21 Jan. 2019. 
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For a soil sample, SOC stock (gC dm
-3

) is calculated as the product of SOC concentration and 

bulk density, or apparent volumetric mass (kg dm
-3

), which is the ratio of dry soil mass to 

apparent volume, the latter being the total volume of soil in situ, including voids (pores). To 

date, the measurement of bulk density is tedious as it requires collecting undisturbed samples 

(e.g. using beveled cylinders of known volume, perfectly filled with undisturbed material); 

thus SOC stock determination is tedious. Moreover, determining SOC stock is particularly 

complex in urban soils, firstly because of their spatial and temporal variability, and also 

because sampling is difficult in sealed soils, which represent 70% of Europe's urban areas 

(European Commission, 2012). Properly addressing the question of SOC stock in urban areas 

would require time- and cost-effective methods. 

In the last decades, much attention has been paid to visible and near infrared reflectance 

spectroscopy (VNIRS) for characterizing soil properties time- and cost-effectively (Stenberg 

et al., 2010; Nocita et al., 2015). VNIRS uses diffuse reflectance in the 350-2500 nm range 

for quantifying soil properties based on calibration models: these models use calibration 

samples, characterized both spectrally and conventionally, for expressing the properties 

considered as multivariate functions of VNIR spectrum; then the models can be applied to 

predict the properties considered on new samples from their VNIR spectra (Burns & 

Ciurczak, 2001). Numerous papers have reported the ability of VNIRS for quantifying SOC 

concentration (Brunet et al., 2008; Stenberg et al., 2010; Clairotte et al., 2016; Viscarra 

Rossel et al., 2016), even with spectrum acquisition in situ (Stevens et al., 2008; Kusumo et 

al., 2010; Nocita et al., 2011; Gras et al., 2014). To date, most work on SOC quantification by 

VNIRS has regarded SOC concentration, implying that SOC stock determination would still 

require the measurement of soil bulk density. However, a few pioneering studies have 

recently demonstrated that VNIRS could also be used to quantify SOC stock directly in situ, 

without having to determine bulk density specifically (Roudier et al., 2015; Cambou et al., 

2016). To date, such work has been limited to agricultural fields. 

The objective of the present work was to use VNIRS in situ for quantifying SOC 

concentration and stock for different urban uses (parks, fallows and sealed soils) in two 

French cities, Marseille and Nantes, which differ in climate, geology and history. Spectra 

were also acquired on air-dried, 2 mm sieved samples to compare predictions made from 

spectra acquired in situ vs. in laboratory conditions. 
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2. Materials and methods 

2.1. Study sites 

Sites were studied in two contrasted French cities: Marseille, in calcareous environment under 

Mediterranean climate; and Nantes, in acidic environment under oceanic climate (Table 1). 

 

2.1.1. Marseille 

Marseille is located in the south of France, along the Mediterranean Sea, with altitude ranging 

from 0 to 632 m a.s.l.. The city is settled in an Oligocene basin surrounded by reliefs or 

opened onto the sea. According to Köppen-Geiger classification, the climate is Csa 

(Mediterranean), with mean annual temperature and rainfall of 14.5°C and 518 mm, 

respectively. Two sites were studied in this city, the Borély Park and the Sainte-Marthe 

wasteland (Table 1). 

The Borély Park was designed in 1860-1880 over an area of 54 ha, which has now been 

reduced to 17 ha. It is covered by lawn and managed tree groves and is located on recent river 

alluvium bedrock rich in carbonates and made of silts, sands, gravels and stones. 

At the time of sampling (2017), the area of Sainte-Marthe had its largest part covered by grass 

and several trees (ca. 3.4 ha), and the other part covered by a grove (< 1 ha). The site has long 

been fallow, with no road or building until 2013, but was cleared between 2009 and 2011 

except for some trees. The area is located on Lower Oligocene bedrock (Stampian), including 

clay and conglomerates rich in inorganic carbon. 

 

2.1.2. Nantes 

Nantes is located in the west of France, on the Loire River, about 50 km from the Atlantic 

Ocean, with altitude ranging from 0 to 55 m a.s.l.. Nantes is located at the confluence of 

several rivers, with outcroppings of the granitic bedrock possibly overlaid by loess deposits. 

Moreover, backfills are present in many parts of the city, with thickness up to 10 m. 

According to Köppen-Geiger classification, the climate is Cfb (temperate oceanic), with mean 

annual temperature and rainfall of 12.2°C and 725 mm, respectively. Two sites were also 

studied in Nantes, called respectively “cemetery” and “railway station”. 

The cemetery site covers an area of 50 ha in the north of the city. The cemetery construction 

began in the 1950s and many trees were planted until 1969. The site included two distinct 

parts: one covered by well managed vegetation, mainly lawn, trees and hedges, the other by 

spontaneous grassland and urban woodland. The geology is characterized by loess deposits 

made of silts, gravels and clay. 
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The railway station site is located just north to the Nantes railway station and covers over 

3000 m². It is characterised by sealed soils, mostly car parks and pavements, developed from 

sandy backfills that might have been brought and sealed since the 1960s. 

 

2.2. Soil sampling and conventional determinations 

At each site, three or four 2 m long, 1 m wide, 1 m deep pits were dug using an excavator. 

Each soil profile was divided into two to seven horizons according to macromorphology, and 

the horizons were described in terms of color, structure, texture and stoniness. In each 

horizon, two to four (disturbed) soil samples were collected with a knife, for laboratory 

analyses, and one undisturbed sample was collected for bulk density measurement, using a 

0.25 L beveled cylinder pushed perpendicular to the pit wall, all roughly at the same depth 

(within a given pit); thus sampling was carried out on horizon basis. In total 15 pits were 

studied and 137 disturbed soil samples and 49 undisturbed soil samples were collected. 

Samples were individually conditioned in plastic bags then brought back to the laboratory 

(Pansu et al., 2001). 

The disturbed soil samples were air-dried then gently broken up and sieved to 2 mm to 

separate fine earth from coarse particles (Pansu et al., 2001). SOC concentration was 

determined on 0.2 mm ground aliquots by two methods (Pansu & Gautheyrou, 2006): (1) by 

difference between total carbon analyzed by dry combustion (ISO, 1995a) using a CHN 

elemental analyzer (Flash EA 1112, CE Instruments, Rhodano, Italy; 25 mg aliquots were 

used) and soil inorganic carbon (SIC) analyzed by volumetric calcimetry (ISO, 1995b) using a 

Bernard calcimeter (Prolabo, ref. 05 215.00, Paris, France; 5 mL chlorhydric acid 6 M were 

used with 0.5 to 5 g soil aliquots depending on effervescence during a preliminary test); and 

(2) by dry combustion after decarbonatation by chlorhydric acid (HCl), which was achieved 

using a procedure close to that proposed by Nieuwenhuize et al. (1994): 10 µL HCl 4 M were 

slowly added to 25 mg of soil that had been weighed in a silver capsule (resistant to HCl), 

then the capsule was dried 4 h at 40°C; HCl addition then drying were repeated until gaseous 

emission ceased. The first method, by difference and presumably more accurate, was used for 

SIC-rich samples (SIC > 15 g kg
-1

), and the second, direct after decarbonatation, for SIC-poor 

samples (< 15 g kg
-1

; Pansu & Gautheyrou, 2006). 

The undisturbed soil samples were also air-dried then gently broken up and sieved to 2 mm to 

separate fine earth from coarse particles (Pansu et al., 2001), the dry mass of which was 

determined after 48 h oven-drying at 105°C (Gardner, 1986). The volume of coarse particles 
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was measured in a graduated cylinder partly filled with water, by difference between water 

levels before and after the addition of coarse particles.  

Sample SOC stock was calculated according to four methods (Poeplau et al., 2017): 

SSOC = SOC  (Mt / Vt)       (Eq.1) 

SSOC = SOC  [(Mt – M> 2) / (Vt – V> 2)]     (Eq.2) 

SSOC = SOC  (Mt / Vt)  [1 – (V> 2 / Vt)]     (Eq.3) 

SSOC = SOC  [(Mt – M> 2) / (Vt – V> 2)]  [1 – (V> 2 / Vt)]  (Eq.4) 

where SSOC is the SOC stock (gC dm
-3

), SOC the concentration (gC kg
-1

 soil < 2 mm), Vt 

and Mt the volume (0.25 L) and dry mass of total sample, and V> 2 and M> 2 the volume and 

dry mass of coarse particles (> 2 mm), respectively. The four methods differ in the way the 

coarse particles are taken into account: not at all in the first method, partially in the second 

and third methods, and completely in the fourth method, which has thus been considered more 

accurate (Poeplau et al., 2017). It is worth noting that for each horizon, SOC concentrations 

determined on two to four disturbed soil samples were combined with masses and volumes 

measured on one undisturbed sample. The significance of differences (p < 0.05) between 

sample SOC stocks calculated according to the four methods was tested using the Wilcoxon 

signed-rank test, which is a paired difference test (R Core Team, 2017). In addition, the 

significance of differences in SOC concentration or stock between cities or between land uses 

was tested by ANOVA followed by a post hoc HSD Tukey test, after checking the normality 

of residuals distributions (R Core Team, 2017). 

The SOC stock of a given soil horizon (in gC dm
-2

, kgC m
-2

 or MgC ha
-1

) was calculated as 

the product of sample SOC stock (in gC dm
-3

) by horizon thickness (dm), averaged over the 

two to four samples of the horizon. Next, the SOC stock of the entire profile was calculated 

by adding up horizon SOC stocks. 

 

2.3. Spectrum acquisition and analysis 

The acquisition of visible and near infrared reflectance (VNIR) spectra was firstly carried out 

in situ, on the cleaned surface of pit walls, about 5 cm above and 5 cm below the location of 

each disturbed soil sample collected, in the same horizon, both spectra being then averaged. 

VNIR spectrum acquisition was secondly carried out in laboratory conditions, on air-dried, 

2 mm sieved then oven-dried samples (48 h at 40°C), without replication (Barthès et al., 

2006). For both in situ and laboratory acquisitions, diffuse reflectance was measured from 350 

to 2500 nm at 1 nm interval using a portable spectrophotometer LabSpec 2500 (ASD, 
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Boulder, CO, USA). In this device, light is delivered to the sample by a contact probe (about 

80 mm² area), which then collects the reflected signal and transmits it to the spectrometer. 

After every spectral acquisition, the window of the contact probe was cleaned with lens paper 

and ethanol. The white reference standard, with nearly 100% reflectance, was a disk made of 

Spectralon (compressed polytetrafluoroethylene powder; Spectralon SRS-99 custom-made for 

ASD, 91 mm in diameter and 5.5 mm in thickness, Labsphere, North Sutton, NH, USA) and 

its reflectance was measured every 10 acquisitions. Each reflectance spectrum provided by the 

spectrometer resulted from the averaging of 32 co-added scans. Spectral data were recorded 

as (apparent) absorbance, which is the logarithm of the inverse of reflectance 

[log10(1/reflectance)] (Stenberg et al., 2010). 

Spectrum analysis consisted in fitting the VNIR spectra to SOC concentration or stock as 

determined conventionally. This was done by partial least squares (PLS) regression, which is 

the most common procedure for such analysis to date (Bjørsvik & Martens, 2001; Stenberg et 

al., 2010). It reduces the spectral data to a few orthogonal combinations of all absorbances, 

called latent variables (LV) or terms, which account for most spectral information and covary 

with the reference values. Spectral data analysis was conducted using The 

Unscrambler X 10.4 software (CAMO, Oslo, Norway). 

Firstly, VNIR spectra were pretreated, which consists of mathematically transforming the 

signal in order to amplify its useful parts (i.e. relating to SOC) and reduce irrelevant 

information (e.g. resulting from light scattering). Pretreatment always involved smoothing 

with a Savitsky-Golay filter of order 2 and width 11 (Savitsky & Golay, 1964), alone or 

possibly combined with a second pretreatment: standard normal variate transformation 

(SNV), which reduces multiplicative effects; first- or second-order detrend (D1 and D2, 

respectively), which removes simple additive and multiplicative effects (Barnes et al., 1989); 

or Savitsky-Golay first- or second-order derivation, with second order polynomial over 5, 11 

or 25 points (denoted SG 1 2 5, 1 2 11 and 1 2 25, and SG 2 2 5, 2 2 11 and 2 2 25, 

respectively), which reduces baseline variation and enhances spectral features (Savitsky & 

Golay, 1964). Spectra were reduced to 400-2500 and 450-2500 nm after first- and second-

order derivation, respectively, because their lower end was noisy. 

A principal component analysis (PCA) was then carried out on all smoothed in situ spectra. 

The Hotelling's T² distance was computed on PCA scores, and five samples with 

distance > 2 T²=0.05 were removed as spectral outliers (Jensen & Ramirez, 2017). The 

remaining set, including 132 samples, was then divided into a calibration subset, used to build 

the prediction model, and a validation subset, used to test it. One pit per site was used for 
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validation, and the two or three other pits of the site for calibration. A PCA was performed on 

the smoothed in situ spectra of each site to select its validation pit, which should not have its 

samples too scattered and atypical. After deciding which pits would be used for calibration 

and validation, the calibration subset included 95 samples and the validation subset 37. 

A cross-validation was then performed on the calibration subset, which was ranked according 

to sampling time then divided cyclically in six groups (i.e. the 1
st
, 7

th
, 13

th
, etc. samples in the 

first group, the 2
nd

, 8
th

, 14
th

, etc. samples in the second group, etc., the 6
th

, 12
th

, 18
th

, etc. 

samples in the sixth group). The optimal number of PLS LV was the number of LV after 

which the root mean square error of cross-validation (RMSECV) no longer decreased 

meaningfully (Bjørsvik & Martens, 2001).  

The performance of the prediction model was tested on the validation samples, which 

belonged to the pits that had not been used for calibration and could thus be considered 

independent. This performance was evaluated according to three figures of merit: the 

coefficient of determination R²val between observed and VNIRS-predicted values (SOC 

concentration or stock) over the validation subset; the root mean square error of prediction 

(RMSEP; see Eq.5) between observed and VNIRS-predicted values over the validation 

subset; and the RPDval ratio, calculated by dividing the standard deviation (SD) of the 

validation subset by RMSEP. The latter was calculated as follows: 

        
   y  - y    

 
 

 
      (Eq.5) 

where yi and     are the observed and VNIRS-predicted values for sample i, respectively, and 

N the total number of samples in the validation subset. 

Predictions were then averaged at the horizon level and summed up at the profile levels. 

RMSEP between observed and VNIRS-predicted horizon SOC stock was calculated 

according to Eq.5, with yi and     the observed and VNIRS-predicted values for horizon i, 

respectively, and N the total number of horizons. Similar calculations were then made for 

profiles. 

 

3. Results 

3.1. Reference data 

Sample SOC stocks were calculated according to four methods (Eq.1 to Eq.4), which yielded 

closely correlated values (on 132 samples; five spectral outliers were removed, cf. Section 

2.3). The closest correlations occurred between Eq.1 and Eq.2, between Eq.2 and Eq.3, and 
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between Eq.3 and Eq.4 (R² ≥ 0.98, slope ≥ 0.90), and the weakest between Eq.1 and Eq.4 

(R² = 0.93), which is consistent with the fact that coarse particles (> 2 mm) were increasingly 

and progressively taken into account from Eq.1 to Eq.4. Nevertheless, according to the 

Wilcoxon signed-rank test (R Core Team, 2017), there were significant differences (p < 0.05) 

between sample SOC stocks determined according to Eq.1, Eq.2, Eq.3 and Eq.4: their mean 

and SD were 20.1 ± 16.9, 18.4 ± 15.4, 17.7 ± 14.8 and 16.3 ± 13.7 gC dm
-3

, respectively. 

Thus, better accounting for coarse particles decreased SOC stock value significantly. 

Particles > 2 mm represented a noticeable proportion of the studied samples: 232 g kg
-1

 in 

average (SD 161 g kg
-1

); and this proportion tended to be higher in Nantes (284 g kg
-1

 in 

average, SD 162 g kg
-1

) than in Marseille (148 g kg
-1

 in average, SD 118 g kg
-1

), with no clear 

effect of land use (e.g. in Nantes, 291 g kg
-1

 in sealed soils vs. 282 g kg
-1

 in parks and fallows, 

in average). 

The minimum, maximum, mean and SD of observed sample SOC concentration and stock are 

presented in Table 2, for Marseille (48 samples including 26 in parks and 22 in fallows) and 

Nantes (84 samples including 32 in parks, 31 in fallows and 21 in sealed soils), stock being 

calculated according to Eq.4 (which was considered the most relevant). According to 

ANOVA followed by a post hoc HSD Tukey test (R Core Team, 2017), sample SOC 

concentration and stock were significantly higher in Marseille, where soils are carbonated 

silty clay, than in Nantes, where soils are acidic and slightly sandier (p < 0.05). For one given 

city (Marseille or Nantes), sample SOC concentration or stock did not differ significantly 

between parks and fallows, possibly because sample depth was not taken into account, thus its 

effect masked that of land use (sampling based on pedological horizons did not allow 

comparisons between land uses at a given depth). In contrast, SOC concentration and stock in 

Nantes were significantly lower in sealed soils than under parks and under fallows. 

 

3.2. Spectra 

Some of the differences in sample SOC reported in the previous section, between cities or 

land uses, could also be found when considering spectra, or more precisely, PCA built from 

spectra. Two PCA were performed on spectra acquired in situ and in laboratory conditions, 

respectively (Figure 1). The PCA performed on laboratory spectra showed that Marseille 

samples had generally positive PC2 scores and Nantes samples negative PC1 scores, except 

sealed soil (in Nantes only), which had positive PC1 scores and negative PC2 scores in 

general. Indeed, the clearest feature was the tendency of sealed soil spectra to group, toward 
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high PC2 scores for in situ spectra and toward high PC1 scores and low (negative) PC2 scores 

for laboratory acquisitions.  

 

3.3. Prediction of sample SOC concentration and stock (determined according to Eq.4) 

On the whole, predictions were more accurate using laboratory spectra than in situ spectra, 

and for SOC concentration than SOC stock. Thus, the best predictions were achieved for SOC 

concentration, then for SOC stock in laboratory conditions, while results for SOC 

concentration and stock using in situ spectra differed less (best RPDval reached 4.6, 3.1, 2.4 

and 2.2, respectively; Table 3). 

Among the spectrum pretreatments that were used in addition to smoothing, D1 and D2 

yielded the best predictions of SOC concentration and stock when using in situ spectra; while 

this was achieved with SNV and SG 1 2 11 when using laboratory spectra. Smoothing alone 

yielded predictions that were among the worst in general. 

Figure 2 compares conventional determinations and VNIRS predictions of SOC concentration 

and stock on the validation subset using in situ or laboratory spectra with pretreatments that 

yielded the best validation results. It shows poor predictions for several samples collected in 

sealed soils, especially for SOC stock and especially using in situ spectra, with residuals often 

larger than observed values, which were low (cf. Table 2). 

 

3.4. Prediction of sample SOC stock according to its conventional determination procedure 

The fitting of in situ spectra did not differ much according to the equation used for calculating 

SOC stock conventionally. Nevertheless, over a range of spectrum pretreatments that yielded 

good results in general, sample stock values tended to be more accurately predicted when 

calculated with Eq.2 than with the other equations, Eq.3 especially (Table 4). Moreover, with 

smoothing + D2, which was the most appropriate pretreatment when predicting SOC stock 

from in situ spectra, conventional stock values tended to be more accurately predicted when 

calculated with Eq.1 than with Eq.4, while Eq.2 and Eq.3 provided intermediate results. 

The fitting of laboratory spectra was more affected by conventional SOC stock calculation: 

over a range of pretreatments that yielded good results in general, the prediction of sample 

SOC stock tended to be more accurate when calculated with Eq.1 than with Eq.4, while Eq.2 

and Eq.3 provided intermediate results (Table 4). With smoothing + SG 1 2 11, which was the 

most appropriate pretreatment when predicting SOC stock from laboratory spectra, SOC stock 

tended to be more accurately predicted when calculated with Eq.2, and to a lesser extent Eq.3 

then Eq.1, than with Eq.4. 
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3.5. Prediction of horizon and profile SOC stocks (determined according to Eq.4) 

Considering SOC stocks at the horizon level, which included several samples, and at the 

profile level, which included several horizons, prediction accuracy was similar than at the 

sample level when in situ spectra were used: RPDval = 2.0 and 2.3 vs. 2.2, respectively (with 

smoothing + D2, which was the most appropriate pretreatment here; Table 5 for horizons and 

profiles, Table 3 for samples). When laboratory spectra were used, predictions were more 

accurate at the horizon level and even more at the profile level than at the sample level: 

RPDval = 4.0 and 4.4 vs. 3.1, respectively (with smoothing + SG 1 2 11, which was the most 

appropriate pretreatment here; Tables 5 and 3). Figure 3 compares observed and predicted 

profile SOC stocks using in situ or laboratory spectra with the most appropriate pretreatments. 

Considering the four validation profiles separately, observed and predicted stocks at Borély 

Park, Ste Marthe wasteland (Marseille), cemetery and railway station (Nantes) were 

respectively: 

- 252 vs. 196, 310 vs. 356, 71 vs. 57, and 17 vs. 112 MgC ha
-1

 using in situ spectra; 

- 252 vs. 209, 310 vs. 313, 71 vs. 48, and 17 vs. 58 MgC ha
-1

 using laboratory spectra. 

Prediction was particularly poor for the validation profile of the railway station site, especially 

using in situ spectra. This was also the case, though to a lesser extent, for one out of the three 

calibration profiles from Nantes railway station (observed vs. predicted SOC stock using in 

situ spectra was 6 vs. 50 MgC ha
-1

, respectively). Thus sample SOC stock in sealed soils was 

rather difficult to predict using in situ spectra, and this also tended to be the case using 

laboratory spectra, though to a much lesser extent (Figure 3). 

 

4. Discussion 

4.1. Overall considerations on predictions 

Chang et al. (2001) considered that NIRS predictions of soil attributes with RPD > 2 were 

accurate, and in the present study, this could be achieved for both SOC concentration and 

stock, using both in situ and laboratory spectra. Among spectra pretreatments, which aim at 

reducing additive and/or multiplicative effects due to light scattering, detrending yielded the 

best predictions with in situ spectra, and SNV or first derivative the best predictions with 

laboratory spectra. Detrending and first derivative reduce the additive effects, which could 

thus be considered dominant in both in situ and laboratory spectra, while SNV additionally 

removes multiplicative effects (Swarbrick, 2016), which were thus also present in laboratory 

spectra. 



12 
 

Predictions were often poor for samples collected in sealed soils, either using in situ or 

laboratory spectra. This could not be attributed to their coarse particle content, which was not 

higher than in parks and fallows. Rather, this might be attributed to the under-representation 

of sealed soils in the calibration subset (13 out of 95 samples), in relation to their low 

proportion in the total sample and pit populations (cf. Table 1); while soils under parks and 

fallows were better represented (82 samples in the calibration subset). Considering that sealed 

soils cover large areas in urban areas, they should be sampled more extensively in future 

studies. 

 

4.2. Comparison between VNIRS predictions of SOC in situ and in laboratory conditions 

Better VNIRS predictions from laboratory than from in situ spectra have already been 

reported in the literature, for SOC concentration (Morgan et al., 2009; Nocita et al., 2011; Li 

et al., 2015) and other soil properties (Mouazen et al., 2006; Lagacherie et al., 2008). And this 

seems rather intuitive, as explained by Stenberg et al. (2010). Indeed, laboratory spectra are 

most generally acquired on dry soil samples at room temperature, while spectrum acquisition 

in situ is made under variable conditions of soil moisture and temperature. Moreover, possible 

coarse particles (> 2 mm) are scanned in situ but removed by sieving before chemical 

analyses and spectrum acquisition in the laboratory, which homogenizes the laboratory 

samples and induces a difference with in situ samples. Variable moisture and temperature 

conditions and discrepancy between in situ and conventionally-analyzed samples complicate 

building a relationship between in situ spectra and conventionally-analyzed soil composition 

(calibration). Some authors however reported comparable predictions of SOC concentration 

from in situ and from laboratory spectra (Stevens et al., 2008; Gras et al., 2014). This could 

be explained by more replicates being generally carried out in situ, as a result of often visible 

heterogeneity, while 2 mm sieved samples scanned in the laboratory look much more 

homogeneous. This could also be attributed to higher sample cohesion in situ, which would 

improve the relationship between sample composition and absorbance (Gras et al., 2014). 

Therefore, though more intuitive and apparently supported by more published studies, better 

VNIRS predictions of soil composition, SOC concentration especially, from laboratory than 

from in situ spectra is not a generalizable result. It may be assumed that rather homogeneous 

soil moisture and temperature conditions during the in situ spectroscopy campaigns, on the 

one hand, and low proportion of coarse particles, on the other hand, would help achieving as 

good and even better predictions from in situ than from laboratory spectra, as was the case for 

the study reported by Gras et al. (2014). In contrast, variable soil moisture and temperature 
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during in situ spectroscopy campaigns and high or variable proportion of coarse particles 

would result in more accurate predictions from laboratory than from in situ spectra, as was the 

case in the present study. Indeed, the soils tended to be drier in Marseille than in Nantes 

(mean and SD for moisture content were 283 ± 118 g kg
-1

 vs. 363 ± 174 g kg
-1

, respectively; 

data not shown), and to have smaller proportion of particles > 2 mm (148 ± 118 g kg
-1

 vs. 

284 ± 162 g kg
-1

, respectively). Moreover, in situ spectra were not acquired at the very 

location of samples collected for conventional SOC analysis (spectra were acquired in the 

same horizon but 5 cm above and 5 cm below each collected sample, then averaged; 

cf. Section 2.3), and could thus represent slightly different soil conditions; though the average 

of two spectra acquired 5 cm above and below each collected sample was a priori assumed to 

represent it properly. Actually, collecting in situ spectra and soil samples that match exactly 

was an issue because collected samples were several centimeters large while the soil scanned 

had an area < 1 cm² (Clairotte et al., 2016) and a thickness of no more than a few millimeters 

(Ollinger et al., 2001). Conversely, aliquots used for laboratory VNIRS and conventional 

SOC analyses originated from the same homogenized sample and thus were more similar, 

which improved calibration. 

In contrast, no comparison between SOC stock predictions using in situ and laboratory spectra 

has been published yet. Some studies reported VNIRS predictions of SOC stock using in situ 

spectra: Roudier et al. (2015) scanned undisturbed soil cores in one large field and achieved 

RPDval = 2.6; while Cambou et al. (2016), in two fields 250 km apart, scanned disturbed soil 

cores and achieved RPDval = 1.8. In laboratory conditions (air-dried, 2 mm sieved samples), 

Priori et al. (2016) achieved RPDval = 2.1 for a sample set originating from nine fields in a 

small region. 

 

4.3. Comparison between VNIRS predictions of SOC concentration and stock 

Roudier et al. (2015) reported similar accuracy when predicting SOC concentration and SOC 

stock from VNIR spectra collected on intact soil cores (RPDval = 2.6 vs. 2.6). But Cambou et 

al. (2016) reported better prediction of SOC concentration than SOC stock from VNIR 

spectra collected on disturbed cores (RPDval = 2.0 vs. 1.8). In situ spectrum acquisition on 

undisturbed soil would thus result in similar VNIRS predictions of SOC concentration and 

stock. This was more or less the case in the present study, where spectra were acquired on pit 

walls (i.e. supposedly undisturbed soil). And indeed, prediction accuracy was comparable 

between SOC concentration and SOC stock (RPDval = 1.3-2.4 vs. 1.8-2.2, respectively, 

depending on pretreatment), while it was noticeably better for SOC concentration than SOC 
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stock when using laboratory spectra (RPDval = 3.1-4.6 vs. 2.1-3.1, respectively; Table 3). 

Actually, the important shift in prediction accuracy was from in situ to laboratory spectra, and 

it was larger for SOC concentration than SOC stock (RPDval increased from 1.3-2.4 to 3.1-4.6 

for concentration, i.e. ≈ 2, vs. 1.8-2.2 to 2.1-3.1 for stock, i.e. < 1, respectively). This indicates 

that the benefit of stable moisture and temperature provided by laboratory conditions was 

clear when predicting SOC concentration; but 2 mm sieving destroys macrostructure thus 

reduces information on bulk density, which partly offset the benefit of stable conditions when 

predicting SOC stock. 

 

4.4. Coarse particles and VNIRS prediction of sample SOC stock 

Coarse particles (> 2 mm) are progressively and increasingly taken into account from Eq.1 to 

Eq.4 (cf. Section 2.2); thus better predictions of sample SOC stock calculated with Eq.1 than 

with Eq.4 indicated that coarse particles were not properly taken into account in the VNIRS 

prediction process. Such issue could be explained easily for predictions using laboratory 

spectra: indeed, they were acquired on 2 mm sieved samples (i.e. without coarse particles); 

and as a consequence, better SOC stock predictions were achieved when conventional stock 

calculation did not account for coarse particles than when it did. The fact that the equations 

might rank similarly when considering predictions from in situ spectra (with the most 

appropriate pretreatment) suggested that in situ spectrum acquisition might under-represent 

coarse particles. As a matter of fact, it is likely that during spectrum acquisition, the operator 

preferentially, almost "naturally", put the probe of the spectrometer beside the coarsest 

particles rather than on them. This underlines the need to acquire spectra that fully represent 

the soil considered, with its coarse fraction, which could be achieved through extensive 

replication, for instance according to a regular grid on pit walls. This point is worth 

considering for urban soils, which often contain more coarse particles than their natural and 

cultivated counterparts. 

 

4.5. From sample to profile SOC stock 

More accurate predictions at profile than horizon level and at horizon than sample level, as 

observed when using laboratory spectra, suggested that some uncertainties at the sample level 

could offset each other at the horizon then profile levels. Indeed, one undisturbed soil sample 

was collected in every horizon for measuring bulk density and two to four disturbed soil 

samples were collected at other locations of the horizon for conventional SOC analysis and 

laboratory VNIRS. As a consequence, each disturbed soil sample used for SOC concentration 
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analysis and spectrum acquisition in the laboratory did not represent exactly the same soil 

conditions as the corresponding undisturbed soil sample. Thus, it is likely that this 

undisturbed sample was better represented by average SOC concentration and average VNIR 

spectrum at the horizon level, hence better predictions at the horizon than sample level. 

Further but smaller improvement in prediction accuracy from horizon to profile level when 

using laboratory spectra might be due to offset between possible under-prediction in some 

horizons and over-prediction in other horizons, resulting from spatial variability at the horizon 

level. Such spatial variability would cause differences between the sample used for 

determining bulk density and those collected for spectral and SOC measurements in the 

laboratory.  

In contrast, stock prediction was not improved from sample to horizon level when using in 

situ spectra, possibly because these spectra were not acquired at the exact location of samples 

collected for conventional SOC analysis (spectra were acquired 5 cm above and 5 cm below, 

then averaged; cf. Sections 2.3 and 4.2). Thus, the average spectrum at the horizon level 

possibly did not correspond exactly to the average of SOC concentrations determined on the 

samples of this horizon. Moreover, compensation between horizons at the profile level was 

limited for predictions based on in situ spectra, possibly because, again, soil samples used for 

SOC analysis and corresponding spectra were not collected at the exact same location. 

 

5. Conclusions 

Accurate VNIRS predictions could be achieved for SOC concentrations and stocks using in 

situ or laboratory spectra: R²val ≥ 0.78, and even ≥ 0.94 when using laboratory spectra for 

predicting sample SOC concentration or horizon and profile SOC stock. Thus VNIRS, which 

has been used extensively for studying agricultural soils, can be used fruitfully for studying 

urban soils too. 

Better predictions were achieved using laboratory than in situ spectra, especially for SOC 

concentration. Moreover, SOC concentration was better predicted than sample SOC stock, 

especially when using laboratory spectra. The benefit of stable laboratory conditions was thus 

clear for predicting SOC concentration; but for predicting SOC stock, this benefit was partly 

offset by 2 mm sieving, which reduces information on volumetric mass. 

Predictions were less accurate for sealed soils than for soils under parks and fallows, 

especially using in situ spectra and for SOC stocks. This might be attributed to the low 

proportion of sealed soils in the calibration subset and in the total sample set. They cover 

large areas in urban areas, and should thus be sampled more extensively in future studies. 
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The accuracy of SOC stock prediction tended to decrease when coarse particles (> 2 mm) 

were better taken into account in conventional stock calculation (from Eq.1 to Eq.4). This was 

consistent when using laboratory spectra, acquired on 2 mm sieved samples. Observing the 

same tendency with in situ spectra suggested that coarse particles were under-represented in 

these spectra, probably because the operator tended to put the spectrometer probe beside, 

rather than on, the coarsest particles. This point is worth considering for urban soils, which 

often contain more coarse particles than their rural counterparts. 

The accuracy of SOC stock prediction using laboratory spectra increased from sample to 

horizon then profile level, probably due to compensation of uncertainties at more integrative 

levels. In contrast, the accuracy of SOC stock prediction using in situ spectra varied little at 

more integrative levels, possibly because samples used for SOC analysis and corresponding 

spectra were not collected at the exact same location. 
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Table 1. Presentation of the studied sites and pits. 

 

Site location, altitude, 

soil type and bedrock 

Pit 

 

Land 

use 

Soil 

cover 

Pit depth 

(cm) 

No of soil 

horizons 

      Marseille, Borély Park A Park Lawn 70 3 

  43.26073° N, 05.38384° E B Park Lawn 80 3 

  Altitude 5 m a.s.l. C Park Grove litter 85 3 

  Anthrosol on alluvial bedrock D Park Grove litter 80 2 

      
Marseille, Ste Marthe wasteland A Fallow Grass 110 3 

  43.34325° N, 05.40054° E B Fallow Grass 100 5 

  Altitude 116 m a.s.l. C Fallow Brush 115 4 

  Anthrosol on marl and limestone 
     

      
Nantes, cemetery with park A Fallow Grass near a tree 110 5 

  47.27217° N, 01.58297° W B Fallow Grass 105 4 

  Altitude 38 m a.s.l. C Park Lawn 125 4 

  Anthrosol on mica-schist D Park Lawn 110 4 

      
Nantes, railway station A Car park Sealed soil 160 7 

  47.21725° N, 01.54372° W B Car park Sealed soil 160 5 

  Altitude 9 m a.s.l. C Pavement Sealed soil 115 6 

  Technosol on anthropic backfill D Pavement Sealed soil 110 5 
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Table 2. Distributions of observed sample SOC concentration and stock according to location 

and land use (SOC stock was calculated according to Eq.4; five samples were removed as 

spectral outliers, cf. Section 2.3). 

 

 
Sample 

No 

SOC concentration 

(gC kg
-1

)  
SOC stock 

(gC dm
-3

) 

  
Min Max Mean SD

a
 

 
Min Max Mean SD

a
 

Marseille 

          
  Parks 26 16.0 43.0 25.1 9.2 

 

21.7 53.3 29.5 8.2 

  Fallow 22 16.9 60.8 27.4 11.4 

 

21.9 54.6 33.3 8.7 

Nantes 

          
  Parks 32 3.4 24.1 11.0 6.9 

 

2.2 27.1 11.0 7.1 

  Fallow 31 1.0 29.2 8.5 8.2 

 

0.7 20.8 8.2 6.8 

  Sealed soils 21 0.4 10.8 1.9 2.9 

 

0.3 10.7 2.1 2.9 

           a
 Standard deviation 
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Table 3. Validation results of VNIRS predictions of sample SOC concentration and stock for 

in situ and laboratory conditions, achieved with pretreatment methods that yielded high 

RPDval (37 validation samples were used; mean and SD were 12.4 and 12.4 gC kg
-1

 for SOC 

concentration and 15.6 and 15.5 gC dm
-3

 for SOC stock, respectively). 

 

Pretreatment LV
a
 RMSEP

b
 Bias

b
 Slope

a
 R²val

a
 RPDval

a
 

Sample SOC concentration predicted from in situ spectra (gC kg
-1

) 

  Smoothing 5 9.8 3.4 0.46 0.40 1.3 

  Smoothing + D1 10 5.2 1.4 0.84 0.83 2.4 

  Smoothing + D2 9 5.3 1.6 0.81 0.82 2.3 

  Smoothing + SNV 10 5.2 1.7 0.82 0.83 2.4 

  Smoothing + SG 1 2 11 4 7.5 4.8 0.59 0.65 1.7 

Sample SOC stock predicted from in situ spectra (gC dm
-3

) 

  Smoothing 10 8.6 5.5 0.64 0.69 1.8 

  Smoothing + D1 10 7.3 4.0 0.75 0.77 2.1 

  Smoothing + D2 9 7.1 4.2 0.73 0.78 2.2 

  Smoothing + SNV 10 7.4 4.1 0.72 0.77 2.1 

  Smoothing + SG 1 2 11 6 7.3 3.9 0.76 0.77 2.1 

Sample SOC concentration predicted from laboratory spectra (gC kg
-1

) 

  Smoothing 10 3.9 1.9 0.86 0.90 3.2 

  Smoothing + D1 8 4.1 2.0 0.84 0.90 3.1 

  Smoothing + D2 8 3.5 2.0 0.88 0.93 3.6 

  Smoothing + SNV 8 2.7 0.2 0.96 0.95 4.6 

  Smoothing + SG 1 2 11 9 3.2 2.9 0.85 0.94 3.9 

Sample SOC stock predicted from laboratory spectra (gC dm
-3

) 

  Smoothing 9 7.0 2.3 0.72 0.79 2.2 

  Smoothing + D1 8 7.5 3.5 0.67 0.76 2.1 

  Smoothing + D2 6 6.9 1.7 0.72 0.80 2.2 

  Smoothing + SNV 8 6.3 2.1 0.73 0.83 2.5 

  Smoothing + SG 1 2 11 9 5.1 1.9 0.79 0.89 3.1 

       a
 Unitless; LV is the number of latent variables and RPDval is the ratio of SD to RMSEP 

b
 Same unit as the variable considered (sample SOC concentration or stock) 



24 
 

Table 4. Accuracy of sample SOC stock prediction from in situ and laboratory spectra 

according to the conventional determination procedure (RPDval is the ratio of SD to RMSEP; 

the number of latent variables LV used in the PLSR model is mentioned into brackets). 

 

Pretreatment 

 

RPDval of sample SOC stock prediction using 

conventional data calculated according to 

 
Eq.1 Eq.2 Eq.3 Eq.4 

In situ spectra     

    Smoothing 2.2 (13) 2.1 (13) 1.4 (7) 1.8 (10) 

    Smoothing + D1 2.3 (10) 2.2 (10) 2.2 (10) 2.1 (10) 

    Smoothing + D2 2.4 (9) 2.3 (9) 2.3 (9) 2.2 (9) 

    Smoothing + SNV 1.8 (7) 2.3 (11) 2.2 (10) 2.1 (10) 

    Smoothing + SG 1 2 11 1.7 (4) 1.8 (4) 1.8 (4) 2.1 (6) 

  Average ± SD
a
 2.1 ± 0.3 2.2 ± 0.2 2.0 ± 0.4 2.1 ± 0.2 

Laboratory spectra     

    Smoothing 2.7 (9) 2.4 (10) 2.4 (10) 2.2 (9) 

    Smoothing + D1 2.7 (8) 2.5 (8) 2.4 (8) 2.1 (8) 

    Smoothing + D2 3.2 (9) 2.5 (8) 2.7 (8) 2.2 (6) 

    Smoothing + SNV 3.3 (9) 2.9 (9) 3.0 (9) 2.5 (8) 

    Smoothing + SG 1 2 11 3.6 (9) 3.8 (9) 3.7 (9) 3.1 (9) 

  Average ± SD
a
 3.1 ± 0.4 2.8 ± 0.6 2.8 ± 0.5 2.4 ± 0.4 

     a
 Standard deviation 
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Table 5. Accuracy of predictions of horizon and profile SOC stocks on the validation subset 

using spectra acquired in situ and in laboratory conditions (in MgC ha
-1

 for the level 

considered; sample SOC stock was calculated with Eq.4; pretreatments were smoothing with 

D2 and with SG 1 2 11 for in situ and laboratory spectra, respectively). 

 

 Level No Mean
a
 SD

a
 RMSEP

a
 Bias

a
 Slope R²val RPDval

b
 

        

In situ spectra        

 Horizon 14 46.4 46.5 22.9 12.5 0.84 0.76 2.0 

 Profile 4 162.4 140.5 60.3 47.0 0.82 0.78 2.3 

Laboratory spectra       

 Horizon 14 46.4 46.5 11.6 3.2 0.90 0.94 4.0 

 Profile 4 162.4 140.5 31.9 14.3 0.88 0.94 4.4 

          a
 In MgC ha

-1
 

b
 Ratio of standard deviation (SD) to RMSEP, unitless 
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Figure 1. PCA of smoothed in situ or laboratory absorbance spectra. 
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Figure 2. Comparison between observed and VNIRS-predicted sample SOC concentrations 

and stocks (calculated according to Eq.4) on the validation subset using the best spectrum 

pretreatment (i.e. smoothing with SNV for concentration; smoothing with D2 and with 

SG 1 2 11 for stock prediction in situ and in laboratory conditions, respectively). 
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Figure 3. Comparison between profile SOC stocks observed and predicted using (a) in situ 

and (b) laboratory spectra (observed stock was calculated using Eq.4; in situ and laboratory 

spectra were pretreated with smoothing with D2 and with SG 1 2 11, respectively). 
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