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ABSTRACT

Context. AMS-02 on the International Space Station has been releasing data of unprecedented accuracy. This poses new challenges
for their interpretation.
Aims. We refine the methodology to get a statistically sound determination of the cosmic-ray propagation parameters. We inspect the
numerical precision of the model calculation, nuclear cross-section uncertainties, and energy correlations in data systematic errors.
Methods. We used the 1D diffusion model in usine. Our χ2 analysis includes a covariance matrix of errors for AMS-02 systematics
and nuisance parameters to account for cross-section uncertainties. Mock data were used to validate some of our choices.
Results. We show that any mis-modelling of nuclear cross-section values or the energy correlation length of the covariance matrix of
errors biases the analysis. It also makes good models (χ2

min/d.o.f. ≈ 1) appear as excluded (χ2
min/d.o.f. � 1). We provide a framework

to mitigate these effects (AMS-02 data are interpreted in a companion paper).
Conclusion. New production cross-section data and the publication by the AMS-02 collaboration of a covariance matrix of errors for
each data set would be an important step towards an unbiased view of cosmic-ray propagation in the Galaxy.

Key words. astroparticle physics – diffusion – methods: miscellaneous – cosmic rays

1. Introduction

Particle physics detectors in space have opened a new era for
the study of Galactic cosmic rays (GCRs). The Alpha Magnetic
Spectrometer (AMS-02) instrument on the International Space
Station (ISS) provides the best data to date for leptons and nuclei
(Aguilar et al. 2013, 2014a,b, 2015a,b, 2016, 2018a,b), with an
uncertainty of a few percent on a large energy range. Its mea-
surements will probably remain unrivalled for at least the next
decade in the GeV–TeV energy range.

In principle, high-precision data can be used to constrain dif-
ferent propagation scenarios or candidates in the context of dark
matter indirect detection. However, promises of high-precision
cosmic-ray (CR) physics can only be fulfilled if the various
sources of uncertainties, data and model, are fully accounted for.

AMS-02 systematic uncertainties are diverse in origin and
dominate the error budget of measured fluxes and ratios over-
all. In experiments measuring spectra, correlations in adjacent
energy bins may be introduced at the data analysis stage. These
correlations could wash out or mimic spectral features in the
data. In principle, the best approach to automatically account for
such effects is to fold the model prediction to the instrument full
response and directly compare with the number of events. How-
ever, because the AMS-02 instrument response is not available,
the next best approach is to incorporate a correlation matrix of
errors or use nuisance parameters when comparing a model to

the data. Such a matrix is also not available; however, we can rely
on educated guesses to derive it and inspect the consequences on
the model parameters.

The dominant source of uncertainty in the modelling is from
nuclear cross sections (Donato et al. 2001; Maurin et al. 2010).
Propagating these uncertainties to the model parameters have
already been investigated in several studies (Giesen et al. 2015;
Génolini et al. 2015; Tomassetti 2017; Reinert & Winkler 2018),
and we revisit this question here in more details with the use of
mock (simulated) data. Controlled data were introduced in a CR
propagation context in Coste et al. (2012) to study possible biases
on model parameters from using primary and secondary CR data
of very different accuracy. In this study, mock data are used to
characterise the bias on reconstructed model parameters when
accounting for cross-section uncertainties, and more importantly,
to assess how well nuisance parameters on cross sections allow
one to recover unbiased values of these parameters.

To be able to test various model hypotheses at the required
level of the data, the model calculation must be at a much higher
precision than the data uncertainty. The diffusion equation is a sec-
ond order differential equation in space and momentum, and we
discuss the impact of energy boundary conditions here, along with
other effects that could prevent reaching the desired precision.

Except for the numerical precision, studying how to best deal
with data and cross-section uncertainties is mostly independent
of the propagation model and of the specific quantity studied.
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For practical purpose, our methodology is illustrated on the B/C
ratio, which is one of the most frequently discussed quantity in
the CR literature (e.g. Maurin et al. 2001).

This is a methodology paper, and the full analysis of AMS-
02 data and the interpretation of the model parameters are left
for the companion paper (Génolini et al. 2019). The paper is
organised as follows: Sect. 2 briefly introduces the 1D model
and its parameters, and details two configurations used for the
analysis. Section 3 discusses how to ensure a good precision at
various stages of the calculation: boundary conditions, numeri-
cal stability, and comparison of the model to the data. Section 4
shows two different parametrisations of nuisance parameters for
nuclear cross sections, and mock data are used to fully charac-
terise the impact of cross-section uncertainties. In Sect. 5, we
detail the systematics of AMS-02 data – from which a covari-
ance matrix of error is built–, and we show the impact of the cor-
relation length (of the covariance matrix) on the best fit results
and errors on the model parameters. Cross sections and covari-
ance matrix effects are then dealt with together in Sect. 6, to
assess which one dominantly impacts the analysis of AMS-02
B/C data. We summarise our findings and give some recommen-
dations in Sect. 7.

For the sake of readability, some more technical and detailed
discussions are postponed in the appendices: Appendix A shows
that the AMS-02 B/C data conversion from R to Ek/n as pre-
sented in Aguilar et al. (2016) induces an energy-dependent
bias (∼3%); Appendix B details how the covariance matrix of
errors and nuisance parameters are included in the χ2 anal-
ysis; Appendix C gathers several boundary coefficients that
can be implemented for the numerical solution of the discre-
tised second-order differential diffusion equation; Appendix D
presents a thorough analysis of the stability of the latter solution
(for the 1D model), also determining a stability criterion for the
Crank–Nicholson solution with a vanishing second-order term
(Va → 0); Appendix E shows a more detail view of how specific
cross-section reactions impact the calculated B/C ratio.

2. Model and parameters

Many modellings of propagation models are possible, with dif-
ferent geometries, more or less involved spatial dependences,
possible time-dependence, etc. For simplicity, and because most
of our results and conclusions should not depend on this mod-
elling, we use throughout the paper a 1D diffusion model, as
implemented in the usine package (Maurin 2018)1. The equa-
tions and solutions can be found for instance in Putze et al.
(2011), and for conciseness, we do not repeat them here. Such
a model also proves useful, because it can be compared, in
some simple cases, to compact analytical solutions (see, e.g.
Appendix D).

2.1. 1D propagation model

In this model, sources and gas are in a thin disc of half-height
h in which energy losses and reacceleration occur. Particles dif-
fuse in an homogeneous region of height L above and below the
disc. The free parameters of the model that we vary in this study
are: the rigidity dependence R = pc/(Ze), of the homogeneous
and isotropic spatial diffusion coefficient K(R), see Sect. 2.2; the
Alfvénic speed Va of scatterers mediating the strength of the dif-

1 A specific release, usine v3.5 (to appear), was developed for this anal-
ysis, improving on the first public version v3.4, allowing for more nui-
sance parameters, more displays, etc.

fusion in momentum Kpp(R), the latter being related to the spa-
tial diffusion coefficient and depends on the geometry of the tur-
bulence (Schlickeiser 2002); the strength of Vc, a constant Galac-
tic wind perpendicular to the thin disc.

Other model parameters (halo size L, source spectrum) are
irrelevant for this study. For instance, changing L would merely
lead to a rescaling of the above parameters (e.g. Putze et al.
2011), so we fix it to 10 kpc for practical purpose (and we fix h to
100 pc). The B/C value is insensitive to the value of the universal
spectral index of sources (e.g. Maurin et al. 2002; Génolini et al.
2015), so it is fixed in the analysis.

2.2. Parameters for Model A and Model B

The impact of various uncertainties on transport parameters
depends on the exact number and nature of the free parameters
considered. We rely on two configurations, which correspond to
two extreme cases of a more generic parametrisation of the dif-
fusion coefficient, further detailed in the companion paper. They
are denoted Model A and Model B in the rest of the paper.

Model A is a diffusion-convection-reacceleration model with

K(R) = βηt K0

( R
1 GV

)δ
× KHE(R), (1)

where ηt allows for a sub-relativistic change of the diffusion
coefficient as parametrised in Maurin et al. (2010), and where
KHE = (1 + (R/Rh)δh/sh )−sh is a high energy break whose parame-
ter values are taken from Génolini et al. (2017). This configura-
tion has 5 free transport parameters: K0, δ, ηt, Va, and Vc.

Model B is a pure diffusion model (no Vc, no Va) with a dou-
ble broken power-law, at both high and low energy:

K(R) = βK0

( R
1 GV

)δ (
1 +

(Rl

R

)(δ+δl)/sl
)sl

× KHE(R). (2)

This configuration has 4 free parameters: K0, δ, Rl, and δl. The
smoothness parameter sl has only a minor impact on the results,
so it is fixed to 0.05 (quick transition) to speed up the fitting
procedure.

Following Seo & Ptuskin (1994), we take, for both models,
the diffusion coefficient in momentum

Kpp(R) × K(R) =
4 (Va β E)2

3δ(4 − δ2)(4 − δ)
· (3)

3. Model precision: general considerations

The requirements for any analysis is (i) that the model calcula-
tion can be enforced at a precision much better than the preci-
sion of the data which will constrain it, and (ii) to ensure that the
model and the data compared refer to the exact same quantity.

We focus on the model calculation in this section, but at the
data level, biases can also sometimes be introduced, as exempli-
fied in Appendix A with the conversion of B/C data from R to
Ek/n proposed in Aguilar et al. (2016).

3.1. Energy boundary conditions and numerical stability

The transport equation of CRs (e.g. Maurin 2018) is a second
order differential equation in space and in momentum (if reaccel-
eration is present), whose solution depends on the boundary con-
ditions. These conditions should in principle be fixed by physics
requirements, but there is no consensus as to what they are. We
underline that spatial and momentum boundary conditions are
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generally not dealt with on the same footing: while they are usu-
ally clearly indicated in publications and are recognised as being
part of the properties of a model for the former, this is not the
case for the latter (which is discussed below).

The transport equation can be cast into a generic conserva-
tion equation on the energy co-ordinate x = ln Ek/n:

u + α(x)
dJE

dx
= u0 and JE = β(x) u − γ(x)

du
dx
, (4)

with u is the cosmic-ray differential density in energy, u0 a source
term, JE a current (convection and diffusion), and α, β, and γ
are coefficients related to energy losses, diffusion in momentum,
etc.2

Boundary conditions. At very high energy, for nuclei, the
timescale of energy losses and gains becomes very large com-
pared to the escape time, suggesting the condition u(xmax) =
u0(xmax), which is seemingly used in all propagation codes.

At low energy, different boundary conditions have been used
in the literature, corresponding to different physical situations:
(i) no curvature in the spectrum, as introduced in Donato et al.
(2001) for antiprotons: ∂2u/∂x2|xmin = 0; (ii) no energy flow, that
is a vanishing current JE(xmin) = 0. Physically this means that,
at xmin, the outward current from energy losses balances exactly
the inward reacceleration current. This condition thus depends
on the coefficients α, β and γ of the equation. From Eq. (4), one
can infer that for very small values of γ, this will create a strong
gradient of u to maintain JE = 0; (iii) no density gradient in
momentum ∂ f /∂p|xmin=0 (Evoli et al. 2017), which translates into
∂/∂p(u/(pE))|Emin = 0.

Numerical solution and precision. In the semi-analytical mod-
els implemented in usine and used here, as for most propagation
codes, the second order differential equation in energy is solved
numerically, by solving the equation on a grid. In practice, we
make use of the semi-implicit Crank–Nicholson method and
the resolution proceeds via the inversion of a tridiagonal matrix
(see Appendix C). The first and last energy bins are set by the
boundary conditions, as reported in Table C.1.

The precision of the numerical inversion depends on the
number of points on the grid. We find that the boundary con-
ditions at low energy described above yield similar results, pro-
vided that the number of energy bins is large enough and that
the lower energy Emin is far below the range of interest. How-
ever, they differ with respect to the minimum number of energy
bins required to reach the same level of precision. The B/C
ratio obtained from each of these conditions are compared in
Fig. 1 to a reference ratio obtained setting Emin = 1 MeV n−1

and using 5000 points per energy decade. We checked that the
reference ratio does not depend, at the per mille level, on the
chosen boundary condition. The red, blue and green curves are
obtained for the first, second and third boundary conditions at
low energy, respectively. In the top panel, we change the number
of points in the energy grid (10, 50 and 100 bins per decade)
whereas in the bottom panel we move the low-energy bound
Emin from 100 MeV n−1 down to 1 MeV n−1. We obtain similar
results for each low-energy boundary condition, provided that

2 For instance, in the case of the 1D diffusion model described in
Sect. 2.1, the above coefficients are given by Putze et al. (2010): α(x) =
2h/(EkA), β(x) = blosses(E), γ(x) = β2Kpp/Ek, and u0(x) = 2hq/A, with

A = 2h nvσinel + Vc + KS coth (S L/2) and S =
(
V2

c /K
2 + 4 Γrad/K

)1/2
.
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Fig. 1. Relative difference for the B/C computed with different bound-
ary conditions at LE, varying the number of energy bins per decade
(top panel) and the minimal energy of the grid (bottom panel). The ref-
erence B/C has been computed using 5000 energy bins per decade and
setting Emin = 1 MeV.

the number of points per energy decade is larger than 10 and
Emin is much lower than the energy range of interest. This is
probably the reason why no boundary condition at low energy
is specified in the numerical codes GALPROP (Strong et al.
2011, p. 35) and PICARD (Kissmann 2014, p. 5). However,
the choice of the boundary condition is important for the con-
vergence. We find that the first condition (no curvature in the
spectrum) converges better than the others and yields a precision
at the percent level even using only 10 bins per decade when
starting from Emin = 1 MeV n−1. We therefore recommend to
make use of the no curvature boundary condition at low energy,
with Emin = 1 MeV n−1 and using 50 bins per decade, to ensure
numerical systematics lower than the percent level.

Finally, this method can be unstable for γ → 0, in which case
Eq. (4) boils down to a first order differential equation. A simple
prescription to obtain the solution keeping the same solver is to
enforce a non-null but small γ, with a non-vanishing yet small Va.
We checked that setting a lower limit on the Alfvénic speed such
that V2

a /(K0∆x2) ≥ 10−1 Myr−1 where ∆x is the spacing of the
energy grid, stabilises the Va = 0 solution at the per mille level.

3.2. “Model vs. data” error using Rmean or of bin range
estimate

To our knowledge, models are always calculated at a single point
and then compared to data measured over a bin range. This can
lead to a systematics we quantify here.
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Meaning of Rmean in data. All data measurements are based on
a number of events in the detector (corrected for the acceptance,
efficiencies, etc.) per unit area, solid angle, unit time, and energy
bin. To be practical, let us assume that, like AMS-02, the exper-
iment provides data per rigidity bin [Rmin, Rmax]3. Usually, for
display purpose, the central bin reported in the experiments is
the geometric or more rarely the arithmetic mean:

R×mean ≡
√

Rmin Rmax or R+
mean ≡ (Rmin + Rmax)/2. (5)

Neither of those means are satisfactory to represent the mea-
sured flux F, because the correct central bin Rexact

mean should be
calculated from the condition

F
(
Rexact

mean

)
= F[Rmin,Rmax] ≡

∫ Rmax

Rmin
F(R)dR

Rmax − Rmin
· (6)

This is a well known issue (Lafferty & Wyatt 1995): provid-
ing the exact Rmean from the data requires the knowledge of the
spectral shape of the flux that the experiment is actually trying
to measure!

F
(
R×,+mean

)
vs. F

(
Rexact

mean
)

for fluxes and ratios. In the context
of minimisation studies, the above discussion should be irrele-
vant as the theoretical flux is known: it can be integrated over
the bin range and compared with the data without approxima-
tion. However, standard practice in the literature is to fit the data
using R×,+mean. We quantify below the relative difference between
the exact and approximate calculation for a flux,

EF [%] =

(
FRmean − F[Rmin,Rmax]

)
F[Rmin,Rmax]

× 100. (7)

For practical calculations, we assume power-law fluxes F =
F0R−α, so that the normalisation F0 simplifies in Eq. (7). We can
also estimate the relative difference for B/C, taking the ratio of
two power-law fluxes of indices αnum and αden:

ER [%] =

(
Fαnum

Fαden

)
Rmean

−
Fαnum

[Rmin,Rmax]

Fαden
[Rmin,Rmax]

Fαnum
[Rmin,Rmax]

Fαden
[Rmin,Rmax]

× 100. (8)

Model error on fluxes. We show in Fig. 2 the module |EF |

as a function of α. The different line styles correspond to dif-
ferent bin widths, and the larger the bin width, the larger |EF |.
Also, F(R×mean) is a better approximation than F(R+

mean), except
for α ∼ 0 (thick dim vs. thin light grey lines). F(R×mean) is exact
for α = 0 and α = 2 and the relative difference is positive above
α = 2 and negative below α = 2. To guide the eye, the green
dash-dotted line shows the typical 3% uncertainty on the AMS-
02 data: all values of α and ∆R above this line, using F(R×,+mean)
in model calculations produces a bias larger than 3%. We do not
study fluxes here, but primary and secondary fluxes have slopes
of ∼2.8−3.1, for which the bias is maximal. Nevertheless, the
maximal rigidity bin width in AMS-02 data for proton and He
flux is Rmax/Rmin ≈ 1.6, for which the approximate calculation
is smaller than the data uncertainty.

3 The reasoning would be the same if we were to take Ek/n instead.
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|
F
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R+
mean (Rmin + Rmax)/2

F/F = 3%

Rmax/Rmin = 10.0 (1.00 decade)
Rmax/Rmin = 2.91 (0.46 decade)
Rmax/Rmin = 1.64 (0.22 decade)
Rmax/Rmin = 1.26 (0.10 decade)

Fig. 2. Absolute value |EF | of the relative difference between the exact
and approximate flux calculation in a bin, Eq. (7), as a function of the
flux spectral index α. Two mean rigidity definitions are compared, R×mean
in dim grey and R+

mean in light grey, see Eq. (5), for different bin size
ranges (from 1 decade, solid line, down to 0.1 decade, dotted line). To
guide the eye, the green dash-dotted line shows when the relative differ-
ence is 3%. See text for discussion.

Model error on ratios. We repeat the analysis for the ratio of
two power laws of slope αnum and αden, see Eq. (8). Figure 3
shows colour-coded values of log10(ER). The x-axis is αden −

αnum: for the B/C ratio, this difference ranges from ∼0.2 to 0.7
at high energy, while negative values mimic the decreasing ratio
below a few GV. We show our results for three αden values, where
the lower value (top panels) mimics the flattening of the Carbon
spectrum at low energy, while the higher value (bottom panels)
corresponds to the high-energy slope: ER grows with increasing
αden − αnum and with the data bin size (y-axis); the three rows
show a growing relative difference (from top to bottom) with
αden. Also, as already observed for fluxes, the approximation
Ratio(R×mean) is always better than Ratio(R+

mean): for any given
x−y position in Fig. 3, ER is always smaller in the left panel than
in the right panel. To guide the eye, the green dashed line delimit
the contour for which ER ≡ 3%, with larger uncertainties in red-
dish regions and smaller uncertainties in blueish ones.

For B/C from AMS-02 data, the bin range size goes from
0.08 decade at low rigidity to 0.3 decade for the last few
rigidity bins where the systematic uncertainty reaches 10%
(Aguilar et al. 2016, 2018b)4. From Fig. 3, this translate into
negligible values of ER for almost all rigidities. However, for the
highest rigidity bins, the model error from using Ratio(R×,+mean)
is systematic (same sign) and reaches a maximum of −3% for
αnum − αden & 0.7. In a region where power-law breaks are usu-
ally fitted, the exact calculation is recommended5.

4. Handling cross-section uncertainties

Nuclear cross sections are measured by “external” experiments,
and these measurements can be incorporated as a distribution of

4 In experimental data, larger bins are used to limit statistical uncer-
tainties whenever smaller number of events in the detectors are mea-
sured. For AMS-02 data, this happens at high energy (because of the
power-law behaviour) but also at low energy (because of the geomag-
netic rigidity cut-off).
5 In usine, the keyword IsUseBinRange in the parameter file allows
to calculate the full bin content value assuming a power law for each
isotope within the bin range.
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Fig. 3. Colour-coded relative difference log10(|ER|) between the exact
and approximate ratio calculation in a bin, Eq. (8), as a function of the
numerator and denominator spectral difference, αden − αnum (x-axis),
and as a function of the rigidity bin width, log10(Rmax/Rmin) (y-axis).
For instance, a value of 2 (red) corresponds to a relative difference of
100%, and a value of −1 (blue) to a relative difference of 0.1%. The
left and right panels correspond to calculations using R×mean and R+

mean
respectively, see Eq. (5). The rows correspond to three different values
of the denominator spectral index αden. In each panel, the dash-dotted
green contour delimits regions in which the relative difference is above
or below 3%. See text for discussion.

probability in the χ2 minimisation via nuisance parameters (see
Appendix B): cross sections far from their most probable values
must be penalised in the minimisation, see Eq. (B.6).

The difficulty lies in the characterisation of the uncertainties,
the choice of the nuisance parameters, and assessing the robust-
ness of the procedure. We start by characterising the impact
of cross-section uncertainties on the B/C ratio (Sect. 4.1). We
then present two different strategies for the choice of nuisance
parameters (Sect. 4.2). To assess the successfulness of these two
strategies, we have to rely on the analysis of mock data for many
configurations (Sect. 4.3). We then discuss how well these con-
figurations capture and propagate all cross-section uncertainties
to the transport parameter level (Sect. 4.4).

4.1. Quantifying the impact on B/C ratio

Cross section data uncertainties are typically at∼5−10% level for
inelastic cross sections, and 15−25% level for production cross
sections (Génolini et al. 2018). However, because the data are
sometimes scarce, old, not always consistent with one another, and
sometimes even missing for some reactions, several parametri-
sation of the whole network of reactions exist. A conservative
estimate of the impact of cross-section uncertainties on the B/C
calculation can be based on the scatter observed from using sev-
eral of these parametrisations (see Génolini et al. 2018 for more
details).

For inelastic cross sections, σinel, we use below
B94 (Barashenkov & Polanski 1994), W96 (Wellisch & Axen
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Fig. 4. Impact of different cross-section parametrisations on B/C flux
calculation as a function of rigidity, w.r.t. a reference (denoted Ref. in
the legend). The left and right panels are for inelastic and production
cross sections respectively (see Sect. 4.1). The thick (resp. thin) lines
are for the interstellar (resp. solar-modulated at φForce-Field = 800 MV)
calculation. The red vertical line highlights the first rigidity point of
AMS-02 B/C data.

1996), T99 (Tripathi et al. 1996, 1999), and W03 (Webber et al.
2003). Except for T99, the scaling σHe/σH is taken
from Ferrando et al. (1988). For production cross sec-
tions, σprod, we use W98 (Webber et al. 1998a,b,c), S016,
W03 (Webber et al. 2003), and G17 (Moskalenko et al. 2001;
Moskalenko & Mashnik 2003).

For a given set of propagation parameters, we calculate the
B/C ratio for various parametrisations, and we plot in Fig. 4 the
relative variation with respect to a reference T99 for σinel and
W03 for σprod. The maximum impact of inelastic cross sections
is .3%7 at ∼5 GV (left panel). It slowly decreases to zero at
higher R, because the escape time from the Galaxy decreases
with R while the destruction time remains constant (see, e.g.
Fig. D.1). The maximum impact of the production cross sections
is .10%, and it is equally seen at low and high rigidity (right
panel) because the Boron flux is directly related to its produc-
tion cross section. These results are similar for Models A and B
(not shown) and are independent of the solar modulation level
(compare the black and grey lines in Fig. 4).

Actually, a huge network of reactions is involved in the cal-
culation of any given secondary cosmic ray, making the mod-
elling of uncertainties for each individual reaction a daunting
task. Obviously, this full network is taken into account to calcu-
late B/C, but we model and incorporate cross-section uncertain-
ties for the most relevant reactions only: for the production, 16O
and 12C make ∼70% of the Boron flux via 10,11B (Génolini et al.
2018), and for inelastic interaction, 16O, 12C, and 11B are the
most relevant. The results of Appendix E show that the variation
seen on the B/C ratio from cross-section uncertainties almost
completely originate from these dominant reactions.

4.2. From uncertainties to nuisance parameters

To estimate uncertainties on selected reactions, one could
use a parametric formula to fit the cross-section data and
extract the best-fit parameters and uncertainties to propa-
gate as nuisance parameters. This is the strategy followed by

6 Same dataset as in Webber et al. (2003), but fitted by Aimé Soutoul
(priv. comm.).
7 We wrongly reported a 10% impact in Génolini et al. (2018) because
of an error in the inelastic cross section on He for two parametrisations
(the faulty files have been corrected in usine v3.5).
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Reinert & Winkler (2018) for production cross sections. How-
ever, as already said, the reliability of the data is not always clear,
with many inconsistent data points, from a mixture of very old
and more recent experiments with probably underestimated sys-
tematics (Génolini et al. 2018). All these unknowns most cer-
tainly break down the statistical meaning of the χ2 values and
uncertainty determination of these nuclear data. We assume here
that the cross-section uncertainties are fully captured by exist-
ing parametrisations (Sect. 4.1)8. It is difficult to argue which
of the two above approaches gives the most realistic description.
Indeed, the values and uncertainties on the cross-section data and
the models could be fully, partly, or not at all correlated, which
would increase or decrease the uncertainty on the calculated B/C
ratio (see the discussion in Génolini et al. 2018). Without new
cross-section data, the degree of belief one can have in the mod-
elling of cross-section uncertainties can hardly be improved.

Our approach probably allows for larger uncertainties than
those taken in Tomassetti (2017) and Reinert & Winkler (2018),
which also focus on a subset of reactions only. However,
we recall that the uncertainties on this subset must ‘emulate’
the total uncertainties from the whole network of reactions (see
the discussion in Appendix E). To go beyond qualitative argu-
ments, we inspect in Sect. 4.3 whether the degrees of free-
dom used to model cross-section uncertainties are conservative
enough not to bias the determination of the transport parame-
ters. Before doing so, the next two paragraphs discuss two ways
to model cross-section uncertainties as nuisance parameters.

4.2.1. Normalisation, scale, and slope (NSS)

Technically, how to choose nuisance parameters so that they
enable to move from one parametrisation to another? The lat-
ter are shown (solid lines) in Fig. 5, with σinel (resp. σprod) in
the left (resp. right) panels, and there is no obvious scaling for-
mula between the curves. A possibility is to start from a refer-
ence cross section and apply several simple (uncorrelated with
some non-commutative) transformations:

Normalisation: σ→ σ × Norm. (9)
Scale: Ek/n → Ek/n × Scale (10)

Slope: σ(Ek/n)→


σ(Ek/n)if Ek/n ≥ Ethresh.

k/n

σ ×

 Ek/n

Ethresh.
k/n

Slope

otherwise.

(11)
This set of transformations is denoted NSS in the following.

It is our first option to generate nuisance parameters for cross-
section uncertainties. To better visualise how NSS change cross
sections, we draw 1000 values for each of the three uncorre-
lated NSS parameters (Norm., Scale, and Slope), and then show
in Fig. 6 the median, 1σ, and 2σ contours from the associated
1000 realisations of σNSS/σref . Whereas the normalisation and
the low-energy slope changes are independent of any reference
cross section (left and right panels), the energy scale bias is

8 These parametrisations are based on fits to the same inhomogeneous
sets of cross-section data, but the authors used different approaches and
assumptions to fit them. For instance, the GALPROP parametrisation
is renormalised to data whenever available, whereas other data sets are
based on semi-empirical formulae designed to give an good fit over all
reactions. The former parametrisation is expected to better represent
the data, but by construction it sometimes shows non-physical energy
dependences (step-like behaviour), whereas the other parametrisations
do not.
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Fig. 5. Models (as listed in Sect. 4.1) and range of cross sections (quan-
tiles corresponding to median, 68%, and 95% CLs) generated from a
reference cross section biased by Gaussian distributed nuisance param-
eters (as gathered in Table 1). The reactions showed correspond to the
dominant ones discussed in Sect. 4.1, for inelastic (left column) and
production (right column) cross sections.

strongly dependent on it (middle panel). Indeed, the reference in
Fig. 6 is an inelastic cross section whose energy dependence has
a low-energy peak, a dip, and a second smaller peak (see Fig. 5):
shifted to the right-hand side and divided by the unscaled one, it
gives a series of three bumps.

For each reaction, the NSS nuisance parameters are chosen
so that σNSS/σref ± 1σ – calculated from Gaussian distributed
samples of (µ, σ)Norm, Scale, Slope – encompasses the various cross-
section parametrisations. This is shown in Fig. 5 for inelas-
tic (left panels) and production (right panels) cross sections,
with grey lines showing the median (dashed), 1σ (dotted),
and 2σ (dash-dotted) envelopes of σNSS/σref ; solid coloured
lines are the literature parametrisations. The corresponding NSS
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Fig. 6. Median, 1-σ, and 2-σ for the distribution of σNSS/σref(Ek/n)
values, from 1000 Gaussian distributed normalisation values (9),
energy scale (10), and slopes (11) with respective mean and variance
(µ, σ)Norm = (1, 0.05), (µ, σ)Scale = (1, 0.2), and (µ, σ)Slope = (0, 0.02).

parameters are gathered in Table 1, and they serve as nuisance
parameters in the analysis below9. In order to keep as fewest
nuisance parameters as possible (not to slow down too much the
minimisation procedure), only a normalisation and energy scale
is applied to inelastic cross sections, whereas a normalisation
and a slope suffices to capture the range covered by production
cross-section parametrisations.

4.2.2. Linear combination (LC)

Our second and more straightforward option is to define cross
sections as a linear combination of the available cross-section
parametrisations,

σLC =
∑

i

Ci × σi, (12)

where the index i runs on the parametrisations shown in Fig. 5.
The sum of the Ci coefficients must be close to 1, so that we natu-
rally recover each parametrisation when only one Ci is non-null.
This LC allows to combine the different shapes (energy depen-
dences) of the various cross sections, which is key for the deter-
mination of the transport parameters (see next section). To allow
for possible normalisation systematics, we apply a loose con-
straint on the sum of the Ci coefficients,∑

i

Ci = µuser
C ± σuser

C . (13)

To be able to compare this approach to the NSS approach above,
we set (µC , σC)inel = (1, 0.04) and (µC , σC)prod = (1, 0.15) to
match the spread set on normalisation parameters in Table 1. The
constraint (13) is accounted for as a penalty in the minimisation,
that is an additional term in the χ2,

χ2
LC−penalty =

(
µC −

∑
i Ci

σC

)2

. (14)

The Ci parameters are taken to be flat in [−0.5, 1.5] and are
forbidden to wander outside this range.

4.3. Mock data: generation and configurations

We are almost ready to address some important questions related
to cross-section uncertainties. How do they propagate to trans-
port parameter uncertainties? Can we recover the true values of
the transport parameters using “wrong” values for the cross sec-
tions? However, the only way to answer these questions is to
analyse controlled data, whose input ingredients and parameters
are known.
9 See usine v3.5 documentation for the syntax of the NSS parameters.

Table 1. Values of µ andσ for Gaussian distributed nuisance parameters
for cross sections listed.

Reaction
(max. impact on B/C)

Norm. Scale Slope Ethresh.
k/n [GeV/n]

µ | σ µ | σ µ | σ µ | σ
16O+H (1%) 1.030 | 0.04 0.7 | 0.5 – –
12C+H (3%) 1.015 | 0.04 0.8 | 0.5 – –
11B+H (2%) 0.980 | 0.04 0.7 | 0.4 – –
16O+H→11B (15%) 0.96 | 0.18 – 0.00 | 0.15 5 | 0.
16O+H→10B (9%) 0.93 | 0.10 – 0.00 | 0.15 5 | 0.
12C+H→11B (12%) 1.10 | 0.12 – 0.03 | 0.15 8 | 0.
12C+H→10B (14%) 1.07 | 0.15 – 0.00 | 0.15 5 | 0.

Notes. Top rows are for inelastic cross-section parameters defined w.r.t.
T99, while bottom rows are for production cross sections defined w.r.t.
W03. For information purpose, the numbers in parenthesis correspond
to the maximum estimated uncertainties the given reaction has on B/C
(as read from Figs. E.1 and E.2). From left to right, the nuisance
parameters correspond to a normalisation, energy scale, and a modifi-
cation of the slope below an energy threshold Ethresh.

k/n . Unused param-
eters are indicated by “−”. Parameters with σ = 0 amount to fixed
parameters.

4.3.1. Mock data generation

To generate simulated data as close as possible to real data, we
proceed as follows. Firstly, select the model (e.g. 1D model here)
and its input ingredients (e.g. a specific cross-section dataset).
Secondly, select a dataset to fit (e.g. B/C AMS-02 data) and per-
form the fit. Thirdly, use the best-fit model to simulate data close
to the real data in the following way: (i) interpolate model values
at data energies, ymodel

k (edata
k ); (ii) draw at each edata

k a value from
a normal distribution G(0, 1), and use the latter and σdata

k (data
error) to form the mock data values

ymock
k = ymodel

k ×

1 + G(0, 1)
σdata

k

ydata
k

 ;

(iii) repeat as many times as necessary to obtain the desired num-
ber of simulated data. Lastly, analyse the mock data using the
same setup or varying the input ingredients (depending on what
is studied, see below).

4.3.2. Mock data configurations

We list and label the many cases considered below: in the forth-
coming figures, each configuration is associated with a unique
colour- and line-style, as recapped in Table 2.

Propagation parameters (×2)10: each analysis is repeated for
Model A (free parameters K0, δ, ηt, Va, and Vc) and Model B
(free parameters K0, δ, Rl, and δl), see Sect. 2.2. We do so
because the two models have different correlations between their
parameters and cross-section uncertainties may impact them dif-
ferently. For instance, reacceleration smooths spectral features,
and it is present in Model A only.

Cross sections to generate and fit mock data (×2): In the
unbiased case, the cross sections in the propagation model used
to generate and fit mock data are the same (T99 for σinel and
W03 for σprod). In the biased case, mock data are still fit with

10 Reference values are those of Sect. 5. They are used for all mock
configurations to allow for a more compact presentation of the results
in Figs. 7 and 8. Thus, mock B/C data do not always represent the mea-
sured one (not shown), but this does not impact our conclusions.
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Table 2. Summary of mock data configurations used to test cross-
section nuisance parameters in Sect. 4.3.

Configs Key Parameters or description

Propag. Model A K0, δ, Rl, and δl
Model B K0, δ, ηt , Va, and Vc

Mock & fit (?) Unbiased σT99 (W03)
inel (prod) for mock and fit

Biased σW97 (G17)
inel (prod) mock, σT99 (W03)

inel (prod) fit

Nuisance (?) NSS (†) (solid) µ|σNorm,Scale for σ(16O, 12C, 11B)+H
inel

and

µ|σNorm,Slope for σ(16O, 12C)+H→11,10B
prod

LC (‡) (dashed) CT99,W97 for σ(16O, 12C, 11B)+H
inel

and

CW03,G17 for σ(16O, 12C)+H→11,10B
prod

Fit config. No nuis. (black) Transport parameters only
Inel. (blue) Transport + σinel nuisance

Prod. (orange) Transport + σprod nuisance
Inel.+Prod. (green) Transport + σinel, prod nuisance

Notes. The 1st column lists configuration names. The 2nd column pro-
vides keys (for each configuration tested) used in legends of Figs. 7–9;
keys represented with specific line styles (solid or dashed) and colours
(black, orange, blue, and green) are highlighted in parenthesis. The 3rd
column gives synthetic information related to keys (see main text for
details). (?)To generate mock data and analyse them (Mock and fit), the
cross-section values in the model are set to the indicated parametri-
sations for all reactions in the network. For nuisance parameters
(Nuisance), only the cross-section values for the specified reactions are
modified. (†)See Eqs. (9)–(11) and Table 1. (‡)See Eq. (12).

T99 and W03, but they were generated from a different set of
cross sections (W96 for σinel and G17 for σprod)11.

Type of nuisance parameters to fit mock data (×2): we either
use “normalisation, scale, and slope” (NSS) nuisance parame-
ters, that is µ|σNorm,Scale,Slope values prescribed in Table 1, or lin-
ear combination (LC) nuisance parameters, that is Ci coefficient
weighting various cross-section parametrisations with normalisa-
tion uncertaintiesσCi = σNorm (see previous section and Eq. (12)).

Nuisance parameters to fit mock data (×4): we have four types
of runs to assess the impact of adding more and more nuisance
parameters in the analysis, labelled No nuis. (transport parame-
ters only), Inel. (free transport parameters and nuisance forσinel),
Prod. (same but σprod instead), and Inel.+Prod. (combined).

4.4. Results of the mock data analysis

The analysis starts with the generation of 1000 mock data (see
above), based on given values of the transport parameters, and a
given choice of cross-section parametrisations. We then perform
a χ2 analysis on each mock data and store the best-fit parameters
and the associated χ2

min value12. By construction, χ2
min/d.o.f. ∼ 1

for our mock data, so that from the one-dimensional distribution
of the parameter values and their correlations, we can reconstruct
1σ and 2σ confidence intervals. Also, comparing the parameter
distribution and their “true” input value allows to assess the suc-
cessfulness of our procedure.

11 We emphasise that cross-section values for all reactions, not just the
dominant ones (see Sect. 4.1), are taken from the other parametrisations.
12 Statistical uncertainties only (taken from real data) are used in our
analysis, in order to disentangle the issue of cross-section uncertainties
and more involved data uncertainties (discussed in Sect. 5).
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Fig. 7. Reconstruction of 1σ contours (68% confidence level) from the
analysis of 1000 mock data for Model A (top panel) and Model B
(bottom panel), for the unbiased case (cross sections for the analy-
sis are the same as the cross sections used to generate mock data).
For display purpose, the 2D probability distribution functions are esti-
mated using a Gaussian Kernel (default method to define the bandwidth
of gaussian_kde in scipy python library); the irregular shapes are
related to statistical fluctuations. The colour code is related to the nui-
sance parameters used and the line style to the type of nuisance param-
eters (see Table 2). The “+” symbols represent true values. See text for
discussion.

4.4.1. Unbiased case: Sanity check

Figure 7 shows the 1σ contours (68% confidence level) from the
2D probability distribution functions of the transport parameters,
with and without nuisance parameters in the fit. We underline a
few features in these plots:

Contours from statistical errors only: black solid lines are 1σ
contours from the analysis without nuisance parameters. Their
size and shape depend on the level and energy dependence of the
data statistical error (blue line of Fig. 10). Tight correlations are
seen on K0 and δ for both models. As expected for the unbiased
analysis (i.e. same cross sections used to generate and fit mock
data), the contours encompass the true value of the parameters
(“+” symbols).
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Fit with σinel and σprod nuisance parameters: blue lines (resp.
orange lines) show the 1σ contours from the fit with σinel (resp.
σprod) as nuisance parameters. The size of the contours is not
too strongly impacted by the cross-section nuisance parame-
ters, because the minimum of χ2 is left unchanged (not shown)
and the additional degrees of freedom provided by the nui-
sance parameters are “unused”. Nevertheless, the contours are
deformed differently, because inelastic and production cross sec-
tions impact differently the B/C ratio – see for instant the blue
(σine) and orange (σprod) contours for K0 vs. Rlo in Model B.
The fit with combined nuisance parameters (green lines) gives
contours that encompass both the previous ones. The fine details
depend on the Model (A or B) and the type of nuisance (NSS in
solid and LC in dashed lines) used.

From these results alone (unbiased case), one cannot con-
clude on the impact of cross-section uncertainties on the trans-
port parameters. In fact, the unbiased case is just an elaborate
sanity check. It confirms that, in a scenario where cross sections
are perfectly known, adding cross-section uncertainties has only
a marginal effect.

4.4.2. Biased case: uncertainties and biases on transport
parameters

To go further, we repeat the analysis fitting mock data with cross
sections that differ from the ones used to generate them, that is
biased case (see Table 2). We show in Fig. 8, from top to bottom,
the χ2

min/d.o.f. distribution and the 1D probability distribution
function of all transport parameters. For readability, we only
show the results for the No nuis. (black lines) and Inel.+Prod.
(green lines) cases. In this figure, solid (dashed) lines correspond
to NSS (LC) nuisance type.

Impact on goodness of fit (top panels): the black lines, which
correspond to a fit with the transport parameters only (No nuis.),
show that using wrong cross sections can lead to χ2

min/d.o.f. val-
ues larger than one. Taken at face value, one would conclude that
the model is excluded. Adding cross-section nuisance parame-
ters – which encompass the true cross-section values at 1σ –
allows to recover χ2

min/d.o.f. ∼ 1 (green lines). The LC nuisance
parameters (green dashed lines) fare slightly better than NSS
ones (green solid lines): this is understood as the “true” cross-
section values can be reached in the LC case, whereas they can
only be approached in the NSS case.

Biased transport parameters (remaining panels): without nui-
sance parameters (black lines), the transport parameters are
strongly biased, up to several σ away from their true value (ver-
tical dashed line). Using nuisance parameters (black vs. green
lines) has two effects: it enlarges the probability distribution
function of the transport parameters, and it shifts the distribution
towards the true value. Overall, the two schemes allow to recover
unbiased parameters. A mismatch is observed for the strongly
correlated δ and K0 parameters when using NSS in Model B.
The latter is particularly sensitive to any small energy-dependent
difference in the cross-section values as it directly reflects on the
calculated B/C. On the other hand, in Model A, this difference
can be smoothed out by reacceleration.

We finally comment on the fact that the LC case does not
recover fully unbiased transport parameters. Whereas nuisance
parameters enable the cross sections to match their “true” val-
ues (the one used to generate the data), they can only do so for
the selected four production cross sections and three inelastic
reactions. The remaining ones are different from those used to
generate the mock. This “reaction network” effect explains the
observed residual biases.

Model A (biased) Model B (biased)
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Fig. 8. Distribution of best-fit values (χ2
min, then transport parameters)

from the analysis of 1000 mock data for Model A (left panel) and B
(right panel), for the biased case (cross sections for the analysis differ
from those used to generate mock data). For display purpose, 1D proba-
bility distribution functions are estimated using a Gaussian Kernel. The
line style and colours indicate the type and configuration of nuisance
parameters used (see Table 2). The vertical dashed lines represent true
values. See text for discussion.

4.4.3. Biased case: posterior on nuisance parameters

We show in Fig. 9 violin plots for the nuisance parameters
obtained after the fit. We only show these parameters for the
Inel.+Prod. configuration, that is the analysis in which we fit
mock data with transport parameters plus production and inelas-
tic cross-section nuisance parameters (see Table 2). The rows in
Fig. 9 show, for the four production and three inelastic reactions
(see Sect. 4.1), the values of the associated nuisance parameters
(two per reaction). It is interesting to show the results for the
unbiased (resp. biased) case, in red (resp. blue), corresponding
to the use of the same (resp. different) cross sections to generate
and fit mock data. Let us comment on these distributions.

NSS analysis (left panels). the nuisance parameters for the
NSS analysis are a normalisation and energy scale parameters
for production cross section, and a normalisation and low-energy
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Fig. 9. Nuisance parameters from the analysis of 1000 mock data
for Model A (top panels) and Model B (bottom panels). The nui-
sance parameters are shown reaction by reaction (rows: production then
inelastic cross sections), each reaction having two nuisance parameters
(see list in Table 2). The number in parenthesis beside the reaction cor-
responds to its overall impact on the B/C calculation, as reported in
Table 1. We show for the NSS analysis (left panels) normalised and cen-
tred parameters, whereas LC analysis (right panels) are shown between
zero and one. We use violin plots to highlight the probability density of
the parameter (y-axis) at different values (x-axis), and our violin plots
include a marker for the median (black “+” symbol) along with the 1σ
range of the parameter (thick black line). In order to directly compare
the distribution of the nuisance parameters for the unbiased and biased
analyses, we superimpose them on the same line in red and blue respec-
tively. See text for discussion.

slope for inelastic cross sections (see Eqs. (9)–(11) and Table 1).
The parameters are centred and normalised (to their σ value) so
that on the x-axis, unbiased parameters are expected to be cen-
tred on zero and between −1 and +1 (1σ range): (i) in the Unbi-
ased analysis (red), as expected, the distributions are centred on
zero and have overall a very small width; (ii) in the Biased anal-
ysis (blue), the distributions are now offset, because nuisance

parameters are used to improve the fit. Almost all parameters
fall within their 1σ value, indicating that the range of variation
for these nuisance parameters was well calibrated in Sect. 4.2.

Actually, we tried different values of the nuisance parameters
(not shown): with a smaller range, the “true” cross sections can-
not be recovered as the nuisance parameters would need to be
several σ away from their central value, which would penalise
the χ2. In turn, this biases the transport parameters (discussed
in the previous section): the mild bias that was observed for the
NSS case (w.r.t. to the LC case) is related to the fact that µslope is
almost 2σ away in Fig. 9.

LC analysis (right panels). nuisance parameters for the LC
analysis are the coefficients C j

i (see Eq. (12)), where the index
i runs on the cross-section parametrisation enabled in the analy-
sis, and j runs on the various reactions considered. These coef-
ficients typically vary from 0 (if the parametrisation is unused)
to 1 (if the cross section is dominant in the LC). In principle,
we should have as many coefficients as the number of avail-
able cross-section parametrisations. However, the inspection of
Fig. 4 shows that some parametrisations are, up to a normalisa-
tion, very close to some others. As a result, when more than two
parametrisations are considered as nuisance (not shown), there
are several possible combinations to reproduce the original cross
section (used to generate the mock): the χ2 function has several
local minima and minuit has difficulties to find the true mini-
mum13. That is why we chose only two parametrisations in our
analyses (as listed in Table 2) and the distribution of values of
the nuisance parameters are shown in the right panels of Fig. 9:

In the Unbiased analysis (red), cross sections used to gen-
erate and analyse mock data are T99 for σinel (resp. W03 for
σprod), so that we should recover CT99 ≈ 1 (resp. CW03 ≈ 1) for
all inelastic (resp. production) cross sections and 0 for the other
Ci. This is what is observed for all reactions. The parameters for
inelastic cross sections (three bottom rows) display overall very
broad distributions: we recall that the latter only have a small
impact on the B/C calculation (.3%), so that a fit with data with
similar uncertainties will not be sensitive to them. In the Biased
analysis (blue), the starting cross sections to generate mock data,
for all reactions in the network, are W96 for σinel and G17 for
σprod, and we observe CW96 ≈ 1, CG17 ≈ 1, and Cothers ≈ 0, as
expected.

4.4.4. Conclusions on the impact of cross-section
uncertainties

We have seen that assuming wrong cross sections can strongly
bias the model fit, and thus bias the deduced transport parameters.
Starting from the wrong cross-section values, we showed that nui-
sance parameters on a limited number of reactions allow to mostly
recover the true values of the transport parameters. However, the
procedure is not perfect owing to “reaction network” effects, that
is the fact that we only use as nuisance a small, though representa-
tive, sample of all the reactions involved. The LC parameters fare
slightly better than NSS parameters, but this is only true because
LC parameters always contain “true” cross sections of the analy-
sis. In real life, we do not know what are the real cross sections,
and there is no guarantee that the LC approach would still fare
better than the NSS one.
13 There are more involved methods to find it, but this would further
complicate the analysis for no obvious gain on the results. What matters
is the capability to recover the true cross section with one combination
of Ci, not with several.
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We want to stress that the above procedure is not even as
straightforward as presented. There was, to some extent, some
fine tuning done on the range chosen for the nuisance param-
eters to best recover our mock data. Although we were guided
by the spread between the cross sections (see Fig. 5), we had
somehow to extend the range of some parameters in succes-
sive tests. In particular, for NSS, the low-energy slope was
taken larger than what was strictly required from the inspec-
tion of the spread (see Fig. 5). However, a posteriori, this made
sense, because not only the normalisation but also the slope of
the cross-section reaction matters in the analysis (especially for
Model B), and a larger slope parameter was needed to recon-
cile the energy-dependences of W03 and G17 parametrisations.
Even for LC, which looks less problematic, there were some
issues. We already underlined the pitfalls (in terms of minimisa-
tion with minuit) of having too similar cross-section parametrisa-
tions in the linear combination. It was not mentioned earlier, but
the allowed range set for the LC coefficients also matters: using
[0, 1.5] instead of [−0.5, 1.5] affects the distribution of the nui-
sance parameters shown in Fig. 9, although the transport param-
eters are only very mildly affected.

Furthermore, the reader should keep in mind that regarding
(i) the importance of cross-section uncertainties and (ii) which
reactions should be used as nuisance, the conclusions strongly
depend on the data uncertainties assumed. Indeed, the above
analysis was based on AMS-02-like statistical uncertainties, that
is an extreme and too conservative situation for the data. This
was chosen in order to demonstrate the proof of principle of our
approach. Adding systematics, which are dominant over most of
the energy range in AMS-02 data, will obviously make cross-
section uncertainties less impacting and the residual biases on
transport parameters less severe. Accordingly, with larger uncer-
tainties, the number of reactions to include as nuisance is also
decreased: there is no gain in adding cross sections whose impact
on B/C is smaller than the data uncertainties, only issues. Indeed,
unnecessary reactions increase the run time of minimisations,
and worse, these reactions create multiple minima that are harder
to deal with. Part of these issues would be alleviated by using
more evolved sampling engines, like a Markov Chain Monte
Carlo (e.g. Putze & Derome 2014), but it remains better to use
as few reactions as possible.

To assess the realistic impact of cross sections on the B/C
analysis, we could repeat the above analysis with mock data
accounting for statistical and systematic uncertainties. However,
it is more interesting to illustrate how real data analysis should
proceed. This is presented in Sect. 6, but before doing so, we
have to discuss how to handle systematic uncertainties in the B/C
analysis.

5. Handling systematics from experimental data

Almost all, if not all CR phenomenological studies, account for
data uncertainties as the quadratic sum of statistical and sys-
tematics uncertainties. Doing so ignores any possible energy
correlations for the systematic errors. This has two important
consequences on the model best-fit analysis. For instance, con-
sidering two extreme cases, fully uncorrelated and fully correlated
uncertainties, corresponds to adding quadratically the uncertain-
ties or to allow for a global normalisation of the data (or more pre-
cisely to an energy-dependent normalisation related to the energy
dependence of the uncertainty). Starting from the same uncertain-
ties, aχ2 analysis on the two different cases would lead to a smaller
χ2

min in the former than in the latter case, and possibly to different
values for the best-fit parameters of the model.
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%
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Fig. 10. AMS-02 errors for B/C data. Solid lines correspond to the
errors provided in Aguilar et al. (2018b), namely statistical, acceptance,
scale, and unfolding (the step-like evolution is artificial and related to
the rounding of the values provided in the table). The orange lines corre-
spond to a further split of the acceptance errors: normalisation (norm.),
low energy (LE), and residual (res.). See text for details.

A better approach is to use the correlation matrix of error in
the χ2 analysis (see Appendix B). However, the AMS-02 collab-
oration does not provide this matrix, and we have to rely on the
provided information to build one. We then inspect how sensitive
the analysis is on our choices.

5.1. Origin of B/C systematic errors

The errors on the B/C ratio measured by AMS-02 are described
in Aguilar et al. (2018b). The different contributions obtained
from table VI of the Supplemental Material of Aguilar et al.
(2018b) are shown in Fig. 10 as thick solid lines.

As explained in Aguilar et al. (2018b), the unfolding error
(Unf.) corresponds to the contribution coming from the uncer-
tainty on the rigidity resolution function and the unfolding
procedure. The rigidity scale error (Scale) is the sum of the
contribution from residual tracker misalignment and from the
uncertainty on the magnetic field map measurement and its tem-
perature time-dependent correction. The acceptance error (Acc.)
is the sum of different contributions: survival probability of
Boron and Carbon in the detector, Boron contamination from
heavier nuclei fragmentation (mainly carbon), and uncertainty
on the “data/Monte Carlo” corrections to the Boron and Carbon
acceptances.

5.2. Building the covariance matrix: correlation length

To properly take into account AMS-02 data uncertainties, one
needs to define the covariance matrices Cα for α=(Stat., Unf.,
Scale, Acc.), and minimise the χ2 defined by Eqs (B.1–B.2).
As these covariance matrices are not provided explicitly in
Aguilar et al. (2018b), we start from the covariance matrices of
relative errors Cαrel, estimated from the following expression:

(Cα
rel)i j = σαi σ

α
j exp

(
−

1
2

(log(Ri/R j)2

(lαρ )2

)
, (15)

with (Cα
rel)i j the i j-th element built from the relative errors σαi

and σαj at rigidity bins Ri and R j, and where the parameter lαρ
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is the correlation length associated with the error α (in unit of
decade of rigidity).

For this study, we set the covariance matrix to be (Cα)i j =
(Cαrel)i j × modeli × model j (see Appendix B for a justification),
and we set the correlation lengths lαρ to the following values: (i)
lStat.
ρ = 0 because the number of events on each bin are inde-

pendent; (ii) lScale
ρ = ∞ since the uncertainty on the rigidity scale

affects all rigidities similarly; (iii) lUnf.
ρ = 0.5 because errors from

the unfolding procedure and from the rigidity response function
affect intermediate scales. As seen on Fig. 10, this error is sub-
dominant compared to Stat. and Acc. errors, and we checked
that the results are not affected by our choice for lUnf.

ρ ; (iv) The
value of the correlation length for the Acc. error is more crit-
ical, because this error dominates the systematic error and it
cannot be easily defined. The dependence of χ2

min/d.o.f. and of
the fitted parameters with this correlation is studied below for
different values lAcc.

ρ = 0.01 . . . 3, which cover the range from
lower than the bin size (fully uncorrelated) to the full range (fully
correlated).

As the acceptance error is a combination of errors which are
expected to have a rather small correlation length (“data/Monte
Carlo” corrections) and others which are expected to have a
large correlation length (cross-section normalisation), one can
try to decompose this error into different contributions with dif-
ferent correlation lengths. In particular, the rise of the accep-
tance error at low rigidity is not expected to be correlated with
larger rigidities: it is related to the rapid change of the acceptance
at low energy mostly because of energy losses in the detector.
One can therefore construct a better description of the covari-
ance matrix by splitting acceptance errors in three independent
parts: (i) a normalisation error, Acc. norm. (dash-dotted orange
line in Fig 10), with a large correlation length (lρ ∼ 1.0); (ii) a
rise at low rigidity, Acc. LE (dotted orange line), with an interme-
diate correlation length (lρ ∼ 0.3); (iii) a residual error, Acc. res.
(dashed orange line), defined so that the quadratic sum of the
three contributions equals the full acceptance error. This last part
corresponds mainly to “data/Monte Carlo” corrections and the
rigidity-dependent parts of other acceptance errors. Its correla-
tion length is not well defined and left free in the following.

Near the completion of this article, we found out that
Cuoco et al. (2019) also proposed to use a correlation matrix of
errors to analyse AMS-02 data. However, while these authors
focus on p and use a single correlation length fit on the data, our
analysis relies on several correlations lengths whose values are
motivated by physics processes in the AMS-02 detectors.

5.3. Parameter and goodness-of-fit dependence on
correlation length

We have built two different covariance matrices, which partly
depend on an unknown correlation length lAcc.

ρ . We can now
perform a χ2 analysis with minos to extract robust errors on
the parameters. The analysis is repeated on the two propagation
model configurations A and B introduced in Sect. 2.1.

The top panels of Fig. 11 show the values obtained for
χ2

min/d.o.f. and best-fit parameters as a function of lAcc.
ρ for mod-

els A (left) and B (right) and for the full acceptance error (blue
circles) and the split acceptance error (orange circles). The B/C
from the best-fit model along with AMS-02 data are shown on
the bottom panels of Fig. 11 for the same models, that is for the
full (blue lines, top) and split (orange lines, bottom) acceptance
errors. As expected, χ2

min/d.o.f. strongly depends on lAcc.
ρ for both

models. The best-fit parameters are stable (i.e. fluctuate within
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Fig. 11. Top panels: values obtained for the χ2
min/d.o.f. and the fit param-

eters (and uncertainties) as a function of lAcc.
ρ for propagation models

A (left) and B (right) and for the full acceptance error (blue) and the
split acceptance error (orange). In the case of split acceptance error, lAcc.

ρ

corresponds to the correlation length of the Acc. res. contribution only.
Bottom panels: comparison of best-fit B/C (lines) and AMS-02 data
(symbols) for the above models and configurations, i.e. full (blue lines,
top) vs. split (orange lines, bottom) acceptance errors. Only a sample of
correlation lengths are shown (0.015, 0.1, and 1 decade).

errors estimated from the fit) for low and large lAcc.
ρ but undergo

a rapid jump around lAcc.
ρ = 2 for model A when one uses the

full acceptance error description. These features are problematic
since it means that the best-fit parameters are very sensitive to
the choice of lAcc.

ρ . In addition, with the full acceptance error, the
best-fit obtained for model A and lAcc.

ρ ≈ 1 does not pass through
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the data points as featured by the upper-left plot of the bottom
panels in Fig. 11. This is explained as follows: with a large cor-
relation, the cost on the χ2 for a global deviation between data
and model is moderate and thus accepted, and would correspond
to a global bias in the measured B/C. Although correct from a
mathematical standpoint, this interpretation is disputable given
our crude modelling of the systematic errors. This unwanted
behaviour is absent when we use the split acceptance error
modelling.

From the above results, we conclude that the best way
to handle the systematic errors is to use the split acceptance
errors approach. Indeed, not only does it provide a more real-
istic description of the acceptance systematic error, but it also
leads to more stable results w.r.t. the values taken for lAcc.

ρ . In
this approach, lAcc.

ρ = 0.1 is a reasonable choice which gives a
χ2

min/d.o.f. ∼1 and conservative errors for the fit parameters.

6. Joint impact of cross-section uncertainties and
data systematics

The previous section provides us with a realistic treatment of
the data errors. In this light, we can revisit the impact of
cross-section uncertainties on the best-fit parameters and errors
(Sect. 4.2). Indeed, we showed in the most challenging case
(statistical only in the data) that NSS and LC nuisance param-
eters enable to recover the correct transport parameters when
starting from the wrong cross sections, whereas systematic errors
dominate over a wide dynamical range (see Fig. 10). Neverthe-
less, because neither NSS nor the LC approach is perfect (see
discussion in Sect. 4.4.4), it is important to test both to ensure,
as a minimal consistency check, that consistent values of the
transport parameters (within their uncertainties) are obtained in
both approaches. For this purpose, we analyse the “real” B/C
data using the covariance matrix of errors (see previous section),
with both NSS and LC approaches, and varying the number of
reactions used as nuisance parameters. This allows us to validate
our strategy for the actual data, as used in the companion paper
(Génolini et al. 2019) for the B/C physics analysis. It also exem-
plifies how an analysis should be carried out in the methodology
we propose.

Our results are presented in Fig. 12, in which we display
the best-fit parameters and errors of Model A (top) and Model
B (bottom) for an increasing number of reactions used as nui-
sance (from left to right). The four production cross sections are
introduced by order of importance with respect to their contri-
bution to the secondary boron. We then introduce the inelastic
cross sections of 11B; we have checked that the impact of other
inelastic cross sections is negligible. We recall that we can start
from different parametrisations of the full network of cross sec-
tions: for production cross sections, we either start from G17)
or W03), whereas we only consider T99 for inelastic ones (their
impact is negligible, see below). Several comments are in order
about these results.

Firstly, for both Model A and B, even without nuisance
parameters (no nuisance on x-axis), the best-fit parameters for
the two cross-section cases considered (W03 and G17) are
consistent within errors. This means that the covariance matrix
mitigates most of the errors coming from using the wrong cross
sections (see discussion in Sect. 4.3). This would not have been
the case (not shown) using simply the statistical and system-
atic uncertainties in quadrature. This further demonstrates the
importance of having the correct covariance matrix of errors. It
also emphasises the fact that energy correlations on intermediate
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Fig. 12. Evolution of the best-fit parameters and asymmetric 1σ errors
(extracted from minos), increasing the number of nuclear cross-section
reactions used as nuisance parameters (from left to right on the x-axis);
Model A (top) and B (bottom) are shown. For every additional reaction
as nuisance, four different fits are performed: starting either with G17)
or W03 parametrisations for the production cross sections; using either
CL or NSS for the implementation of nuisance parameters. The black
dashed line in the χ2

min panel corresponds to the threshold χ2
min/d.o.f. =

1. See text for discussion.

scales (one decade) in data uncertainties could relax, to some
extent, the need for very accurate cross sections.

Secondly, when adding nuisance parameters (NSS or LC),
the consistency between the parameters is improved, in partic-
ular for δ (in both models A and B). With more degrees of
freedom, this translates into better χ2

min values and larger uncer-
tainties on the parameters. The latter is only significant for
Model B, and the lack of increase in Model A probably comes
from the fact that it has many degenerate “low-energy” degrees
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of freedom (Va, Vc, ηT ) which already make the uncertainties
maximal. We stress that the improvement depends on the initial
set of cross sections used and method, but overall, for this spe-
cific analysis, with the covariance matrix of error dominating the
error budget, only a few reactions need to be taken into account.

Thirdly, focusing on the fit quality (χ2
min values), we see

that G17 systematically gives a better fit than W03. In the LC
approach, the productions cross section initially set to W03 also
choose to go to G17. This is probably not too surprising as G17
is expected to better match existing cross-section data, whereas
W03 is based on a global semi-empirical fit to these same data
(see Sect. 4 and Génolini et al. 2018).

Based on these results, the recommendation for the B/C anal-
ysis, is to start from G17 production cross sections, and to use
the NSS nuisance parameters. The latter allow for more freedom
than LC ones, so that slight improvements are still possible when
including several cross-section reactions as nuisance (though
these improvements are not very important statistically in this
case). These recommendations are followed to define benchmark
models in our companion paper (Génolini et al. 2019), in which
the values of the parameters shown in Fig. 12 are discussed and
interpreted.

7. Recommendations and conclusions

Faced with the challenges of interpreting cosmic-ray data of
unprecedented accuracy, we have refined the methodology to
properly account for all uncertainties (model, ingredient, and
data) in the fit to the data. The proposed methodology was exem-
plified on the analysis of the AMS-02 B/C ratio.

The first step was to ensure a model precision higher than
the data uncertainty: we inspected in detail the numerical stabil-
ity of the model and the impact of energy boundary conditions.
Some low-energy boundary conditions fare better than others,
but setting any of them to MeV values ensure a good preci-
sion of the model calculation above a few hundreds of MeV n−1.
When using a Crank–Nicholson approach to solve the second-
order differential diffusion equation on energy, we have checked
its precision and provided a criterion to numerically converge
to the correct solution when Va → 0 (i.e. if no reacceleration,
corresponding to a first-order differential equation). We have
also quantified the systematics from using the point-estimate cal-
culation of a flux or ratio compared to the correct calculation
integrating the model over the energy bin. While the discussion
is partly specific to the model used and the species inspected, our
considerations are generic. Obviously, the precision tests should
always be repeated and compared to the data uncertainty for
other species, models, and data considered.

The second step was to handle properly cross-section uncer-
tainties. We detailed the impact of the most important reactions
on the B/C ratio (.3% for inelastic cross sections and ∼10%
for production cross sections). We then proposed an approach to
account for these uncertainties via Gaussian distributed nuisance
parameters, based on a combination of Normalisation, Scale, and
low-energy Slope cross-section modifications (NSS) or based on
linear combinations (LC) of existing parametrisations. We vali-
dated this choice on simulated data, showing that the degrees of
freedom enabled by these nuisance parameters allow to recover
the true parameters (when starting from a different set of cross
sections simulated data were generated with). Simulated data
also show that starting from the wrong cross-section values,
valid propagation models would be excluded based on statistical
criterion (χ2

min/d.o.f. � 1). The nuisance parameters we pro-
posed also cure this problem.

The third step was to handle as best as possible data
uncertainties. We accounted for possible energy correlations in
the AMS-02 data via the covariance matrix of errors. As the
AMS-02 collaboration does not provide such a matrix, we pro-
posed a best-guess model, based on the information available in
Aguilar et al. (2018b) and its supplemental material. The crucial
parameters are the correlation length associated with various sys-
tematics, correlating more or less strongly various energy bins.
The dominant effect is from the acceptance systematics, and
we showed an unphysical dependence of the transport param-
eters with the acceptance correlation length. After a more care-
ful inspection of the systematics, we discussed the fact that the
acceptance systematics is actually a mix of several systematics
with very different correlation lengths. Splitting the acceptance
systematics in three parts stabilised the dependence of the trans-
port parameters with the correlation length. To fully solve this
issue, the publication, along with the data, of the correlation
matrix by the AMS-02 collaboration is necessary. This is likely
a very difficult task, and waiting for its completion, further infor-
mations on the various systematics, further splits and indications
on each of the systematics correlation length would already be
extremely useful. Indeed, not only does it possibly biases the
transport parameters fit to the data, but it also has a huge impact
on the statistical interpretation of the model inspected: depend-
ing on the correlation length assumed, we can either conclude
on a perfect fit to the data χ2

min/d.o.f. ∼ 1 or exclude the model
(χ2

min/d.o.f. & 2−3).
The fourth and last step was to consider a realistic

analysis, applying the method developed to handle cross-section
uncertainties (2nd step) with the full data uncertainties, that
is accounting for the covariance matrix of errors (3rd step).
Because of energy correlations in the systematics, the impact
of cross-section uncertainties can be lessened. In the context of
the analysis of the AMS-02 B/C data, the impact of systematics
was found to be dominant over that of cross-section uncertain-
ties. In any case, for any analysis, we recommend to implement
the dominant nuclear reactions as nuisance parameters, check-
ing the results against various choices of production cross sec-
tions and the two possible strategies for the nuisance parameters
(NSS or LC).

Our methodology can be used for any CR species, but the
most important cross sections and their uncertainties depend
on the species (e.g. Génolini et al. 2018), so that specific nui-
sance parameters need to be changed for both the NSS and LC
methods. Then, data uncertainties have generally different ori-
gins for different species, with different sub-detectors and selec-
tions cuts applied. For these reasons, the conclusions that can be
drawn concerning the most impacting effect (cross sections or
data systematics) can be different from one species to another,
and so should be carefully inspected for each species and data
considered.

Further results based on this methodology are presented in
two companion papers: Génolini et al. (2019) present the inter-
pretation of the B/C ratio data and constraints on the transport
parameters. Boudaud et al. (2019) use these transport parame-
ters and their uncertainties to calculate the astrophysical flux of
antiprotons. We emphasise that all the results presented here and
in the companion papers are based on usine v3.5 (Maurin 2018),
available at https://lpsc.in2p3.fr/usine14.

14 The current release is v3.4, but v3.5, specifically developed for this
analysis, will be online soon.
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Appendix A: Systematics from R to Ek/n
approximate conversion

CR data are mostly published and analysed as a function of
the kinetic energy per nucleon (see, e.g. the data collected in
the Cosmic-Ray Data Base15, Maurin et al. 2014). The latter
quantity is conserved in nuclear reactions (in the straight-ahead
approximation) and propagation codes usually solve the trans-
port equation per Ek/n. However, it is not the quantity CR detec-
tors measure; for instance, hadronic calorimeters provide the
total energy, whereas spectrometers like AMS-02 provide the
rigidity. Conversion from one energy unit to another is only exact
if the nucleus (m, A, Z) is identified. For elements, unless the iso-
topic content is known, the conversion is approximate.

The uncertainty brought from energy unit conversions was
neglected in the past because of larger uncertainties, but this is
no longer possible for modern data. For instance, the conversion
from R to Ek/n in an experimental context in which only elemen-
tal fluxes are measured is discussed by the PAMELA collabo-
ration in Appendix B of Adriani et al. (2014), and by the AMS
collaboration for the B/C ratio in the Supplemental Material of
Aguilar et al. (2016). As the practice remains in the field to fit
data as a function of Ek/n, we argue below that this is not a good
procedure.

To convert B/C data from R to Ek/n, the AMS-02 collabora-
tion relies on an average mass number,

〈A〉Z =

∑
i∈Z(AiFi)

FZ
,

of 12 for Carbon and 10.7 for Boron. Figure A.1 shows these val-
ues compared to the theoretical calculation from a model repro-
ducing B/C data. In the top panel, the varying 〈A〉C for the model
results from the fact that Carbon contains mostly primary 12C
and a small fraction of secondary 13C (.15% at .1 GV and
steadily vanishing at higher rigidities). For the Boron (bottom
panel), both 10B and 11B are of secondary origin, but their rigid-
ity evolution is related to two subtle effects: (i) ≈15% of 10B
comes from the decay of 10Be (Génolini et al. 2018), and as the
effective lifetime increases with energy, the fraction of 10B with
respect to that of 11B decreases with rigidity; (ii) 10B has a larger
fraction originating from 2-step reactions (w.r.t. direct “1-step”
production) than 11B has (see Table 1 and Fig. 3 of Génolini et al.
2018), and as 2-step reactions have a steeper rigidity dependence
than 1-step ones, again the fraction of 10B decreases with rigidity
(w.r.t. that of 11B).

In Fig. A.2, we show the impact of these two different
choices when converting B/C from R to Ek/n. The top panel
shows the residual of B/C data vs. R (w.r.t. our best-fit model),
in order to give a visual reference for the difference between the
model and data. The bottom panel shows residuals of B/C vs.
Ek/n for different conversions (w.r.t. our best-fit model converted
without approximation). The black curve shows the conversion
bias when assuming a constant 〈A〉 for Boron and Carbon, where
part of the bias comes from assuming 〈A〉B = 10.7 (red dot-
ted line), and part from assuming 〈A〉C = 12 (blue dashed line):
the bias is positive and the largest at the lowest Ek/n (∼3%) and
null at 1 GeV n−1; it is negative, reaches ∼2% at ∼4 GeV n−1, and
then decreases. The pattern of AMS-02 data (converted using the
same approximation) with respect to the black solid line is sim-
ilar to the one seen in the top panel, indicating that the origin
of the discrepancy with the exact model calculation is the wrong
assumption made for 〈A〉.

15 https://lpsc.in2p3.fr/crdb/
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Fig. A.1. Average mass number for carbon (top) and Boron (bottom)
as a function of rigidity. The dashed blue lines correspond to the value
calculated from the model (with the isotopic content known), whereas
the solid black lines correspond to the choice made in Aguilar et al.
(2016). See text for details.
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Fig. A.2. Top panel: B/C residual (vs. R) calculated from the differ-
ence between AMS-02 data and our reference model (best-fit model).
Bottom panel: B/C residual (vs. Ek/n) calculated from the difference
between various R-to-Ek/n-converted B/C (red, blue and black lines) and
the “exact” B/C (reference model converted with correct isotopic con-
tent). The AMS-02 data vs. Ek/n are taken from Aguilar et al. (2016),
and result from the same conversion as done for the solid black line.
See text for discussion

We can summarise the above subtle discussion as follows:
if we fit a model on AMS-02 B/C data as a function of rigid-
ity, this model will be offset from the converted AMS-02 B/C
data as a function of Ek/n. The offset is not a simple scaling,
it is instead energy dependent because the isotopic content of
B and C elements is energy dependent (in a non-trivial way).
Whereas the maximum bias is “only” ∼3%, this is already sig-
nificant compared to other AMS-02 uncertainties. Moreover, in
AMS publication, the uncertainty associated with the conversion
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is estimated to range from 1% (lowest energy) to 4% (highest
energy), which does not reflect our results. For all these reasons,
we conclude that AMS-02 data, and in general all data, should be
fit in their native energy scale in order to avoid a non-necessary
bias introduced by converting the data to another energy scale.
We stress that the usine package allows one to fit any combina-
tion of data in their native energy scale.

Appendix B: χ2 with covariance or nuisance

To characterise the impact of the uncertainties on the model
parameters, we rely on the χ2 analysis implemented in usine
and described in Maurin (2018), using the minuit package
(James & Roos 1975) for minimisation. In particular, the minos
option in minuit allows to reliably reconstruct asymmetric error
bars on the parameters, taking into account both parameter corre-
lations and non-linearities. The generic form of the χ2 we use is

χ2 =
∑

t

∑
q

(
D

t,q
cov +N t,q

)
+N t

 +N , (B.1)

where we loop over all time periods t (corresponding to different
modulation levels) and all quantities q selected in the minimisa-
tion. The quantitiesDcov and N are detailed below.

Covariance. The quadratic distanceDcov measures the distance
between the data and the model, accounting for a covariance
matrix C16,

Dcov =

nE ,nE∑
i, j=1

(datai −modeli) (C−1)i j (data j −model j), (B.2)

which correlates i j energy bins (nE bins in total). Without
correlations, C is diagonal (systematic errors σk on data), and
we recover the standard expression

Dno−cov =

nE∑
k=1

(datak −modelk)2

σ2
k

(no covariance). (B.3)

Covariance from relative errors. As discussed in Sect. 5, we
built for each AMS-02 systematics α the covariance matrix of
relative errors Cαrel. The latter can be related to the covariance Cα
require for Eq. (B.2) in two different ways:

(Cαmodel)i j = (Cαrel)i j ×modeli ×modelj, (B.4)
(Cαdata)i j = (Cαrel)i j × datai × dataj. (B.5)

While using Cdata may seem more natural, Blobel (2006)
showed that if an overall normalisation factor is present in
the data, including it in the fit should be done via a factor in
the model, not in the data; otherwise, the reconstructed model
parameters are biased (see also D’Agostini 1994). For this rea-
son we decided to use Cmodel in our analysis. We note however
that a global normalisation factor corresponds to a situation in
which the correlation length is infinite, which is not the case for
the data we consider (see Sect. 5). To ensure that either using
Eq. (B.4) or (B.5) does not affect our conclusions, we fit 10 000
mock B/C data under these two assumptions, and checked that
(i) the input model parameters were recovered in both cases, and
(ii) up to the level of precision reached, potential biases were
much smaller than the 1σ uncertainties on the reconstructed
parameters.
16 If several systematics α are present, the global covariance matrix is
given by the sum of all associated covariance matrices, C =

∑
α C

α.

Nuisance parameters. Nuisance parameters are parameters
contingent to the analysis performed, but whose value can affect
the result of the analysis. An example is given by CR cross
sections, that are instrumental for the model calculation, but
whose values and uncertainties were determined by “external”
experiments. Nuisance parameters can appear at various levels
of the modelling: (i) global nuisance parameters N related to
the model and thus independent of the data (e.g. cross sections),
(ii) time-dependent nuisance parameters N t (e.g. modulation
parameter for a specific data-taking period), (iii) data-dependent
nuisance parameters N t,q (e.g. systematic errors on data as an
alternative to using a covariance matrix).

In principle, any probability distribution function is possi-
ble, and it is determined from the auxiliary experiment. How-
ever, in usine, only Gaussian-distributed nuisance parameters are
enabled, so that each adds in the χ2, Eq. (B.1), a contribution

N =
(y − ȳ)2

σ2
y

, (B.6)

where ȳ and σ2
y are the mean and variance of the parameter, and

y the tested value.

Appendix C: Coefficients for boundary conditions

The discretisation of Eq. (4) on a grid over x ≡ ln Ek/n gives

uk +
αk

∆x

(
Jk+ 1

2
− Jk− 1

2

)
= u0

k , (C.1)

with the current Jk+ 1
2

defined to be

Jk+ 1
2

=
1
2

( βk+1uk+1 + βkuk ) −
γk+ 1

2

∆x
( uk+1 − uk ) . (C.2)

This equation can readily be written as a matrix equation

MU = U0, with U =



u0
...

uk
...

uK


, (C.3)

and M =



b0 c0
a1 b1 c1

. . .
. . .

. . .

. . .
. . .

. . .
aK−1 bK−1 cK−1

aK bK


. (C.4)

M is a tridiagonal matrix defined by its coefficients

ak =
αk

∆x

(
−
βk−1

2
−
γk− 1

2

∆x

)
, (C.5)

bk = 1 +
αk

∆x2

(
γk+ 1

2
+ γk− 1

2

)
, (C.6)

ck =
αk

∆x

(
βk+1

2
−
γk+ 1

2

∆x

)
. (C.7)

Solving this system requires to fix the boundary conditions.
Several possibilities have been tested in Appendix D.
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Table C.1. Matrix coefficients for several boundary conditions of the transport equation.

Low-energy conditions b0 c0

#L1: No energy flow JE = 0 1 +
α0

∆x

(
β0

2
+
γ 1

2

∆x

)
α0

∆x

(
β1

2
−
γ 1

2

∆x

)
#L2: ∂2u/∂x2

∣∣∣x0
= 0 (1st order) 1 +

α0

∆x

{
−β0 +

(γ 1
2
− γ− 1

2

∆x

)}
α0

∆x

{
β1 −

(γ 1
2
− γ− 1

2

∆x

)}
#L3: ∂2u/∂x2

∣∣∣x0
= 0 (2nd order) 1 +

α0

∆x

{
−β−1 +

(γ 1
2
− γ− 1

2

∆x

)}
α0

∆x

{(
β1 + β−1

2

)
−

(γ 1
2
− γ− 1

2

∆x

)}
#L4: ∂ f /∂p |x0 = 0 1 +

α0

∆x

β−1∆x δ0 +

γ 1
2

+ γ− 1
2

+ γ− 1
2
2∆x δ0

∆x

 α0

∆x

{(
β1 − β−1

2

)
−

(γ 1
2

+ γ− 1
2

∆x

)}
High-energy conditions aK bK

#H1: No energy flow JE = 0 −
αK

∆x

(
βK−1

2
+
γK− 1

2

∆x

)
1 +

αK

∆x

(
−
βK

2
+
γK− 1

2

∆x

)
#H2: ∂2u/∂x2

∣∣∣xK
= 0 (1st order)

αK

∆x

{
−βK−1 +

(γK+ 1
2
− γK− 1

2

∆x

)}
1 +

αK

∆x

{
βK −

(γK+ 1
2
− γK− 1

2

∆x

)}
#H3: ∂2u/∂x2

∣∣∣xK
= 0 (2nd order)

αK

∆x

{
−

(
βK+1 + βK−1

2

)
+

(γK+ 1
2
− γK− 1

2

∆x

)}
1 +

αK

∆x

{
βK+1 −

(γK+ 1
2
− γK− 1

2

∆x

)}
#H4: Pure diffusive limit u = u0 0 1

Notes. Our prescriptions are highlighted in boldface. Top: first matrix coefficients a0 and b0 (Eqs. (C.5) and (C.6)) for low-energy bound-
ary conditions (prescription L3). Bottom: last matrix coefficients bK and cK (Eqs. (C.6) and (C.7)) for high-energy boundary conditions
(prescription H4).

As regards the low-energy boundary at xmin ≡ x0, we list
several suitable prescriptions, and report results for the corre-
sponding b0 and c0 in the half-upper part of Table C.1: (i) no
energy flow (L1) means JE = 0 at x0, translating into J− 1

2
= 0

for the defined grid steps; (ii) no curvature in the spectrum (L2
and L3) is obtained by using the prescription of LeVeque (1998)
for a second order accurate method,

∂2u
∂x2

∣∣∣∣∣∣
x0

=

(u1 − u0

∆x

)
−

(u0 − u−1

∆x

)
∆x

= 0, (C.8)

which implies that u−1 = 2 u0 − u1, and we compute the coeffi-
cients b0 and c0 for a first (L2) and second (L3) order accurate
method – the former was used in Donato et al. (2001); (iii) no
phase space density gradient (L4) means that the phase space
distribution f is flat for a CR momentum p = 0. We implement
this condition at x0. Requiring that ∂ f /∂p vanishes translates
into

∂(u/pE)
∂p

∣∣∣∣∣
x0

= 0. (C.9)

If written in term of x = ln Ek it reads

∂u
∂x

∣∣∣∣∣
x0

=

Ek,0

E0

1 +
E2

0

p2
0

 u0 ≡ δ0 u0. (C.10)

If we discretise this condition, we are led to

∂u
∂x

∣∣∣∣∣
x0

=
u1 − u−1

2∆x
= δ0 u0, (C.11)

and get, according to LeVeque (1998), a second order accurate
method. Injecting this condition into the differentiation scheme
let us define b0 and c0.

At high-energy (i.e. at the highest point xmax ≡ xK of the
grid), several conditions can be implemented along the same

lines. The resulting coefficients aK and bK are listed in the half-
bottom part of Table C.1: (i) no energy flow (H1), i.e. JE = 0
at xK , which translates into JK+ 1

2
= 0, (ii) no curvature in the

spectrum (H2 and H3), for which we require that

∂2u
∂x2

∣∣∣∣∣∣
xK

=

(
uK+1−uK

∆x

)
−

(
uK−uK−1

∆x

)
∆x

= 0, (C.12)

implying uK+1 = 2 uK − uK−1; (iii) no energy losses nor diffusive
reacceleration (H4), so that as discussed in Appendix D, the CR
density u is given by u0 at high energy insofar as energy losses
and diffusive reacceleration do not play any role in this regime.
We require that u(xK) = u0(xK), hence the condition aK = 0 and
bK = 1 of Table C.1.

Appendix D: Stability of the numerical solution

The numerical solution of Eq. (4) might exhibit instabilities
when diffusive reacceleration vanishes with the Alfvénic speed
Va. To explore the onset of these instabilities and to rem-
edy them, we consider the same 1D geometry as discussed in
Sect. 2.1, that is a thin disc of half-thickness h and a magnetic
halo of half-thickness L. We focus on Model A, presented in
Sect. 2.2, that is a standard diffusion/convection/reacceleration
transport model. For definitiveness, all figures presented in this
appendix are based on the following values for the transport
parameters: K0 = 0.030 kpc2 Myr−1, δ = 0.65, ηt = −0.49,
L = 10 kpc, Vc = 15.1 km s−1 and Va = 74.6 km s−1. These val-
ues are among those that give a good fit to the B/C ratio and as
such are sufficient to illustrate our discussion.

D.1. Simplified 1D model and solutions

Transport equation. The CR density in space and energy
u(z, E) fulfils the transport equation

−K
∂2u
∂z2 +

∂

∂z
{Vc(z) u} +

∂

∂E

{
b u − KEE

∂u
∂E

}
= qacc, (D.1)
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Fig. D.1. Timescales associated to the various processes at play in the
Galactic transport of CR protons are plotted as a function of kinetic
energy Ek. The diffusion τdiff and convection τconv timescales are respec-
tively featured by the long dashed and short dashed-dotted black curves.
They are combined into the disc residence time τdisc plotted as the solid
black line. The energy loss and diffusive reacceleration timescales cor-
respond to the solid purple and orange curves. The red solid line features
the combined timescale τeff as given in Eq. (D.3).

where z is the vertical co-ordinate. The source term qacc denotes
the rate with which CRs are injected. CRs diffuse with a spatial
diffusion coefficient K that follows Eq. (1), are convected away
from the disc at velocity Vc, suffer from energy losses at a rate
b(E) < 0 (ionisation, Coulomb friction, and adiabatic expansion
in the wind), or gain energy via an energy diffusion coefficient17

KEE = (2/9)×V2
a β

4E2/K. CR injection, as well as energy losses
and energy diffusion are localised in the disc.

From now on, the Galactic disc is treated as in the infinitely
thin limit, and all nuclear interactions on the interstellar medium
(ISM) have been discarded. Requiring that the CR density van-
ishes at the boundaries z = ±L of the magnetic halo allows to
straightforwardly express u(z, E) as a function of its value inside
the Galactic disc u(E, 0).

Timescales. Transport inside the magnetic halo, energy losses
and diffusive reacceleration are the three processes at play in the
transport of CR nuclei. To determine which of these processes
is dominant and inside which energy range it prevails, we can
calculate the associated timescales. Galactic diffusion and con-
vection can be combined into the residence time of CRs inside
the Galactic disc

τdisc = τconv

{
1 − e−τdiff/τconv

}
, (D.2)

where τconv = h/Vc and τdiff = hL/K are the convection and dif-
fusion timescales. For energy losses, we define τloss as the ratio
−Ek/b(E), where Ek is CR kinetic energy. Diffusive reacceler-
ation occurs over a timescale τDR ≡ E2

k/KEE . These timescales
are plotted as a function of kinetic energy Ek in Fig. D.1. The
behaviour is fairly generic and the same trends appear for heav-
ier nuclei as well as for secondary species.

17 The following definition, taken from Maurin et al. (2001), is simi-
lar to that of Eq. (3) since KEE = β2Kpp, albeit with a slightly larger
coefficient of 2/9 ∼ 0.22 instead of 0.17.

All these processes can be combined through the effective
timescale τeff which we define as

1
τeff

=
1
τdisc

+
1
τloss

+
1
τDR
· (D.3)

High- and low-energy analytical solutions. We are only inter-
ested in the solution in the disc, u(z = 0, E) ≡ u, and using the
above timescales the transport Eq. (D.1) boils down into the PDE

u
τdisc

+
d

dE

{
bu − KEE

du
dE

}
= qacc. (D.4)

High-energy limit: space diffusion dominates over the other
processes. As energy losses and diffusive reacceleration do not
play any role in this regime, the solution to the CR transport
Eq. (D.4) is

udiff(Ek) ≡ u0 = τdisc qacc. (D.5)

Low-energy limit: energy losses dominate and diffusive reac-
celeration can be neglected. The transport Eq. (D.4) has an ana-
lytic solution which can be cast into the form

uloss(Ek) =

{
b(Ek,max)

b(Ek)

}
u0(Ek,max) e−t̃(Ek)

+
1

|b(Ek)|

∫ Ek,max

Ek

qacc(E′k) e−{t̃(Ek)−t̃(E′k)} dE′k, (D.6)

where the pseudo-time t̃ is defined as

t̃(Ek) =

∫ Ek,max

Ek

τloss

τdisc

dE′k
E′k
· (D.7)

For above-mentioned reasons, the analytic solutions u0 and
uloss become equal in the high-energy limit. We have set them
equal at the highest energy point Ek,max of our analysis, for which
a value of 103 GeV is assumed.

These solutions are used below to check the precision of the
numerical calculation.

Numerical solution. The numerical solution of Eq. (D.1) is
obtained as follows. First, the equation can be recast into Eq. (4),
where the coefficients α, β, and γ, of our simplified model are

α =
τdisc

Ek
, β =

−Ek

τloss
= b(E) and γ =

Ek

τDR
=

KEE

Ek
· (D.8)

As explained in Appendix C, this Eq. (4) can be put on a grid
in x ≡ ln Ek/n to numerically solve the equation. The solution
depends on the boundary conditions implemented, the impact of
which is studied below.

D.2. Impact of boundary conditions

Various boundary conditions can be implemented at the lowest
xmin ≡ x0 and highest xmax ≡ xK energy points of the x-grid as
shown in Table C.1.
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Fig. D.2. CR proton flux Φp is plotted as a function of kinetic energy
Ek. The long dashed-dotted and solid black curves stand respectively
for the approximations u0 and uloss. The exact solution u is derived
numerically assuming boundary conditions L3 and H4. The long dashed
orange and short dashed purple curves correspond to different meth-
ods used to solve transport Eq. (4). Protons are injected with a rate
qacc = Np/

√
βRα where Np = 5.8 × 10−11 protons cm−3 GeV−1 Myr−1

and α = 2.3. With these values, we get Φp in rough agreement with
the Voyager 1 (Stone et al. 2013), PAMELA (Adriani et al. 2011) and
AMS-02 (Aguilar et al. 2015a) data.

Reference boundary conditions vs. analytical solutions. At
xmax, the four boundary conditions H of Table C.1 yield the same
CR proton flux and we always find that u is close to u0 above a
few tens of GeV. We have decided to implement prescription
H4, which is the most natural condition given that τeff ' τdisc
at high energy. At xmin, the prescription that yields the most sta-
ble behaviour is L3 with ∂2u/∂x2 = 0 up to second order. Our
fiducial conditions are therefore L3 and H4.

For illustrative purpose, Fig. D.2 shows a comparison of the
analytical and numerical solutions18. The long dashed-dotted
black curve stands for the approximation u0, for which energy
losses and diffusive reacceleration are switched off. The solid
black curve features the solution uloss, where diffusive reacceler-
ation alone is suppressed. The exact solution u is featured by the
short dashed purple and long dashed orange curves. The former
is obtained through the direct inversion of Eq. (C.3) while for
the latter, a Crank–Nicholson recursion is used to get uCN con-
verging from u0 to the exact solution u. Both results agree with
a precision better than 10−10.

Varying low-energy boundary conditions. In Fig. D.3, we plot
the relative difference induced on the fiducial flux of Fig. D.2
when prescription L3 is respectively replaced by conditions L1
(solid red), L2 (long dashed orange) and L4 (short dashed-dotted
green) of Table C.1. Above 3 MeV, all fluxes agree up to double
precision. Below that energy, some differences appear. Condition
L2 always yields a flux that agrees with the fiducial result with a
precision better than 10−4. Condition L4 is associated with mod-
erate wiggles, with a relative difference that nevertheless reaches

18 The source term has been set proportional to 1/
√
βRα to grossly

match the proton data. Notice that we have not performed a fit since
Fig. D.2 is meant to be an illustration of how the various solutions u0,
uloss and u behave with kinetic energy Ek.

Fig. D.3. Changing the low-energy boundary conditions of Table C.1
modifies the numerical result obtained for u. In this plot, the variations
of the proton flux relative to the fiducial case of Fig. D.2 are displayed
as a function of kinetic energy Ek. Notice that all conditions yield the
same flux above 3 MeV. Close to the boundary, prescriptions L1 and L4
generate wiggles and the flux becomes inaccurate. Prescriptions L2 and
L3 (fiducial) yield the same result.

Fig. D.4. Cosmic-ray transport parameters of Model A are used, except
for the Alfvénic speed Va set equal to 1 m s−1. In this regime, the numer-
ical result u of Eq. (D.4) is equal to the analytic solution uloss. The rel-
ative difference between u and uloss is plotted as a function of kinetic
energy Ek. The low-energy boundary prescriptions of Table C.1 are
respectively featured by the solid red (L1), long dashed orange (L2),
short dashed purple (L3) and short dashed-dotted green (L4) curves.
The most precise condition is L3 while the worst one is L1.

10% at 1 MeV. The worst prescription is L1 which generates very
large instabilities exceeding 100% below 2 MeV. It is remarkable
that in spite of these, the fiducial result is obtained above 3 MeV.

In the regime where diffusive reacceleration is switched off,
the numerical solution u of Eq. (D.4) is given by the analytic
solution uloss displayed in relation (D.6). This situation offers
a unique opportunity to investigate how low-energy boundary
conditions affect the stability and precision of the numerical
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solution. To this purpose, we have used the cosmic-ray trans-
port parameters of Model A with the exception of a vanishing
Alfvénic speed Va. The relative difference between u and uloss is
plotted as a function of proton kinetic energy in Fig. D.4. The
numerical solution is derived by direct inversion of Eq. (C.3).
Depending on the prescription used at xmin, u can be very close
to the actual result uloss or completely out of range. As featured
by the short dashed purple curve, the most precise condition is
L3 with a level of precision of 10−4. Condition L2 yields also a
very accurate solution u with a relative error of at most 10−3 at
100 MeV. As could have been anticipated from Fig. (D.3), set-
ting JE = 0 yields the worst numerical result which is orders
of magnitude larger than the correct solution below 30 GeV.
Finally, condition L4 only yields the correct result above 70 GeV.
We find that the relative difference between u and uloss even
exceeds 100% below 2 GeV, as exhibited by the short dashed-
dotted green curve of Fig. D.4.

D.3. Numerical stability when Va → 0

Although condition L3 yields the most precise solution, the short
dashed purple curve of Fig. D.4 exhibits wiggles for vanishing
Alfvénic speed. In our example, these instabilities never exceed
a level of 10−4 and have no effect on the numerical solution u. In
some configurations though, in particular those with a less fine-
grained x-grid, they could reach a level where they would impair
the capability of the fitting routine used in the B/C analysis. It
is then important to understand the reason for these instabilities
and to remedy them.

Is it specific to the solver used? To commence, we have inves-
tigated if these instabilities are related to the method used to
derive the numerical solution u. In the direct inversion proce-
dure, the matrix M defined in Eq. (C.4) is inverted through
a fast recursion that takes advantage of its tridiagonal nature.
One may wonder if this procedure does not generate numeri-
cal errors insofar matrix M could be far from the unity matrix
I. Complementarily, the Crank–Nicholson procedure makes use
of the matrix I + M∆t/2 which is arbitrarily close to unity if
the time step ∆t of the recursion is small enough. We find that
deriving u through a Crank–Nicholson recursion yields a rela-
tive change with respect to the direct inversion result of Fig. D.4
(short dashed purple curve) which is always less than 10−9 above
10 MeV while reaching a maximum of 4 × 10−6 at Ek = 2 MeV.
In these calculations, the Alfvénic speed is Va = 1 m s−1. Increas-
ing the speed alleviates further the discrepancy between the two
numerical results. The difference is at most 2× 10−6 for a veloc-
ity of 1 km s−1 and decreases below 4 × 10−7 at 1.75 km s−1. We
conclude that the same wiggles appear should u be derived by
directly inverting Eq. (C.3) or by letting u evolve à la Crank–
Nicholson. The origin of instabilities has to be looked elsewhere.

Failure of 2nd-order schemes to solve 1st-order equations.
While performing the previous check, we have serendipitously
observed that the wiggles disappear as Va increases. In the pan-
els of Fig. D.5, four different values have been assumed for the
Alfvénic speed and the relative difference |u − uloss|/uloss is plot-
ted as a function of Ek for each of them. In the upper panel, the
numerical solution u exhibits instabilities which are no longer
visible in the lower panel. The solution becomes smooth for a
critical value of order 1.75 km s−1. Above that speed, u slowly
departs from uloss as diffusive reacceleration starts to be felt by
the proton flux.

Fig. D.5. In these two panels, the proton flux is plotted as in Fig. D.2
with the exception of the Alfvénic speed Va for which different val-
ues are assumed as indicated. When diffusive reacceleration vanishes,
we expect the proton flux to be given by the analytic solution uloss.
The relative difference between the numerical result u (direct inver-
sion) and uloss is calculated with the low-energy boundary prescription
L3. As Va increases from 1 m s−1 to 2.5 km s−1, u becomes more sta-
ble and wiggles disappear. The transition occurs for a critical value
of Va ∼ 1.75 km s−1. The number of bins per decade of energy is
Ndec = 50.

A tentative explanation for the presence of instabilities is
that when Va is vanishingly small, the numerical result u is not
derived with the appropriate method. The transport Eq. (D.4)
becomes first order in this regime and only one boundary condi-
tion suffices to determine its solution. We have actually obtained
uloss by requiring that it should be equal to u0 at the highest
energy point. Strictly speaking, a low-energy boundary condi-
tion is no longer necessary. Of course, this is not as simple as that
since we proceed numerically through the inversion of matrixM
whose elements ak, bk and ck depend on the functions α, β and γ
as discussed in Appendix C. Energy losses and diffusive reaccel-
eration respectively enter in the definition of matrix M through
the combinations α β/∆x and α γ/∆x2, with ∆x the spacing of
the energy grid.
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Fig. D.6. Ratio τdisc/τDR ∆x2 is plotted as a function of kinetic energy
Ek for three different configurations. In all cases, the parameters of
Model A have been assumed with the exception of the Alfvénic speed.
The solid black curve corresponds to the critical value Va = 1.75 km s−1

above which the instabilities which affect the numerical solution u in
Fig. D.5 are noticeably reduced. For that velocity, the ratio τdisc/τDR ∆x2

reaches a maximum of 0.5. Enlarging the range of Alfvénic speeds for
which the onset of stability occurs yields the yellow band. The long
dashed red and short dashed-dotted purple curves both correspond to
Va = 0.5 km s−1. In the former case, the spacing Ndec of the energy grid
is 25, whereas it is 300 in the latter.

Regularisation of the 2nd-order scheme. From a numerical
perspective, the Alfvénic speed vanishes when α γ/∆x2 is negli-
gible with respect to 1, as is clear from Eq. (C.6). To explore this
regime, we define the numerical strength of diffusive reaccelera-
tion through the ratio∣∣∣∣∣ α γ∆x2

∣∣∣∣∣ ≡ τdisc

τDR ∆x2 , (D.9)

which we have plotted as a function of kinetic energy Ek in
Fig. D.6. Model A has been assumed with the exception of
Va. The solid black curve corresponds to an Alfvénic speed of
1.75 km s−1. At that critical value, the instabilities of the numer-
ical result u start to recede, as featured in the lower panel of
Fig. D.5 by the smoothness of the short dashed purple curve
above 300 MeV. Concomitantly the ratio τdisc/τDR ∆x2 reaches
a maximum of 0.5. Notice that the onset of stability is an ill-
defined process which takes place for Alfvénic speeds between
1.5 and 2 km s−1, hence the yellow strip of Fig. D.6.

The prescription which we propose for getting rid of the
numerical perturbations of u is to require the ratio τdisc/τDR ∆x2

to overshoot that band, with a maximum exceeding a bench-
mark value of 0.7. Because the energy grid is made coarser with
fewer bins per decade, the interval ∆x increases and we expect
the above criterion to be fulfilled for larger values of Va. This
is actually what we observe. So far, all the results presented in
Appendix D are based on 50 bins per decade. If we degrade the
resolution of the x-grid and use 25 bins per decade, we find
that wiggles start to recede when the Alfvénic speed exceeds
a critical value of 1.75 × 2 = 3.5 km s−1. Conversely, if the
x-grid is refined with 100 bins per decade, the transition occurs
at 1.75/2 = 0.875 km s−1.

As a final consistency check, we have derived u with an
Alfvénic speed Va of 0.5 km s−1 and two different values for the

Fig. D.7. Same as in Fig. D.5 but now with an Alfvénic speed Va of
0.5 km s−1 and two different values for Ndec, the number of bins per
decade of energy. The line patterns and colour codes of the two lower
curves are the same as in Fig. D.6, i.e. the long dashed red and short
dashed-dotted purple lines respectively stand for Ndec = 25 and 300.
Only in the latter case is the criterion for stability fulfilled.

energy spacing Ndec. Our results are featured in Fig. D.7 where
the same line patterns and colour codes as in Fig. D.6 have been
used for the two lower curves. The long dashed red line has been
derived with 25 bins per decade. Notice how the correspond-
ing curve of Fig. D.6 does not overshoot the yellow band and
hence does not fulfil the stability criterion. We expect u to exhibit
numerical instabilities which we actually observe in Fig. D.7. In
the case of the short dashed-dotted purple curve, a more refined
grid is used with Ndec = 300 and the numerical solution u is
smooth. The stability condition is now satisfied as shown by the
corresponding curve of Fig. D.6.

Recommendation and conclusion. To conclude this
Appendix, let us discuss how to implement practically the
criterion which we have found. To ensure the stability of the
numerical result u, we require the ratio τdisc/τDR ∆x2 to reach
a maximum in excess of 0.7. In the regime where the Alfvénic
speed is very small, this implies a very fine structure of the
energy grid. In Fig. 1 for instance, the reference B/C case is
derived with 5000 energy bins per decade. Our study confirms
that this procedure leads to the correct CR flux. However, the
CPU time significantly increases with Ndec and the B/C fit may
become impracticable. The procedure which we suggest is to
fix Ndec at a benchmark value of 50 for instance. For a given
set of CR propagation parameters, the critical value VS

a of the
Alfvénic speed at which u becomes stable can be determined
from the ratio τdisc/τDR ∆x2 calculated, say, at the lowest energy
point. In practice, τdisc and τDR are respectively decreasing and
increasing functions of Ek. This procedure ensures that VS

a is
always much smaller than the Alfvénic speed at which diffusive
reacceleration becomes as important as disc transport. With
Ndec = 50, the former is only 3.8% of the latter. During the B/C
fit, Va is forced to be larger than the lower limit VS

a which we
find, in the case of Model A, to be 1.75 ± 0.25 km s−1. In this
configuration, a very rough criterion is to require that the ratio
V2

a /K0 ∆x2 exceeds 5 × 10−2 Myr−1 or, alternatively, that V2
a /K0

is larger than 10−4 Myr−1.
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Appendix E: Impact of selected cross-section
uncertainties on B/C

We detail the impact of the most dominant reactions (see Sect. 4)
on the B/C ratio. Figures E.1 and E.2 show, in black lines, the
impact of changing a single inelastic or production cross section
(w.r.t. to the calculation with a reference cross-section file) and,
for comparison purpose, blue lines show the relative difference
between the reference cross section and the new one on the same
plot: the B/C variation is always smaller than that of the cross
sections (see Sect. 4).

For inelastic cross sections (Fig. E.1), the maximum varia-
tion between different parametrisations is ∼10% – related to the
different positions and level of the peaks and dips of the cross
sections (shown in blue in Fig. 5)–, leading to a .3% impact
on B/C (black curves). For 16O, 11B, and 10B, the cross section
and B/C variations are anti-correlated, while correlated for 12C.
This is explained as follows: for 16O, a larger destruction cross
section means less Oxygen at low energy, and so less Boron pro-
duction (and less B/C); an increased destruction of 10B and 11B
also leads to less B/C; the case of 12C is a trade-off between the
fact that an increased destruction means less Carbon (increase in
B/C), which means less Boron production (decrease in B/C). If
we compare the variation on the B/C relative differences when
all cross sections are changed (last panel) to the case in which
only one reaction is changed, we see that 11B and 12C combined
are responsible for almost the whole variability. The impact of
the destruction of 10B is sub-dominant, and at the same level as
16O.

For production cross sections (Fig. E.2), the maximum vari-
ation between different parametrisations is ±20% for 16O→11B.
There is more structure in the G17 cross sections than in all other
ones, because they are normalised to data whenever existing.
As for inelastic cross sections, the variation in B/C is smaller
than the variation in production cross sections, but the relative
variations are now correlated for all reactions, because more
or less production directly reflects on the B/C ratio. The most
impacting reactions also directly reflect the ranking established
in Génolini et al. (2018), in which 12C→11B and then 16O→11B
have the strongest effect. The sum of these two accounts for most
of the variation seen in the bottom panel, in which all reac-
tions in the network were changed at once. We also plot the
impact of two reactions involved in “two-step” production of
Boron, where 15N and 11B are intermediate steps. As discussed
in Génolini et al. (2018), the “two-step” reactions can contribute
up to ∼25% of the total production, and they do not have the
same energy-dependence as “one-step” (or direct) production.
As can be seen in the two bottom panels, these reactions are sup-
pressed at high energy compared to the other shown, and overall,
their impact on B/C is .3%. In Sect. 4.2, we did some checks
adding these dominant channels as nuisance parameters to give
extra degrees of freedom w.r.t. the energy dependence, but no
gain on the results was found, so they were not considered in the
main analysis.
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Fig. E.1. Impact of inelastic cross-section uncertainties on B/C ratio
for specific reactions as a function of rigidity, shown for Model A and
Model B discussed in Sect. 2.1. In each panel, two quantities are shown:
the relative difference between a cross section (of a given reaction) and
a reference parametrisation T99 in blue (the associated y-axis is on the
right-hand side of the plot, also in blue), and the associated impact on
the B/C ratio for this cross-section parametrisation w.r.t. to the reference
B/C (the associated y-axis is on the left-hand side in black). To guide the
eye, the vertical red line indicates the rigidity of the first AMS-02 data
point. The bottom panels show the overall impact when all reactions
(i.e. all nuclei in the network) are replaced. For the latter panel, dark
and grey curves correspond to IS and modulated (φFF = 0.8 GV) B/C
ratio to emphasise that results are independent of the modulation level.
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Impact of production reactions
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Fig. E.2. Same as Fig. E.1 but for production and reference W03.
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