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A STIFFLY STABLE SEMI-DISCRETE SCHEME FOR THE CHARACTERISTIC
LINEAR HYPERBOLIC RELAXATION WITH BOUNDARY

BENJAMIN BOUTIN, THỊ HOÀI THƯƠNG NGUYỄN, AND NICOLAS SEGUIN

Abstract. We study the stability of the semi-discrete central scheme for the linear damped wave equation
with boundary. We exhibit a sufficient condition on the boundary to guarantee the uniform stability of the
initial boundary value problem for the relaxation system independently of the stiffness of the source term
and of the space step. The boundary is approximated using a summation-by-parts method and the stiff
stability is proved using energy estimates and the Laplace transform. We also investigate if the condition
is also necessary, following the continuous case studied by Xin and Xu in [21].

Résumé. Nous étudions la stabilité du schéma semi-discret centré pour l’équation des ondes linéaire amortie
posé sur un demi-espace. Nous dégageons une condition suffisante portant sur la condition de bord, pour
la stabilité du problème semi-discret avec donnée initiale et donnée de bord, ceci de manière uniforme
par rapport à la raideur du terme source de relaxation ainsi qu’au pas d’espace. La discrétisation de la
condition de bord employée provient de l’approche SBP et l’uniforme stabilité s’obtient par l’utilisation de
méthodes d’énergie et de la transformée de Laplace. Nous examinons également au travers d’expériences
numériques le caractère nécessaire de la condition retenue, de sorte à confronter notre résultat à l’étude de
Xin et Xu dans [21] portant sur le cas continu.

AMS classification: 35F46, 35L50, 65M06, 65M12
Keywords: hyperbolic relaxation system, damped wave equation, summation by parts operators, central schemes,
energy estimates.

1. Introduction

1.1. Context and motivation. In many physical situations, we are interested in hyperbolic systems of partial
differential equations with relaxation terms [1]. Such systems are found in relaxing gas theory [4], water waves
[15, 20] and reactive flows [5]. One of the main features of these models is related to the notion of dissipation,
leading to smooth solutions and asymptotic stability. The study of the zero relaxation limit for such systems
has caught much interest, both from a theoretical and numerical point of view, after the works of Liu [13], Chen,
Levermore and Liu [3], Hanouzet and Natalini [8], Yong [23, 24]. In this article, we are concerned with the numerical
treatment of the boundary for hyperbolic relaxation systems. Due to the presence of boundary layers and to the
possible interaction of the boundary and initial layers, numerical schemes have to be properly designed so as to
provide accurate approximations and consistent behaviors.

One of the simplest linear hyperbolic systems with relaxation is the linear damped wave equation on uε, vε ∈ R

(1.1)

{
∂tu

ε + ∂xv
ε = 0,

∂tv
ε + a∂xu

ε = −ε−1vε,

where a > 0 and the relaxation time ε > 0 characterizes the stiffness of the relaxation process. When ε goes to
zero, the model may be simplified. We expect indeed that for any position x and any time t, the solution (uε, vε)
tends to (u(x), 0), which is the solution of the corresponding equilibrium system [3, 21].

In order to determine a unique solution to the problem (1.1) in the quarter plane x > 0, t > 0, it is necessary to
specify values of the solution at initial time

(1.2) uε(x, 0) = u0(x), vε(x, 0) = v0(x),

and to impose conditions on the solution at the boundary

(1.3) Buu
ε(0, t) +Bvv

ε(0, t) = b(t),
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where Bu and Bv are constants. For simplicity, we also assume the initial data f(x) = (u0(x), v0(x)) and the
boundary data b(t) to be compatible at the space-time corner (x, t) = (0, 0), i.e.

(1.4) f(0) = f ′(0) = 0, b(0) = b′(0) = 0.

In some cases, the suitable boundary conditions comes from physical considerations. At a solid wall that bounds
the flow of a fluid, for example, one sets the normal component of the fluid velocity equal to zero (if effects of
viscosity are to be considered, the tangential component must also vanish). In other situations, the choice of
boundary conditions is not so obvious. This is the case when considering artificial boundaries, which do not
correspond to a well-identifies physical phenomenon. In general, not any boundary condition is suitable for a given
hyperbolic problem. In the case of the problem (1.1), which is a particular case of the Jin-Xin relaxation model
in one space dimension [10], the hyperbolic structure is related to the Riemann invariants

√
auε ± vε and to the

characteristic velocities ±
√
a. Therefore the boundary condition (1.3) has to satisfy the Uniform Kreiss Condition

(UKC)

(1.5) Bu +
√
aBv 6= 0.

Only under this assumption, the incoming flow
√
auε+vε at the boundary x = 0 can be deduced from the outgoing

flow
√
auε − vε and the data b(t). Therefore the initial boundary value problem (IBVP) (1.1)-(1.3) is well-posed

for each fixed ε (see [1, 21, 22]).
In [21], Z. Xin and W. Xu study the asymptotic equivalence of a general linear system of one-dimensional

conservation laws and the corresponding relaxation model proposed by S. Jin and Z. Xin [10] in the limit of a
small relaxation rate ε. The main issue is to extend and precise this asymptotic equivalence in the presence of
physical boundaries. Within the same problematic, W.-A. Yong in [22] proposed a Generalized Kreiss Condition
(GKC) for general multi-dimensional linear constant coefficient relaxation systems, or one-dimensional nonlinear
systems, with non-characteristic boundaries. This condition enables uniform stability estimates and a reduced
boundary condition for the corresponding equilibrium system. For the special Jin-Xin system (1.1) with boundary
condition (1.3) but with stiff source terms of the form ε−1(λuε − vε) for some λ, Z. Xin and W. Xu identify and
rigorously justify a necessary and sufficient condition (which they call the Stiff Kreiss Condition, or SKC in short)
on the boundary condition to guarantee the uniform well-posedness of the IBVP, independently of the relaxation
parameter. In addition to the work in [22], their study also covers the characteristic case and provides optimal
asymptotic expansions for the limit process, handling with boundary and/or initial layers. In the case of our system
(1.1), the parameter λ = 0 so that the boundary is characteristic for limit equation, and the SKC in [21] then simply
reduces to

(1.6) Bv = 0, or
Bu
Bv

/∈
[
−
√
a, 0
]
.

The motivation of the present study is to analyze the counterpart of the above results but now for the difference
approximation of the IBVP (1.1)-(1.3). The major issues in the theory of the relaxation approximations to equilib-
rium system of conservation laws is the appearance of stiff boundary layers in the presence of physical or numerical
boundary conditions due to the additional characteristic speeds introduced in the relaxation systems. On the other
hand, the stability estimate obtained for a certain approximation is the key to the proper error estimates. Thus,
the way of formulating boundary conditions for the relaxation systems so as to guarantee the uniform stability and
to minimize the artificial boundary layer is a crucial issue to the success of the schemes.

1.2. Description of the semi-discrete numerical scheme. Let ∆x > 0 be the space step and U(xj , t) =
(uε, vε)T (xj , t) with xj = j∆x, for any j ∈ N. The solution to the IBVP (1.1)-(1.3) is approximated by a sequence
Uj(t) = (uj(t), vj(t))

T (where we omit the explicit dependence on ε). We focus in this paper on the semi-discrete
approximation of the IBVP obtained by the central differencing scheme and derive a sufficient condition for its stiff
stability. Let A, S and B be the following matrices:

A =

(
0 1
a 0

)
, S =

(
0 0
0 −1

)
, B =

(
Bu Bv

)
.

A first step towards the semi-discrete approximation of the IBVP (1.1)-(1.3) is the following system

(1.7)
∂tUj(t) + (QU)j(t) =

1

ε
SUj(t), j ≥ 1,

Uj(0) = fj ,

BU0(t) = b(t),
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with the discrete Cauchy data fj = U(xj , 0). The difference operator (QU)j(t) is a consistent approximation of the
first order space-derivative A∂xU(xj , t) in the sense that (QU)(xj , t) = A∂xU(xj , t) + O (∆xp) , for some p > 0. It
is defined at any discrete point including the boundary point j = 0.

The summation by parts (SBP) finite difference operators were first derived in [11, 12]. In [16], the analysis
was revisited and exact expressions for the finite difference coefficients were obtained. In the case of the central
scheme, the modification of the difference operator QU at j = 0 can also be interpreted as the use of an extra
boundary condition. It means that we use the centered approximation at the boundary point j = 0 but supply
another boundary condition that determines a ghost value U−1 through the identity

U1 − 2U0 + U−1 = 0.

If we eliminate U−1, then we obtain a one-sided approximation. In [7], the corresponding energy estimate is obtained
by using the scalar product and norm

(1.8) 〈U, V 〉∆x =
∆x

2
〈U0, V0〉+ ∆x

∞∑
j=1

〈Uj , Vj〉 , ‖U‖2∆x = 〈U,U〉∆x .

with 〈., .〉 being the usual Euclidean inner product. The considered difference operator reads

(QU)j =


1

2∆x
A(Uj+1 − Uj−1), j ≥ 1,

1

∆x
A(U1 − U0), j = 0,

(1.9)

which uses a noncentered approximation at the boundary, so that the difference operator is defined at all gridpoints
including the boundary point j = 0.

Let us emphasize that the numerical scheme (1.7) still needs one more scalar equation at the boundary point
j = 0 so as to be fully defined, due to the fact that the matrix B has rank one. This is actually a discrete feature
only, since in the continuous case this single equation is exactly complemented by the only incoming characteristic
(under UKC). We choose to define the remaining discrete boundary value in agreement with the dissipativity of the
source term. We then use a symmetric form of the problem, based on the matrix P and on the symmetric positive
definite matrix HP below

P =

(
Bu Bv
1 0

)
, HP =

(
1 −Bu
−Bu aB2

v +B2
u

)
.

As a consequence, the matrix PTHPP is symmetric positive definite, HPPAP
−1 is symmetric and HPPSP

−1 is
negative definite. Since PTHPPA is also a symmetric matrix, one has〈

U,PTHPP (QU)
〉

∆x
(t) = −1

2

〈
U0, P

THPPAU0

〉
(t),

which is the discrete counterpart of the equality
∫ +∞

0

〈
U,PTHPPA∂xU

〉
(x, t)dx = −1

2

〈
U,PTHPPAU

〉
(0, t) avail-

able in the continuous case. Moreover, at the boundary j = 0, we obtain

(1.10)
〈
∂tU0, P

THPPU0

〉
(t) +

〈
(QU)0, P

THPPU0

〉
(t) =

1

ε

〈
SU0, P

THPPU0

〉
(t).

Inserting now the homogeneous boundary condition BU0(t) = 0 and introducing the matrix Π2 =
(
0 1

)
, the

previous equality (1.10) can be reformulated as

∂t (Π2HPPU0) (t) (Π2PU0) (t) + (Π2HPP (QU)0)(t)(Π2PU0)(t) =
1

ε
(Π2HPPSU0) (t) (Π2PU0) (t).

We therefore propose the following numerical approximation at the boundary

∂t(Π2HPPU0)(t) + Π2HPP (QU)0(t) =
1

ε
Π2HPPSU0(t).

To summarize, along the rest of the paper, we will study the following semi-discrete approximation of the IBVP (1.1)-
(1.3):

(1.11)


∂tUj(t) + (QU)j(t) = ε−1SUj(t), j ≥ 1, t ≥ 0,

Uj(0) = fj , j ≥ 0,

BU0(t) = b(t), t ≥ 0,

∂t(Π2HPPU0)(t) + Π2HPP (QU)0(t) = ε−1Π2HPPSU0(t), t ≥ 0.
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1.3. Main result. For the continuous IBVP (1.1)-(1.3), the UKC (1.5) is not enough and a more stringent restric-
tion has to be imposed. Our aim is to determine a sufficient condition for the stiff stability of the above semi-discrete
IBVP (1.11), in other words the uniform stability with respect to the stiffness of the relaxation term. First of all, let
us address the question of the existence and uniqueness of a solution to the infinite-dimensional ODE system (1.11)
through the next result.

Lemma 1.1. Let us consider some fixed parameters (Bu, Bv) ∈ R2 with Bv 6= 0, and ε,∆x > 0. For any
(fj)j∈N ∈ l2(N,R2) and any b ∈ C1(R+,R) there exists a unique solution (Uj)j∈N ∈ C1([0,+∞[, l2(N,R2)) to (1.11).

Proof. The proof rests on the common linear Cauchy-Lipschitz theorem in the Banach space l2(N,R2). Let us bring
some precisions concerning the solvability of the two rank-one boundary equations. The first algebraic equation
reads simply

Buu0(t) +Bvv0(t) = b(t),

while the second differential one reads equivalently, for some linear operator L : R2 × R2 → R, as

aB2
vu
′
0(t)−BuBvv′0(t) + L(U0(t), U1(t)) = 0.

Eliminating v0 from the algebraic boundary condition, we get thus Bvv′0(t) = b′(t)−Buu′0(t) and therefore

(aB2
v +B2

u)u′0(t) = −L(U0(t), U1(t)) +Bub
′(t).

The solvability of the whole ODE system is therefore deduced by Bv 6= 0 together with aB2
v +B2

u 6= 0. The details
are left to the reader. �

Theorem 1.2 (Main result). Under the strict dissipativity condition

(1.12) BuBv > 0,

for any T > 0 there exists CT > 0 such that for any (fj)j∈N ∈ l2(N,R2) and any b ∈ C1(R+,R) ∩ L2(R+,R), the
solution (Uj)j∈N to (1.11) satisfies

(1.13)
∫ T

0

|U0(t)|2 dt+

∫ T

0

∑
j≥0

∆x|Uj(t)|2 dt ≤ CT

∑
j≥0

∆x|fj |2 +

∫ T

0

|b(t)|2 dt

 ,

where the constant CT is independent of the data f and b, but most importantly of ε ∈ (0,+∞) and ∆x ∈ (0, 1].

The proof of Theorem 1.2 is based on two main ingredients, by assembling a result for the case of homogeneous
boundary data and another for the case with homogeneous initial data. We state successively hereafter these two
statements.

Proposition 1.3 (Homogeneous boundary condition). Assume that the parameters ∆x ∈ (0, 1], ε > 0 and (Bu, Bv)
satisfy the discrete strict dissipativity condition

(1.14) 2a
Bu
Bv

+
∆x

ε

(
Bu
Bv

)2

> 0.

Then there exists a constant c > 0 such that for any (fj)j∈N ∈ l2(N,R2), the solution (Uj)j∈N to (1.11) with b ≡ 0
satisfies

(1.15)
〈
U,PTHPPU

〉
∆x

(T ) + c

∫ T

0

|U0|2(t)dt ≤
〈
f, PTHPPf

〉
∆x

.

More precisely,
a) If BuBv > 0, then (1.15) holds uniformly, i.e. with c independent of ε and ∆x.
b) If BuBv < 0, then considering some δ0 > −2aBvB

−1
u , there exists c(δ0) > 0 such that (1.15) holds uniformly

with c = c(δ0), as soon as ∆x ≥ δ0ε.

Proposition 1.4 (Homogeneous initial condition). Assume that the boundary condition is strictly dissipative, thus
satisfying (1.12). Then, there exists a constant c > 0 such that for any α > 0 there exists ∆x0 > 0 such that the
following property holds. For any b ∈ C1(R+,R) ∩ L2(R+,R) and ∆x ≤ ∆x0, the solution (Uj)j∈N to (1.11) with
(fj)j∈N ≡ 0 satisfies

(1.16) α∆x

∫ ∞
0

∑
j≥0

e−2αt|Uj(t)|2dt+

∫ ∞
0

e−2αt|U0(t)|2dt ≤ c
∫ ∞

0

e−2αt|b(t)|2dt.
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Remark 1.5. Since PTHPP is a symmetric positive definite matrix, the following inequality holds for some constants
m,n > 0, independent of ∆x:

m
〈
U,PTHPPU

〉
∆x

(t) ≤ 〈U,U〉∆x (t) ≤ n
〈
U,PTHPPU

〉
∆x

(t),

which will be useful to prove the estimate (1.13) with weighted-in-time norms from (1.15).

Xin and Xu in [21] considered the IBVP for the Jin-Xin relaxation model [10] and derived the SKC (1.6) for its
stiff well-posedness. They show in particular that the IBVP is well-posed if and only if (1.6) holds. In the discrete
IBVP (1.11), it seems that even the SKC is not sufficient to derive uniform stability estimates. In comparison,
the strict dissipativity condition (1.12) is more restrictive, but we are only able to prove that it is sufficient.
Following [22] and [21], we also perform a normal mode analysis to construct unstable solutions and, based on
some numerical investigations, condition (1.12) would appear to be also necessary for the stiff stability. Let us
mention that the discrete strict dissipativity condition (1.14) is not implied by the SKC (1.6), probably due to some
numerical diffusion at the boundary.

The Proposition 1.3 is studied in Section 2.1 by means of the discrete energy method. In order to illustrate
the relevance of the condition (1.14), we present in Section 2.2 some numerical results, for various values of the
parameters (Bu, Bv) and show that the energy

〈
U(t), PTHPPU(t)

〉
∆x

increases if the condition (1.14) does not
hold. In Section 3.1, we want to address the question of the existence of unstable solutions in order to derive
necessary condition for stability by using the normal mode analysis. In Section 3.2, we present numerical results
and show that BuBv > 0 seems to be necessary to ensure the stiff stability of the discrete IBVP. Even if the
boundary condition (1.3) satisfies the SKC, there exist unstable solutions of the discrete IBVP (1.11). To isolate
the effects of a possible boundary layer and avoid the complicated interactions of boundary and initial layers, in
Section 4, we consider the IBVP (1.11) with homogeneous initial data and nonzero boundary data b(t). In Section
4.1, the numerical solution (Uj(t))j∈N can be constructed by Laplace transform. By using the Parseval’s identity,
under assumption BuBv > 0, the Proposition 1.4 is proved in Section 4.2. In Appendix A, we study an example of
how waves occur in modeling the action of an elastic string over time, which is a particular case of linear damped
wave equation. By using the Newton’s Second Law of Motion, we can derive the boundary condition BuBv > 0 for
this system.

2. Stiff stability of the semi-discrete IBVP with
homogeneous boundary condition

In this section, we consider the IBVP (1.11) for homogeneous boundary condition b ≡ 0, nonzero Cauchy data
(fj)j∈N ∈ l2(N,R2) and prove Proposition 1.3 by means of the discrete energy method.

2.1. The energy method. In the continuous case, the energy estimates are obtained using integration by parts
rules. Therefore, we make use of the similar SBP rules for the discrete approximations of ∂/∂x [7]. The sufficient
condition (1.14) is then deduced directly from discrete energy estimates.

According to the scalar product (1.8) we obtain

(2.1)
〈
∂tU,P

THPPU
〉

∆x
(t) =

∆x

2
〈∂t (HPPU0) , PU0〉 (t) + ∆x

∞∑
j=1

〈
∂tUj , P

THPPUj
〉

(t).

Since PTHPP is a symmetric positive definite matrix and using the homogeneous boundary condition BU0(t) = 0
and thus PU0 = (0,Π2PU0)T , the previous equality (2.1) can be reformulated as

(2.2)
1

2
∂t
〈
U,PTHPPU

〉
∆x

(t) =
∆x

2
∂t (Π2HPPU0) (t) (Π2PU0) (t) + ∆x

∞∑
j=1

〈
∂tUj , P

THPPUj
〉

(t).

Now, we show how the difference operator (QU)j∈N can be applied for the IBVP (1.11) for the homogeneous
boundary condition at all gridpoints including the boundary point j = 0

∂tUj(t) =
1

ε
SUj(t)−

1

2∆x
A (Uj+1(t)− Uj−1(t)) , j ≥ 1,

and

∂t (Π2HPPU0) (t) =
1

ε
Π2HPPSU0(t)− 1

∆x
Π2HPPA (U1 − U0) (t).



6 BENJAMIN BOUTIN, THỊ HOÀI THƯƠNG NGUYỄN, AND NICOLAS SEGUIN

Thus, (2.2) can be represented as

∂t
〈
U,PTHPPU

〉
∆x

(t) =
∆x

ε
(Π2HPPSU0) (t) (Π2PU0) (t) +

2∆x

ε

∞∑
j=1

〈
SUj , P

THPPUj
〉

(t)

+ (Π2HPPAU0) (t) (Π2PU0) (t)− (Π2HPPAU1) (t) (Π2PU0) (t)

−
∞∑
j=1

〈
AUj+1, P

THPPUj
〉

(t) +

∞∑
j=1

〈
AUj−1, P

THPPUj
〉

(t).

(2.3)

We observe now that
∞∑
j=1

〈
AUj−1, P

THPPUj
〉

(t) =
〈
AU0, P

THPPU1

〉
(t) +

∞∑
j=1

〈
AUj , P

THPPUj+1

〉
(t).

Since HPPAP
−1 is symmetric and PU0 = (0,Π2PU0)T , one gets〈

AU0, P
THPPU1

〉
(t) = (Π2HPPAU1) (t) (Π2PU0) (t),

and then

(2.4)
∞∑
j=1

〈
AUj−1, P

THPPUj
〉

(t) = (Π2HPPAU1) (t) (Π2PU0) (t) +

∞∑
j=1

〈
AUj+1, P

THPPUj
〉

(t).

Substituting (2.4) into (2.3), we obtain

∂t 〈U,HU〉∆x (t) + 2a
Bu
Bv

u2
0(t) +

∆x

ε
v2

0(t) = −2∆x

ε

∞∑
j=1

v2
j (t),

where the symmetric positive definite matrix H = B−2
v PTHPP is simply

H =

(
a 0
0 1

)
.

In order for the energy method to work, the boundary condition has to satisfy

2a
Bu
Bv

u2
0(t) +

∆x

ε
v2

0(t) ≥ c|U0(t)|2

for some constant c > 0 whenever Buu0(t) +Bvv0(t) = 0. This leads to the sufficient condition

2a
Bu
Bv

+
∆x

ε

(
Bu
Bv

)2

> 0,

under which we directly get the inequality

∂t 〈U,HU〉∆x (t) + c|U0|2(t) ≤ 0,

and thus finally

(2.5) 〈U,HU〉∆x (T ) + c

∫ T

0

|U0|2(t)dt ≤ 〈f,Hf〉∆x .

More into the details, the following cases occur:

• if BuBv > 0 then there exists c ≤ 2aBuBv
B2
u +B2

v

such that (2.5) holds uniformly.

• if BuBv < 0, consider some δ0 > −2aBvB
−1
u . Then there exists c(δ0) > 0 such that (2.5) holds uniformly

as soon as ∆x ≥ δ0ε with c = c(δ0). For example, if we choose δ0 = −3aBvB
−1
u then there exists

c ≤ − aBuBv
B2
u +B2

v

such that (2.5) holds uniformly.

This ends the proof of Proposition 1.3.

Let us mention that, assuming the condition (1.12) of the main theorem to be fulfilled, the condition (1.14) is
then automatically satisfied. Then, from the inequality (2.5), for any T > 0, there exists a constant CT > 0 such
that the following inequality holds

(2.6)
∫ T

0

∑
j≥0

∆x|Uj(t)|2dt+

∫ T

0

|U0(t)|2dt ≤ CT
∑
j≥0

∆x|fj |2.
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This will be used to prove Theorem 1.2.

2.2. Numerical experiments. In this section we perform some numerical experiments and observe the effective
behavior (i.e. the time evolution) of the energy

E(t) := 〈U(t), HU(t)〉∆x ,
according to whether or not the discrete strict dissipativity condition (1.14) is valid. We also have a look at the
degenerate case when the UKC (1.5) does not hold (and thus, none of the other stability conditions). As discussed
in the previous section and in the calculations of Xin and Xu [21], we expect to observe the decrease of the energy
E(t) as soon as BuBv > 0. What happens in the case BuBv < 0, but while the condition (1.14) still holds, is also
experimented.

As main parameters for the experiments, we fix the space step ∆x = 10−2, choose a = 4 and let ε and the
boundary parameter (Bu, Bv) vary. Our purpose is not to discuss the choice of a time integrator for the ODE
system, let us mention that in any case we make use of the integrated solver ode45 of MATLAB (explicit variable
time-step Runge-Kutta (4, 5) formula, the Dormand-Prince pair).

The test case we consider concerns the following data. The boundary data is the homogeneous one b ≡ 0. The
initial data is

fj =


(0, 0), if xj = 0,

(15, 10)T , if 0 < xj ≤ 1/2,

(0, 0), if xj > 1/2.

Let us first observe that these data are compatible in the corner (x, t) = (0, 0) in the sense that Bf0(0) = b(0).
Moreover the choice of an initial data with support in [0, 1/2] is motivated by the property of finite speed of prop-
agation available at the continuous side (1.1). More precisely, the exact solution we approximate has characteristic
velocities ±2 and therefore vanishes outside some space interval [0, 0.9] for small times in [0, 0.2]. Thus we choose
for our experiments the space interval [0, 1] and the time interval [0, T ] with T = 0.2. Let us however mention
that, strictly speaking, this analysis is actually wrong at the semi-discrete level and that in addition we have to
define some discrete right boundary condition at x = 1. The most natural choice in this situation is to select the
homogeneous Neumann boundary condition UJ+1(t) = UJ(t) at the rightmost cell J . We here don’t address the
precise analysis of this choice but the numerical experiments seem to behave correctly, for example when extending
the space-domain to [0, 2]. Other strategies exist in the litterature, with for example discrete transparent boundary
conditions (see for example [2]), but we postpone these possibilities to a further work.

Firstly, we choose a set of values (Bu, Bv) such that the discrete strict dissipativity condition (1.14) is satisfied
with ε = 10−2 and also with ε = 102. The Figure 2.1 shows the evolution of the energy E(t) over the time interval
t ∈ [0, 0.2].

0 0.05 0.1 0.15 0.2
TIME

250

300

350

400
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500
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R
M

(Bu,Bv)=(-10,1)
(Bu,Bv)=(-8.5,1)
(Bu,Bv)=(1,1)
(Bu,Bv)=(3,1)

0 0.05 0.1 0.15 0.2
TIME

400

410

420

430

440

450

460

470

480

490

N
O
R
M

(Bu,Bv)=(1,1)
(Bu,Bv)=(3,1)
(Bu,Bv)=(8,1)
(Bu,Bv)=(10,1)

Figure 2.1. Energy evolution with condition (1.14), for ε = 10−2 (left) and ε = 102 (right).

• We proved that for any ε ∈ (0,+∞) and (Bu, Bv) satisfying the condition (1.14), E(t) is decreasing. This
is strongly supported by the experiments. Observe also that the decrease of E(t) is true even in the case
BuBv < 0 provided the condition (1.14) is true. This is the case for example for ε = 10−2 together with
the parameters (Bu, Bv) = (−8.5, 1).
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• In the case ε = 10−2 the energy E(t) go down suddenly for small t > 0. This is due to the initial relaxation
of the solution to the equibrium system. In the case ε = 102, the decrease seems to be linear. It is not so
much influenced by the relaxation source term but more by the boundary dissipation.

Secondly, we choose a set of values (Bu, Bv) such that the condition (1.14) is not satisfied with ε = 10−2 nor
with ε = 102. Besides, we also present the evolution of the energy for parameters such that the Uniform Kreiss
Condition (1.5) is wrong. The Figure 2.2 shows the evolution of E(t) over the time interval t ∈ [0, 0.2].

0 0.05 0.1 0.15 0.2
TIME

0

0.5

1

1.5

2

2.5

3

N
O
R
M

×105

(Bu,Bv)=(-1,1)
(Bu,Bv)=(-2,1)
(Bu,Bv)=(-3,1)

0 0.05 0.1 0.15 0.2
TIME

0

0.5

1

1.5

2

2.5

3

N
O
R
M

×104

(Bu,Bv)=(-1,1)
(Bu,Bv)=(-2,1)
(Bu,Bv)=(-3,1)

Figure 2.2. Energy evolution without condition (1.14), for ε = 10−2 (left) and ε = 102 (right).

• On the boundary x = 0, for all ε > 0, if the boundary condition (1.3) with homogeneous boundary condition
b(t) ≡ 0 does not satisfy the UKC, then vε =

√
auε. Therefore the numerical scheme of the IBVP is not

stable for each fixed ε. For ε = 10−2 and ε = 102, if we choose (Bu, Bv) = (−2, 1) then the values of E(t)
increase quickly.

• When the condition (1.14) fails, then we observe for any t ∈ (0, 0.2] the inequality E(t) > E(0). In
the particular case ε = 10−2, the evolution is non-monotone and there exists 0 < t1 < t2 such that
E(t1) > E(t2). However, after that the values of E(t) increase rapidly. In the case ε = 102, the values of
E(t) rise gradually.

Clearly, the numerical results show that the energy E(t) increases in time as soon as the discrete strict dissipativity
condition (1.14) does not hold. The behavior is even worse when the UKC (1.5) is not satisfied. It seems that
the condition (1.14) is also necessary to ensure the non-increase of the energy, but let us stress that an increasing
energy with respect to time may not be in contradiction with the stiff stability.

3. Stiff strong stability of the semi-discrete IBVP

In the continuous case, the IBVP (1.1)-(1.3) is stiffly well-posed if and only if the boundary condition satisfies the
SKC (1.6). Now, we want to address the question of existence of unstable solutions in order to derive a necessary
condition for the stability of the discrete IBVP (1.11). Following W.-A. Yong in [22] and Z. Xin and W. Xu in [21],
we shall apply the normal mode analysis to derive the strict dissipativity condition (1.12).

3.1. Strictly dissipative boundary conditions. We look for (nontrivial) solutions of (1.11) satisfying the ho-
mogeneous boundary condition BU0(t) = 0 and of the form

(3.1) Uj(t) = eξt/εφj ,

with ξ ∈ C such that Re ξ > 0, and (φj)j∈N ∈ l2(N,C2). Such solutions, if they exist, clearly violate the ε−uniform
l2 estimates in (1.13). Our goal is to find a sufficient condition to ensure that they do not exist.

Substituting (3.1) into (1.11), we have to solve the following problem

φj+1 − φj−1 =
2∆x

ε
M(ξ)φj , j > 0(3.2a)

Bφ0 = 0,(3.2b)

Π2P
−THA

(
φ1 −

(
I +

∆x

ε
M(ξ)

)
φ0

)
= 0,(3.2c)
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where we denote the following matrix M(ξ), already used in [21]:

(3.3) M(ξ) = A−1(S − ξI) =
1

a

(
0 −(1 + ξ)
−aξ 0

)
.

For convenience in the notations, we recall that the eigenvalues and eigenvectors of M(ξ) can be easily found to be
respectively

(3.4) µ±(ξ) = ±
√
ξ(1 + ξ)

a
, r±(ξ) =

 1
aµ∓(ξ)

1 + ξ

 .

In the half plane {ξ ∈ C : Re ξ > 0}, the complex function

h(ξ) =
√
ξ(1 + ξ)

is analytic. (As usual, we take
√
z to be the principal branch with the branch cut along the negative real axis.)

Let ξ = α+ iβ, α > 0, and set p = α(1 + α)− β2 and q = (1 + 2α)β. Then,

Reh(ξ) = Re
√
p+ iq =

√
p+

√
p2 + q2

2
.

Now we observe that√
p2 + q2 =

√
(α(1 + α)− β2)

2
+ (1 + 2α)2β2 =

√
(α(1 + α) + β2)

2
+ β2 ≥ α(1 + α) + β2,

and therefore,

(3.5) Reh(ξ) ≥
√
α(1 + α) ≥ α.

We further note that by using the basic inequality
√

1 + x ≤ 1 + x/2 (available for any real x ≥ −1), we can also
obtain a close upper bound for Reh(ξ)

Reh(ξ) ≤ 1 + 2α

2
.

In particular, we have from the above analysis:

Reµ+(ξ) > 0, Reµ−(ξ) < 0, for Re ξ > 0.

Let P (ξ) be the 2× 2 matrix whose columns are composed by the component of the vector r±(ξ):

P (ξ) =

 1 1

aµ−(ξ)

1 + ξ

aµ+(ξ)

1 + ξ

 ,

so that M(ξ) = P (ξ)D(ξ)P
−1

(ξ) with D(ξ) = diag(µ+(ξ), µ−(ξ)). Let us also define

ψj =
(
ψIj , ψ

II
j

)T
= P

−1
(ξ)φj .

Now, the two-dimensional linear second order recurrence relations (3.2a) reads also under the form of two decoupled
scalar second order linear recurrence relations

ψIj+1 − ψIj−1 =
2µ+(ξ)∆x

ε
ψIj ,(3.6a)

ψIIj+1 − ψIIj−1 =
2µ−(ξ)∆x

ε
ψIIj .(3.6b)

Firstly, we look at the solution (ψIj )j∈N ∈ l2(N,C) to (3.6a), and assume first that the solution has the form

(3.7) ψIj = zjR1,

for some |z| < 1 and R1 ∈ C. Substituting the ansatz (3.7) into (3.6a), we then obtain z among the values

(3.8) z±(ξ) =
µ+(ξ)∆x

ε
±

√(
µ+(ξ)∆x

ε

)2

+ 1.

Applying Lemma B.1 with the property Reµ+(ξ) > 0 for Re ξ > 0, we can prove

|z−(ξ)| =

∣∣∣∣∣∣−µ+(ξ)∆x

ε
+

√(
−µ+(ξ)∆x

ε

)2

+ 1

∣∣∣∣∣∣ < 1,



10 BENJAMIN BOUTIN, THỊ HOÀI THƯƠNG NGUYỄN, AND NICOLAS SEGUIN

while, as a consequence, |z+(ξ)| > 1. Thus, the solution in l2(N,C) of (3.6a) can be represented as

ψIj = z−(ξ)jR1.

Similarly, the solution of (3.6b) can be represented as

ψIIj = w+(ξ)jR2,

with R2 ∈ C and

(3.9) w±(ξ) =
µ−(ξ)∆x

ε
±

√(
µ−(ξ)∆x

ε

)2

+ 1,

that satisfies |w+(ξ)| < 1 by again using Lemma B.1 together with the property Reµ−(ξ) < 0 for Re ξ > 0. Again
the other root satisfies |w−(ξ)| > 1.

Finally, the solution (φj)j∈N ∈ l2(N,C2) of the two-dimensional problem (3.2a) has the following form

(3.10) φj = P (ξ)Z(ξ)jR,

with Z(ξ) = diag(z−(ξ), w+(ξ)), and some R = (R1, R2)T ∈ C2 that remains undetermined at this level.
Plugging now (3.10) into the boundary conditions (3.2b) and (3.2c), R has to satisfy the equations

BPR = 0,(3.11a)

Π2P
−THAP

(
Z(ξ)−

(
I +

∆x

ε
D

))
R = 0.(3.11b)

Let us introduce the following quantities

g(ξ) =
aµ+(ξ)

1 + ξ
, k(ξ) =

aµ−(ξ)

1 + ξ
,

δ1(ξ) = z−(ξ)−
(

1 +
µ+(ξ)∆x

ε

)
,

δ2(ξ) = w+(ξ)−
(

1 +
µ−(ξ)∆x

ε

)
.

(3.12)

Thus, (3.11) can be reformulated simply as a linear system

N(ξ)R = 0,

where we set

(3.13) N(ξ) =

(
Bu + k(ξ)Bv Bu + g(ξ)Bv

−aδ1(ξ)(Bu − k(ξ)Bv) −aδ2(ξ)(Bu − g(ξ)Bv)

)
.

Proposition 3.1. Assume BuBv > 0 and consider some parameters ∆x, ε > 0. For any ξ ∈ C with Re ξ ≥ 0, one
has detN(ξ) 6= 0.

In other words, the proposition states that, under the sufficient condition BuBv > 0, the scheme (1.11) with
homogeneous boundary condition does not admit unstable solution of the form (3.1) in l2(N,C2).

Proof. We again omit the explicit reference to ξ in the notations, assuming Re ξ ≥ 0 all along this proof. From the
definition (3.13) and observing k = −g, the quantity detN reads also

detN = a
(
δ1(Bu + gBv)

2 − δ2(Bu − gBv)2
)
,

Therefore, we have

(3.14) detN 6= 0⇔

∣∣∣∣∣1− δ2
δ1

(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣ |δ1| |Bu + gBv|2 6= 0.

• Firstly, we prove that ∣∣∣∣∣δ2δ1
(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣ 6= 1.

Let δ = ∆x/ε, then since µ− = −µ+, we have

(3.15)
∣∣∣∣δ2δ1
∣∣∣∣ ≤ 1⇔ Re

√
(µ+δ)2 + 1 ≥ 0.
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Furthermore, the complex function g(ξ) is analytic and bounded in Re ξ ≥ 0. By the conformal mapping theorem,
g(ξ) maps the half plane Re ξ ≥ 0 to a simply connected closed bounded domain Ω ⊂ C whose boundary corresponds
to the image of the imaginary axis Re ξ = 0 under g. The boundary curve

g(iβ) =

√
−aβ2 + aβi

1 + iβ
, −∞ ≤ β ≤ ∞

is a closed curve which intersects the real axis only at β = 0 and at β = ±∞ with g(0) = 0, g(±i∞) =
√
a. Besides,

the curve is transversal to the real axis.
Since BuBv > 0, Re g(ξ) ≥ 0 in Re ξ ≥ 0, we observe that

(3.16)
∣∣∣∣Bu − gBvBu + gBv

∣∣∣∣2 ≤ 1⇔ Re g ≥ 0.

According to (3.15) and (3.16), we obtain

(3.17)

∣∣∣∣∣δ2δ1
(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣ ≤ 1.

Now, we assume by contradiction that for some point ξ with Re ξ ≥ 0, the following occurs∣∣∣∣∣δ2δ1
(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣ = 1⇔


∣∣∣∣δ2δ1
∣∣∣∣ = 1,∣∣∣∣Bu − gBvBu + gBv

∣∣∣∣2 = 1

⇔

{
Re
√

(µ+δ)2 + 1 = 0,

ξ = 0.

Since ξ = 0, we have Re
√

(µ+δ)2 + 1 = 1 and thus we conclude that

(3.18)

∣∣∣∣∣δ2δ1
(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣ 6= 1.

According to (3.17) and (3.18) we have ∣∣∣∣∣1− δ2
δ1

(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣ 6= 0.

• Secondly, with δ = ∆x/ε, we get |δ1| = |1 +
√

(µ+δ)2 + 1| ≥ 1 and

|Bu + gBv|2 ≥ B2
u > 0,

due to the facts BuBv > 0 and Re g(ξ) ≥ 0 for Re ξ ≥ 0.
Therefore, we proved detN 6= 0. �

3.2. Numerical experiments for the necessity of the boundary condition. Using the normal mode analysis,
we prove that the strict dissipativity condition (1.12) is sufficient to preclude the existence of unstable solutions of
the form (3.1). However, we are not able to prove that this condition is also necessary, i.e. that there exists an
unstable solution to (1.11) with homogeneous boundary condition as soon as BuBv < 0. We first present hereafter
numerical results in this advantageous case (1.12), concerning the quantity |detN | introduced in (3.13). Then we
also perform a numerically study for situations with BuBv < 0, and more importantly when Bu/Bv < −

√
a, which

is a sub-case of the SKC (1.6).

Let us denote the following quantity of interest, depending on ξ ∈ C, δ = ∆x/ε > 0 and the boundary parameters
(Bu, Bv) through their ratio:

F

(
ξ, δ,

Bu
Bv

)
= δ1

(
Bu
Bv

+ g(ξ)

)2

− δ2
(
Bu
Bv
− g(ξ)

)2

,

with quantities introduced in (3.12), and recall that we have

detN 6= 0⇔ F

(
ξ, δ,

Bu
Bv

)
6= 0.

Our numerical study is based on two complementary methods. The first one corresponds to the display of three-
dimensional data in two dimensions using contours or color-coded regions. We draw contour lines of the quantity
|F (ξ, δ, Bu/Bv) | in the complex plane for ξ, thus computed from a grid of Re ξ values in the horizontal axis and
a grid of Im ξ values in the vertical axis. For each fixed parameters δ and Bu/Bv, a contour line is then a curve
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in the ξ-plane along which the function |F (ξ, δ, Bu/Bv) | has a constant value, so that any curve joins points with
equal values.

To know whether or not the function F vanishes at some point ξ, which is a property that the contour lines may
hardly support, we also test numerically the argument principle for the following contour integral

(3.19) I(ξ0, R, δ, Bu/Bv) =
1

2πi

∫
D

F ′(ξ, δ, Bu/Bv)

F (ξ, δ, Bu/Bv)
dξ.

The involved contour curve is some positively oriented circle D ⊂ {ξ ∈ C : Re ξ > 0} defined by

D = {ξ ∈ C, |ξ − ξ0| = R} =
{
ξ0 +Reiθ, θ ∈ (0, 2π]

}
,

where the parameters ξ0 and R > 0 are chosen by hand from the contour plots. The numerical approximation
of the integral (3.19) is obtained thanks to the trapezoidal rule on a uniformly distributed grid ξ(θj) = ξ0 +
Reiθj , where θj = 2jπ/N for 1 ≤ j ≤ N for some large integer N . This computation benefits from the well-
known spectral accuracy of the method for periodic integrand (see for example [19]). The numerator of (3.19)
with values F ′(ξ(θj), δ, Bu/Bv) is approximated thanks to a spectral differentiation method [18]. We thus obtain
approximations that we denote D̂F (ξ(θj), δ, Bu/Bv). This approximation uses the discrete Fourier transform and
only the pointwise evaluation of F on the grid. It also has spectral accuracy for largeN . Finally, as an approximation
of I(ξ0, R, δ, Bu/Bv), we consider the following quantity:

IN (ξ0, R, δ, Bu/Bv) :=
−i
N

N∑
j=1

D̂F (ξ(θj), δ, Bu/Bv)

F (ξ(θj), δ, Bu/Bv)
.

The function F being holomorphic in the half plane Re ξ > 0, this approximation precisely counts the number of
zeros (with multiplicities) inside the contour D.

In any case, we choose a = 4 so that SKC condition reads Bu/Bv /∈ [−2, 0].

Firstly, for all ξ ∈ C with Re ξ > 0, we consider the values of |F (ξ, δ, Bu/Bv) | with parameters δ = 10 and
Bu/Bv = 1/40 > 0 (Figure 3.1 left) and then with parameters δ = 10−2 and Bu/Bv = 1 > 0 (Figure 3.1 right). In
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Figure 3.1. Contour plot of ξ 7→ |F (ξ, δ, Bu/Bv) |. The parameters are δ = 10, Bu/Bv =
1/40 (left) and δ = 10−2, Bu/Bv = 1 (right).

both case, we observe that there exists a constant c > 0 such that |F (ξ, δ, Bu/Bv) | ≥ c in the half plane Re ξ > 0.
From our experiments, the constant c = 10−3 seems suitable in the first case and c = 1 in the second one. Actually,
the above observations will be confirmed rigorously in Section 4.2.

Secondly, for all ξ ∈ C with Re ξ > 0, we consider the values of |F (ξ, δ, Bu/Bv)| with parameters Bu/Bv ∈
[−
√
a, 0] and various values for δ > 0. More precisely with choose Bu/Bv = −1 together with δ = 1 (Figure 3.2)

and δ = 10 (Figure 3.3).
In the first case, the contour lines promote the existence of some ξ ∈ C with Re ξ > 0 satifsying |F (ξ, 1,−1)| � 1.
Therefore we consider the circled curve D with parameters ξ0 = 0.2027 + 0.1471i and R = 2× 10−4. According to
Table 1, we compute the contour integral and for large integers N , we get IN (ξ0, R, 1,−1) = 1 up to the machine
epsilon. Thus, there exists exactly one complex number ξ inside the contour D such that F (ξ, 1,−1) = 0 and a
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corresponding unstable solution.
In the case δ = 10, for any Re ξ > 0 then |F (ξ, 10,−1)| 6= 0 (Figure 3.3). Therefore, we can not prove that for any
δ > 0, ξ ∈ C, Re ξ > 0, if Bu/Bv ∈ [−

√
a, 0] then |F (ξ, δ, Bu/Bv)| 6= 0.
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Figure 3.2. Contour plot of ξ 7→ |F (ξ, 1,−1)|, for Re ξ > 0 (left) and a close-up near a
supposed zero (right).

−0.10 −0.08 −0.06 −0.04 −0.02 0.00
Re ξ

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Im
 ξ

0.100

0.100

0.200

0.200

0.300

0.300

0.400

0.400

0.500

0.500

0.600 0.600

0.600

0.600

0.700

0.700

0.800

0.800

0.80
0

0.900

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Re ξ

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Im
 ξ

0.500

0.500

0.600

0.600

0.700

0.700
0.700

0.700

0.800

0.800

0.800

0.900

0.900

1.000

1.000

1.100

1.100

1.200

1.200

1.300

1.300

Figure 3.3. Contour plot of ξ 7→ |F (ξ, 10,−1)|, for Re ξ < 0 (left) and Re ξ > 0 (right).

Thirdly, for all ξ ∈ C with Re ξ > 0, we consider the boundary parameter Bu/Bv = −3.5 so that Bu/Bv < −
√
a.

Let us recall that in the continuous case, Z. Xin and W. Xu [21] proved that there is no unstable solution in
that case. Contrasting with this result, for the discrete IBVP (1.11), the next numerical experiments support the
following conjecture to hold true.

Conjecture 3.2. Consider the case Bu/Bv < −
√
a. There exist δ > 0 and ξ ∈ C with Re ξ > 0 such that detN(ξ) = 0.

In other words, there exists an unstable solution of (1.11) of the form (3.1).

Now, we study the behavior of |F (ξ, δ,−3.5)| with successively δ = 10 and δ = 10−2 (Figure 3.4). We can see
that in the case δ = 10, for all ξ ∈ C with Re ξ > 0, the quantity |F (ξ, δ,−3.5)| seems to be positively bounded
from below.
In the case δ = 10−2 however the contour lines promote the existence of some ξ ∈ C with Re ξ > 0 satisfying
|F (ξ, 10−2,−3.5)| � 1. Therefore we consider the circled curveD with parameters ξ0 = 0.23+101.55i and R = 10−2.
According to Table 1, we compute the contour integral and for large integers N , we get IN (ξ0, R, 10−2,−3.5) = 1 up
to the machine epsilon. Thus, there exists a complex number ξ inside the contour D such that F (ξ, 10−2,−3.5) = 0
and a corresponding unstable solution.
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32.000
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40.000
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Re ξ
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0.001
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0.002

0.002

0.002

0.002

0.002

0.002

0.0020.003
0.003

Figure 3.4. Contour plot of ξ 7→ |F (ξ, δ,−3.5)| with δ = 10 (left) and δ = 10−2 (right).

N IN (0.2027 + 0.1471i, 2× 10−4, 1,−1) IN (0.23 + 101.55i, 10−2, 10−2,−3.5)
20 0.9948572383921 + 0.019072730887644i 0.9999842664632257− 2.3902006024× 10−8i
40 0.9996520507698− 0.000184801108269i 1.00000000024755 + 7.52237161449× 10−13i
80 1.0000000869301 + 1.287245215× 10−7i 0.9999999999999999 + 4.440892098× 10−17i
160 0.9999999999999 + 2.225615525× 10−14i 0.9999999999999999 + 3.747002708× 10−17i
320 1.0000000000000007 + 1.30104× 10−17i 0.9999999999999999 + 1.061650767× 10−16i

Table 1. The contour integral IN .

4. Stiff stability of the semi-discrete IBVP with
homogeneous initial condition

For convenience in the forthcoming discussions, we recall that the semi-discrete approximation of the IBVP (1.11)
with homogeneous initial condition reads

(4.1)



∂tUj(t) +A
Uj+1(t)− Uj−1(t)

2∆x
= ε−1SUj(t), j ≥ 1, t ≥ 0,

Uj(0) = 0, j ≥ 0,

BU0(t) = b(t), t ≥ 0,

∂t
(
Π2P

−THU0

)
(t) + Π2P

−THA
U1(t)− U0(t)

∆x
= ε−1Π2P

−THSU0(t), t ≥ 0.

Dealing with difference approximations, the Laplace transform is already the more powerful tool for problems in
one space dimension. It is used to determine stability features when the energy method is not sufficient. Under the
strict dissipativity condition (1.12), the numerical solution (Uj(t))j∈N can be constructed by the method of Laplace
transform. By using the Parseval’s identity, we get the expected result of Proposition 1.4.

4.1. Solution by Laplace transform. The numerical solution Uj(t) of the IBVP (4.1) can be constructed by the
method of Laplace transform. Let

Ũj(ξ) = LUj =

∫ ∞
0

e−ξtUj(t)dt, Re ξ > 0.

With Uj(0) ≡ 0, we have
L(∂tUj) = ξŨj(ξ)− Uj(0) = ξŨj(ξ)

and therefore (4.1) become

Ũj+1(ξ)− Ũj−1(ξ) =
2∆x

ε
M(εξ)Ũj(ξ), j > 0,(4.2)

BŨ0(ξ) = b̃(ξ),(4.3)

Π2P
−THA

(
Ũ1(ξ)−

(
I +

∆x

ε
M(εξ)

)
Ũ0(ξ)

)
= 0,(4.4)
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where

b̃(ξ) = Lb =

∫ ∞
0

e−ξtb(t)dt

and the matrix M(εξ) is the same as in (3.3).
Note that the eigenvalues µ±(ξ) of the matrix M(ξ) satisfy

Reµ−(ξ) < 0, Reµ+(ξ) > 0, for Re ξ > 0.

One can proceed as in (3.6)-(3.10) to find the solution Ũj(ξ) of (4.2). For some vector R ∈ C2, it takes the form

Ũj(ξ) = P (εξ)Zj(εξ)R.

The value of R can be determined easily from the boundary condition (4.3) and (4.4)

R =
b̃(ξ)

detN(εξ)
N1(εξ),

where

(4.5) N1(ξ) = a

(
−δ2(ξ)(Bu − g(ξ)Bv)
δ1(ξ)(Bu + g(ξ)Bv)

)
and the matrix N(εξ) is the same as in (3.13). Therefore,

Ũj(ξ) =
b̃(ξ)

detN(εξ)
P (εξ)Zj(εξ)N1(εξ).

With Ũj(ξ) found, the numerical solution Uj(t) of (4.1) can be obtained by inverting the Laplace transform

Uj(t) = L−1Ũj(ξ) =
1

2π

∫ ∞
−∞

e(α+iβ)tŨj(α+ iβ)dβ, α > 0.

4.2. Stiff stability analysis. Under the strict dissipativity condition BuBv > 0, we consider Proposition 1.4 with
homogeneous initial condition (fj)j∈N ≡ 0 and nonzero boundary data b(t). Actually, we will need a more stringent
version of the estimate (3.18) uniform in δ > 0 and ξ ∈ C with Re ξ ≥ 0. This is the object of the next lemma.

Lemma 4.1. Assume BuBv > 0. There exists c ∈ (0, 1) such that for any δ =
∆x

ε
> 0 and ξ ∈ C with Re ξ ≥ 0∣∣∣∣∣δ2(ξ)

δ1(ξ)

(
Bu − g(ξ)Bv
Bu + g(ξ)Bv

)2
∣∣∣∣∣ ≤ 1− c.(4.6)

where g, δ1 and δ2 are defined in (3.12).

Proof. Firstly, from (3.15) and (3.16) we already observed, assuming BuBv > 0, that for any δ > 0 and ξ ∈ C with
Re ξ ≥ 0 ∣∣∣∣δ2(ξ)

δ1(ξ)

∣∣∣∣ ≤ 1 and |τ(g(ξ))| ≤ 1,

where we denote

τ(g) =
Bu − gBv
Bu + gBv

.

Furthermore, the function g(ξ) maps the half plane Re ξ ≥ 0 to a simply connected closed bounded domain Ω.
Thus, |τ(g(ξ))| tends to 1 only if Re g(ξ) goes to 0.

Secondly, let ξ = α+ iβ with α ≥ 0 and β ∈ R, after some calculations, one obtains

Re g(ξ) =

√√√√a
(
p+

√
p2 + q2

)
(1 + α)2 + β2

,

where
p = α(1 + α) + β2, q = β.

Thus, for all α ≥ 0, β ∈ R, Re g(ξ) goes to 0 only if ξ tends to 0. Therefore, outside a neighborhood of 0 in Re ξ ≥ 0

|τ(g(ξ))| ≤ c < 1.
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Moreover, for any δ > 0 and ξ ∈ C with Re ξ ≥ 0, the quantity
∣∣∣∣δ2(ξ)

δ1(ξ)

∣∣∣∣ tends to 1 only if Re
√

(µ+(ξ)δ)2 + 1 goes

to 0. However, in a neighborhood of 0 in Re ξ ≥ 0, for any δ > 0, Re
√

(µ+(ξ)δ)2 + 1 ≥ c1 > 0 (for the details, we
refer the reader to the technical Lemma B.2). Thus,∣∣∣∣δ2(ξ)

δ1(ξ)

∣∣∣∣ ≤ c2 < 1,

and the result follows. �

Proposition 4.2. Assume BuBv > 0. There exists C > 0 such that for any δ =
∆x

ε
> 0 and ξ ∈ C with Re ξ ≥ 0

|detN(ξ)|2

‖N1(ξ)‖2
≥ CB2

u.

Before we prove the above result, let us notice that it easily implies the previous Proposition 3.1. Actually,
the reader has to understand this result as being the Uniform version of the previous one, in the same way the
UKC is the uniform version of the Kreiss Condition for continuous hyperbolic PDEs, or the discrete UKC is the
uniform version of the Godunov Ryabenkii condition for the (semi-)discrete IBVP, except now we also deal with
the parameters ε and ∆x (or equivalently with the single parameter δ).

Proof. From (3.13) and (4.5), omitting the explicit dependence in ξ, the we can compute on the one hand

|detN |2 = a2

∣∣∣∣∣1− δ2
δ1

(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣
2

|δ1|2 |Bu + gBv|4

and on the other hand

‖N1‖2 = a2

(
1 +

∣∣∣∣∣δ2δ1
(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣
)
|δ1|2 |Bu + gBv|2 .

Thus we have the explicit formula

|detN |2

‖N1‖2
=

∣∣∣∣∣1− δ2
δ1

(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣
2(

1 +

∣∣∣∣∣δ2δ1
(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣
)−1

|Bu + gBv|2 .

Let us investigate separately any of the above terms. According to Lemma 4.1, there exists c > 0 such that for any
ξ ∈ C, Re ξ ≥ 0 and δ > 0, ∣∣∣∣∣1− δ2

δ1

(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣
2

≥ c

and from (3.17), we have (
1 +

∣∣∣∣∣δ2δ1
(
Bu − gBv
Bu + gBv

)2
∣∣∣∣∣
)−1

≥ 1/2.

Since BuBv > 0 and Re g(ξ) ≥ 0 for Re ξ ≥ 0, we finally get

|Bu + gBv|2 ≥ B2
u.

Therefore, there exists C > 0 such that
|detN |2

‖N1‖2
≥ CB2

u.

�

Now, we prove the uniform l2 estimate (1.16). By an application of the following Parseval’s identity [7, 17]:∫ ∞
0

e−2αt|Uj(t)|2dt =
1

2π

∮ ∞
−∞
|Ũj(α+ iβ)|2dβ, α > 0,

we have ∫ ∞
0

e−2αt|U0(t)|2dt =
1

2π

∮ ∞
−∞
|Ũ0(α+ iβ)|2dβ

=
1

2π

∮ ∞
−∞
|̃b(ξ)|2 ‖N1(εξ)‖2

|detN(εξ)|2
|P (εξ)|2dβ.
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where ξ = α+ iβ. We fix α > 0 from now on.
According to Proposition 4.2, there exists C1 > 0 such that for any δ > 0, ξ ∈ C, Re ξ ≥ 0,

‖N1(εξ)‖2

|detN(εξ)|2
≤ C1.

On the other hand, since k(ξ) = −g(ξ) is uniformly bounded in Re ξ ≥ 0, we obtain∫ ∞
0

e−2αt|U0(t)|2dt . 1

2π

∮ ∞
−∞
|̃b(α+ iβ)|2dβ

.
∫ ∞

0

e−2αt|b(t)|2dt.
(4.7)

This, together with a consequence of the hyperbolicity of (1.1) by using the classical argument of changing the data
b to zero after time T and unchanged before time T , we obtain the desired boundary estimate

(4.8)
∫ T

0

|U0(t)|2dt ≤ KT

∫ T

0

|b(t)|2dt.

Similarly, by an application of the Parseval’s identity, we have∫ ∞
0

∑
j≥0

e−2αt|Uj(t)|2dt =
1

2π

∮ ∞
−∞

∑
j≥0

|Ũj(α+ iβ)|2dβ

=
1

2π

∮ ∞
−∞

∑
j≥0

|̃b(ξ)|2 ‖N1(εξ)‖2

|detN(εξ))|2
|P (εξ)|2(|z−(εξ)|2j + |w+(εξ)|2j)dβ,

where z−(εξ) and w+(εξ) are the same as in (3.8) and (3.9).

Since k(εξ) = −g(εξ) is uniformly bounded in Re ξ ≥ 0, ε > 0 and using Proposition 4.2, we obtain∫ ∞
0

∑
j≥0

e−2αt|Uj(t)|2dt .
1

2π

∮ ∞
−∞

∑
j≥0

|̃b(ξ)|2(|z−(εξ)|2j + |w+(εξ)|2j)dβ.

On the other hand, since µ−(ξ) = −µ+(ξ) in Re ξ ≥ 0, we get |z−(εξ)| = |w+(εξ)|, and thus∫ ∞
0

∑
j≥0

e−2αt|Uj(t)|2dt .
1

2π

∮ ∞
−∞

∑
j≥0

|w+(εξ)|2j |̃b(ξ)|2dβ.

According to (3.4) and (3.5), for all ε > 0, ξ ∈ C, Re ξ > 0, we have

Reµ−(εξ) ≤ −εRe ξ√
a

< 0.

Furthermore, we can prove

(4.9)

Reµ−(εξ)∆x

ε
+

√(
Reµ−(εξ)∆x

ε

)2

+ 1

2

≤
(
η∆x+

√
η2∆x2 + 1

)2

,

where η = −Re ξ√
a
. According to Lemma B.1 and (4.9), we have now

∑
j≥0

|w+(εξ)|2j =

1−

∣∣∣∣∣∣µ−(εξ)∆x

ε
+

√(
µ−(εξ)∆x

ε

)2

+ 1

∣∣∣∣∣∣
2

−1

≤
(

1−
(
η∆x+

√
η2∆x2 + 1

)2
)−1

.

If we assume that ∆x ≤ − 3

4η
then

∑
j≥0 |w+(εξ)|2j ≤ −η−1∆x−1, and therefore, by an application of the Parseval’s

identity

(4.10) α∆x

∫ ∞
0

∑
j≥0

e−2αt|Uj(t)|2dt .
1

2π

∮ ∞
−∞
|̃b(ξ)|2dβ .

∫ ∞
0

e−2αt|b(t)|2dt.

According to (4.7) and (4.10), there exists c > 0 such that

(4.11) α∆x

∫ ∞
0

∑
j≥0

e−2αt|Uj(t)|2dt+

∫ ∞
0

e−2αt|U0(t)|2dt ≤ c
∫ ∞

0

e−2αt|b(t)|2dt.
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This ends the proof of Proposition 1.4.

To complete the proof of Theorem 1.2, observe that from (4.8), (4.10) and the hyperbolicity of (1.1), for any
T > 0, there exists a constant CT > 0 such that

(4.12)
∫ T

0

∑
j≥0

∆x|Uj(t)|2dt+

∫ T

0

|U0(t)|2dt ≤ CT
∫ T

0

|b(t)|2dt.

By linearity, we can break up the IBVP (1.11) into two simpler problems, one with homogeneous initial condition
and the other with homogeneous boundary condition. Finally from (2.6) and (4.12), we get the expected result of
Theorem 1.2.

Appendix A. Modeling an elastic string

A.1. Derivation of the damped wave equation. The damped wave equation in one space dimension can be
derived in a variety of different physical settings. As an example of how waves occur in physical systems, we now
derive the damped wave equation for a stretched string. Other physical systems, such as sound waves in air, can
be analyzed in a similar way (see [14, 6]). We start by considering model the action of an elastic string over time.
Consider a tiny element of the string between x and x+ ∆x

∆x

∆w

T (x, t)

T (x+ ∆x, t)

θ(x, t)

θ(x+ ∆x, t)

x

w(x, t)

Figure A.1. Modeling an Elastic String.

The following quantities are needed in our derivation (see Figure A.1):

• w(x, t) denotes vertical displacement of the string from the x−axis at position x and time t.
• θ(x, t) is an angle between the string and a horizontal line at position x and time t.
• T (x, t) is a tension in the string at position x.

We can dispose of all the θ’s observing from the figure that

tan θ(x, t) = lim
∆x→0

∆w

∆x
=
∂w

∂x
: slope of tangent at (x, t) in wx− plane(A.1)

The Newton’s Second Law of Motion (F = ma) states that

F = (ρ∆x)
∂2w

∂t2
(A.2)

where ρ is the linear density of the string and ∆x is the length of the segment.
The force F comes from the tension in the string and also the damping force. The damping force acts in the

opposite direction to the motion and is denoted by −c∂w
∂t

with c > 0. We assume for our model that there are only
transverse vibrations, and so the string does not move horizontally, but only vertically. So, we know that the total
horizontal force must be zero. Balancing the forces in the horizontal direction gives

T (x+ ∆x, t) cos θ(x+ ∆x, t) = T (x, t) cos θ(x, t) = τ,(A.3)
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where τ is the constant horizontal tension. Balancing the forces in the vertical direction yields

F = T (x+ ∆x, t) sin θ(x+ ∆x, t)− T (x, t) sin θ(x, t)− c∂w
∂t

∆x

= T (x+ ∆x, t) cos θ(x+ ∆x, t) tan θ(x+ ∆x, t)− T (x, t) cos θ(x, t) tan θ(x, t)− c∂w
∂t

∆x.

(A.4)

Substituting (A.3) into (A.4) yields,

F = τ (tan θ(x+ ∆x, t)− tan θ(x, t))− c∂w
∂t

∆x = τ

(
∂w

∂x
(x+ ∆x, t)− ∂w

∂x
(x, t)

)
− c∂w

∂t
∆x.

So, the vertical component of Newton’s Law becomes

ρ
∂2w

∂t2
(ξ, t) = τ

1

∆x

(
∂w

∂x
(x+ ∆x, t)− ∂w

∂x
(x, t)

)
− c∂w

∂t

for ξ ∈ [x, x+ ∆x]. Dividing by ρ and letting ∆x tends to 0 gives

∂2w

∂t2
=
τ

ρ

∂2w

∂x2
− c

ρ

∂w

∂t
.(A.5)

In order to guarantee that the equation (A.5) has a unique solution, some initial and boundary conditions have
to be suitably selected: two initial conditions and boundary condition (see [14, 6]).

A.2. Initial conditions. The initial position of the string and its initial velocity may be written as follow

w(x, 0) = f(x) and wt(x, 0) = h(x).(A.6)

To see why we need two initial condition, note that the Taylor series of w(x, t) about t = 0 is

w(x, t) = w(x, 0) + wt(x, 0)t+ wtt(x, 0)
t2

2
+ wttt(x, 0)

t3

3!
+ ...

From the initial condition (A.6) and the PDE (A.5) give

wtt(x, 0) = (τ/ρ)wxx(x, 0)− (c/ρ)wt(x, 0) = (τ/ρ)f ′′(x)− (c/ρ)h(x),

wttt(x, 0) = (τ/ρ)wtxx(x, 0)− (c/ρ)wtt(x, 0) = (τ/ρ)h′′(x)− (cτ/ρ2)f ′′(x) + (c/ρ)2h(x).

Higher order terms can be found similarly. Therefore, the two initial conditions for w(x, 0) and wt(x, 0) are sufficient
to determine w(x, t) near t = 0.

A.3. Boundary condition. We assumed the string is connected to frictionless cylinders of mass m1 that move
vertically on tracks at x = 0 with an acceleration g(t).

x
0

m1g(t)

θ

T

Figure A.2. Boundary condition at x = 0.

Lemma A.1. For any c > 0, ρ > 0 and m1 > 0, the boundary condition can be rewritten as follows

Buwx(0, t)−Bvwt(0, t) = g(t).

with BuBv > 0.
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Proof. Performing the force balance at x = 0 gives

T sin θ − c∂w
∂t

= m1g(t).

In other words, the vertical tension in the string balances the mass of the cylinder. However,
τ = T cos θ = const and tan θ = wx, so that the previous equation becomes

T cos θ tan θ − c∂w
∂t

= m1g(t),

or also, denoting Bu = τ/m1 and Bv = c/m1

Buwx(0, t)−Bvwt(0, t) = g(t).

�

To summarize, the IBVP of the linear damped wave equation in one space dimension reads

PDE :
∂2w

∂t2
(x, t) = a

∂2w

∂x2
(x, t)− 1

ε

∂w

∂t
(x, t), x > 0, t > 0,

BC : Buwx(0, t)−Bvwt(0, t) = g(t), t > 0,

IC : w(x, 0) = f(x), wt(x, 0) = h(x) t > 0.

where a = τ/ρ, and ε = ρ/c. Let now denote uε(x, t) = wx(x, t) and vε(x, t) = −wt(x, t). The previous IBVP can
be represented as

(A.7)
∂tu

ε(x, t) + ∂xv
ε(x, t) = 0,

∂tv
ε(x, t) + a∂xu

ε(x, t) = −1

ε
vε(x, t),

with the initial data

uε(x, 0) = f ′(x), vε(x, 0) = −h(x),

and the linear boundary condition

Buu
ε(0, t) +Bvv

ε(0, t) = g(t).

Remark A.2. The boundary condition BuBv > 0 corresponds to stability condition (1.12) of the linear damped wave
equation (A.7).

Appendix B. Technical Lemmas

Lemma B.1. Let v ∈ C with Re v < 0, then
∣∣v +

√
v2 + 1

∣∣ ≤ Re v +
√

(Re v)2 + 1 < 1.

Proof. Assume that v = x+ yi with x < 0 and y ∈ R.
Case 1: Consider first the easy case y = 0. Then∣∣∣v +

√
v2 + 1

∣∣∣ = x+
√
x2 + 1,

but since x < 0, one obtains by simple considerations the inequality x+
√
x2 + 1 < 1.

Case 2: In the general case y 6= 0, let us begin with some notations:

v2 + 1 = p1 + q1i, with p1 = x2 − y2 + 1 and q1 = 2xy,

√
v2 + 1 = a1 + b1i, with a1 =

√
p1 +

√
p2

1 + q2
1

2
, and b1 = sgn(q1)

√
−p1 +

√
p2

1 + q2
1

2
.

Together with these notations, some algebraic identities are available:

(B.1) x2 + b21 + 1 = a2
1 + y2 and y =

a1b1
x

,

Firstly, we prove the next inequality

(B.2) a1x
2 + b21x+ a1b

2
1 ≥ 0.

We can see that the inequality (B.2) is equivalent to a1(x2 + b21) ≥ −xb21 and since x < 0, the latter is now
equivalent to its squared version, that reads

a2
1x

2(x2 + 2b21) ≥ b41(x2 − a2
1).



A STIFFLY STABLE SEMI-DISCRETE SCHEME FOR THE CHARACTERISTIC IBVP 21

By the definition of a1, b1 above, the previous inequality is successively

4x2

(
p1 +

√
p2

1 + q2
1

)(
x2 − p1 +

√
p2

1 + q2
1

)
≥
(
−p1 +

√
p2

1 + q2
1

)2(
2x2 − p1 −

√
p2

1 + q2
1

)
⇔ 4x4

(
p1 +

√
p2

1 + q2
1

)
+ 2x2q2

1 ≥
(
p1 −

√
p2

1 + q2
1

)(
4x2p1 + q2

1

)
⇔ 4x4

(
p1 +

√
p2

1 + q2
1

)
+ 2x2 × 4x2y2 ≥

(
p1 −

√
p2

1 + q2
1

)(
4x2(x2 − y2 + 1) + 4x2y2

)
⇔ 2x2

(√
p2

1 + q2
1 + y2

)
≥ p1 −

√
p2

1 + q2
1 .

But, for any p1, q1 ∈ R, this is easy to see that p1−
√
p2

1 + q2
1 ≤ 0 and thus any of the previous inequalities

and so the expected one (B.2) follow.
Now let us observe that the required inequality |v +

√
v2 + 1| ≤ x+

√
x2 + 1 is fully equivalent to

(B.3) (x+ a1)2 + (y + b1)2 ≤ (x+
√
x2 + 1)2,

that we prove now. According to the algebraic identities in (B.1), by eliminating the occurences of y, the
previous formula is equivalent to

a1x+ b21 +
a1b

2
1

x
≤ x

√
x2 + 1.

In addition, we observe that x2 + 1 = x−2
(
a2

1x
2 + a2

1b
2
1 − b21x2

)
, and thus the previous inequality is equiv-

alent to

(B.4) a1x+ b21 +
a1b

2
1

x
≤ −

√
a2

1x
2 + a2

1b
2
1 − b21x2.

Since x < 0 and from the inequality (B.2), the formula (B.4) reads also(
a1x

2 + b21x+ a1b
2
1

)2 ≥ x2
(
a2

1x
2 + a2

1b
2
1 − b21x2

)
⇔ (x+ a1)2(x2 + b21) ≥ 0.

This ends the proof of the inequality (B.3). Now since Re v < 0, the analysis of the first easy case again
applies to get Re v +

√
(Re v)2 + 1 < 1.

This ends the proof of Lemma B.1. �

Lemma B.2. Let a > 0 be fixed and consider for any ξ ∈ C with Re ξ ∈ [0, 1] and Im ξ ∈ [−1, 1]:

µ+(ξ) =

√
ξ(1 + ξ)

a
.

There exists a constant c > 0, independent of δ and ξ such that

Re

√
1 + (µ+(ξ)δ)

2 ≥ c.

Proof. Let us denote ξ = α + iβ with α ∈ [0, 1] and β ∈ [−1, 1] and introduce the notation δ = δ2/a. After some
calculations, one obtains

Re

√
1 + (µ+(ξ)δ)

2
=

1√
2

√
h(α, β, δ),

with the function with positive real values:

h(α, β, δ) = 1 + δ
(
α(1 + α)− β2

)
+

√(
1 + δ (α(1 + α)− β2)

)2
+ δ

2
β2(1 + 2α)2.

Now, the required uniform lower bound will be provided directly by a uniform lower bound for the quantity h(α, β, δ),
what we are looking for now by exhaustion.

Case 1: For any δ > 0, α ∈ [0, 1] and β = 0, we have the simple lower bound

h(α, 0, δ) = 2
(
1 + δα(1 + α)

)
≥ 2.

Case 2: For any δ > 0, α ∈ [0, 1] and β ∈ [−1, 0) ∪ (0, 1] such that β2 ≤ α(1 + α), we get

h(α, β, δ) ≥ 1 +

√
1 + δ

2
β2(1 + 2α)2 ≥ 2.



22 BENJAMIN BOUTIN, THỊ HOÀI THƯƠNG NGUYỄN, AND NICOLAS SEGUIN

Case 3: For any δ > 0, α ∈ [0, 1] and β ∈ [−1, 0) ∪ (0, 1] such that β2 > α(1 + α), let us introduce the
quantity τ := β2 − α(1 + α), so that

h(α, β, δ) = 1− τδ +

√(
1− τδ

)2
+ δ

2
β2(1 + 2α)2.

Note that α being nonnegative

0 < τ ≤ β2 ≤ 1.(B.5)

Subcase 3.a: Assume that δ ≤ τ−1. Then, 1− τδ ≥ 0 and therefore

h(α, β, δ) ≥
√(

1− τδ
)2

+ δ
2
β2(1 + 2α)2.

We then can compute

h2(α, β, δ) ≥
(
1− τδ

)2
+ δ

2
β2(1 + 2α)2 ≥

(
1− τδ

)2
+ δ

2
β2.

From (B.5), we then have successively

h2(α, β, δ) ≥ 1− 2τδ + τ2δ
2

+ δ
2
τ ≥ 1− 2τδ + τ2δ

2
(

1 +
1

τ

)
≥ 1− 2τδ + 2τ2δ

2 ≥ 1

2
,

where the last inequality comes from the property τδ ∈ (0, 1]. Thus we get

h(α, β, δ) ≥ 1√
2
.

Subcase 3.b: The last case is for δ > τ−1.Then we can rewrite

h(α, β, δ) = −
√(

1− τδ
)2

+

√(
1− τδ

)2
+ δ

2
β2(1 + 2α)2

≥ −
√(

1− τδ
)2

+

√(
1− τδ

)2
+ δ

2
β2.

From (B.5) and the subcase assumption, we get successively

δβ2 >
β2

τ
≥ 1.

Thus,

h(α, β, δ) ≥ −
√(

1− τδ
)2

+

√(
1− τδ

)2
+ δ

≥ δ√(
1− τδ

)2
+

√(
1− τδ

)2
+ δ
≥ δ

2

√(
1− τδ

)2
+ δ

.

On the other hand, from (B.5) and the subcase assumption and since δ
2 ≥ δ ≥ 1, we have successively(

1− τδ
)2

+ δ ≤ 1 + τ2δ
2

+ δ ≤ 1 + (τ2 + 1)δ
2 ≤ 1 + 2δ

2
.

Thus finally, and since δ > 1, we have

h(α, β, δ) ≥ δ

2

√
1 + 2δ

2
≥ 1

2
√

3
.

�
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