
HAL Id: hal-02136750
https://hal.science/hal-02136750v1

Submitted on 22 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Versatile, Linear Complexity Algorithm for Flow
Routing in Topographies with Depressions

Guillaume Cordonnier, Benoît Bovy, Jean Braun

To cite this version:
Guillaume Cordonnier, Benoît Bovy, Jean Braun. A Versatile, Linear Complexity Algorithm for
Flow Routing in Topographies with Depressions. Earth Surface Dynamics, 2019, 7 (2), pp.549-562.
�10.5194/esurf-2018-81�. �hal-02136750�

https://hal.science/hal-02136750v1
https://hal.archives-ouvertes.fr

A Versatile, Linear Complexity Algorithm for Flow Routing in
Topographies with Depressions
Guillaume Cordonnier1,2, Benoît Bovy3, and Jean Braun3,4

1Univ. Grenoble Alpes, 1251 Avenue Centrale Domaine Universitaire, Saint-Martin-d’Hères, France
2Inria Grenoble Rhône-Alpes, 655 Avenue de l’Europe, Montbonnot-Saint-Martin, France
3GFZ German Research Centre for Geosciences, Telegrafenberg 14473, Potsdam, Germany
4University of Potsdam, Am Neuen Palais 10, Potsdam, Germany

Correspondence to: Guillaume Cordonnier

Abstract. We present a new algorithm for solving the common problem of flow trapped in closed depressions within digital

elevation models, as encountered in many applications relying on flow routing. Unlike other approaches (e.g., the so-called

"Priority-Flood" depression filling algorithm), this solution is based on the explicit computation of the flow paths both within

and across the depressions through the construction of a graph connecting together all adjacent drainage basins. Although

this represents many operations, a linear time-complexity can be reached for the whole computation, making it very efficient.5

Compared to the most optimized solutions proposed so far, we show that this algorithm of flow path enforcement yields the

best performance when used in landscape evolution models. Besides its efficiency, our proposed method has also the advantage

of letting the user choose among different strategies of flow path enforcement within the depressions (i.e., filling vs. carving).

Furthermore, the computed graph of basins is a generic structure that has the potential to be reused for solving other problems

as well , such as the simulation of erosion. This sequential algorithm may be helpful for those who need to, e.g., process digital10

elevation models of moderate size on single computers or run batches of simulations as part of an inference study.

Copyright statement. Author(s) 2018

1 Introduction

Finding flow paths on a topographic surface represented as a Digital Elevation Model (DEM) is a very common task that is

required by many applications in domains such as hydrology, geomorphometry, soil erosion and landscape evolution modeling,15

and for which various algorithms have been proposed either for gridded DEMs (e.g., O’Callaghan and Mark, 1984; Jenson and

Domingue, 1988; Quinn et al., 1991; Tarboton, 1997) or unstructured meshes (e.g., Jones et al., 1990; Banninger, 2007).

Closed depressions may arise in DEMs because they are real topographic features or result from interpolation error during

DEM generation or its lack of resolution. These spurious local minima need to be resolved because they disrupt flow routing,

produce hydrologically unrealistic results or introduce artificial singularities that may result from a sudden, unrealistic jump20

1

(a) Without Correction

0 10 km

(b) With Correction

Figure 1. Simulation of the evolution of an escarpment over 70 time steps of 1,000 years each and on a 1024× 256 regular grid, using the

FastScape model (Braun and Willett, 2013, see also section 3 below). The grid nodes of the leftmost column (boundary nodes) have a fixed

elevation while the initial elevation of the other nodes corresponds to a 500 m high flat surface with small random perturbations. Using the

same set of model parameters, simulation results are shown (a) without and (b) with correction of flow routing in local depressions at each

time step. As illustrated, flow path disruptions in (a) cause a much slower migration of the escarpment, while the topography predicted in (b)

is usually considered as more realistic, especially under temperate or humid climates.

in computing discharge. Flow routing is often corrected by filling depressions (e.g., Jenson and Domingue, 1988), carving

channels through artificial sills (Rieger, 1998) or by using hybrid breaching-filling techniques (Lindsay, 2016).

Although not having a linear time complexity, the most recent algorithms of depression removal – e.g., the "Priority-Flood"

algorithm and its variants (Barnes et al., 2014a; Zhou et al., 2016; Wei et al., 2018) – have been optimized so that they can

be used efficiently on large datasets. To increase performance for very large datasets, further optimization efforts have been5

focused primarily on rather complex, parallel variants of these algorithms (Barnes, 2016; Zhou et al., 2017).

Yet, in some applications flow path enforcement still remains the main bottleneck. This is for example the case in many

Landscape Evolution Models (LEMs) simulating an evolving topography (see Tucker and Hancock, 2010, for a review) and that

rely on flow routing to compute erosion rates. To produce realistic results, flow path enforcement is often applied many times,

i.e., at each simulation time step (Figure 1), even when this eventually becomes irrelevant as the modelled erosional processes10

usually tend to remove depressions rather than deepen or add new ones (Braun and Willett, 2013). Furthermore, LEMs are also

2

used as forward models in sensitivity analyses and/or inferences on the parameters that control erosional processes, which often

require running a large number of models to adequately explore the parameter space. Parallel flow routing and hydrological

correction algorithms don’t help much here, as grid-search and/or sampling methods (e.g., Sambridge, 1999) are generally

easier to implement and more effective to execute in parallel. Highly optimized, sequential algorithms are still needed in this

case.5

We have developed a new method of flow enforcement that is based on the explicit building of a graph of drainage basins

(possibly encompassing depressions) and the computation of the flow paths both within inner and across those basins. This

idea was first introduced in a Computer Graphics implementation of the Stream Power Law (Cordonnier et al., 2016), but

with a sub-optimal complexity. Although this approach may appear naive at first glance, we have improved it by using fast

algorithms of linear complexity at each step of the procedure, which now makes the whole computation very efficient. Not only10

this method enable the use of a wide range of techniques of flow enforcement within the closed depressions (e.g., depression

filling, channel carving or more advanced techniques); but it also provides generic data structures that could potentially be

reused for solving other problems like modeling the behavior of erosion/deposition processes within those depressions.

After a detailed presentation of the different steps of the method, we will show in the sections below through some results

how our algorithm behaves and performs compared to existing solutions of flow path enforcement. We will finally discuss the15

assets and limitations of our method, with some focus on landscape evolution modeling applications.

2 Algorithm

The input of the algorithm is a topography T = (N ,E), where N is a set of nodes and E is a set of edges that link pairs

of neighbor nodes. A node n is given a horizontal position pn and a vertical elevation zn. A topography may for example

result from a triangulation or correspond to a regular grid of 4-connectivity (i.e, four neighbors per nodes) or 8-connectivity20

(i.e., also including diagonal neighbors). We follow the conventions of Braun and Willett (2013) to define flow paths on the

topography: each node n is given (1) a single flow receiver, rcv(n), which corresponds to the one of its (strictly) downslope

neighbors having the steepest slope, and (2) a set of flow donors, Donors(n), which is a subset of the neighbors of n and is

defined as Donors(n) = {k ∈Nb(n), s.t. rcv(k) = n}. We set rcv(n) =∅ when n is a singular node: it either corresponds to

a user-defined boundary node (e.g., a node on the domain boundary) or a local minimum in the topography, i.e., a node inside25

the domain where all of its neighbors have a higher elevation, and either correspond to a pit or a flat-bottomed depression in

Lindsay (2016) terminology.

We propose an algorithm that updates the receivers of a subset ofN such that the flow is never trapped in local minima. This

algorithm primarily aims at resolving local minima in the context of flow routing and thus leaves the elevation of the nodes

unchanged. Hence it breaks the previously introduced definition of a flow receiver: the new receivers assigned by the algorithm30

generally produce some localized "upslope flow". While this seems unnatural and may not be wanted, the data structures

used by the algorithm provide enough information to efficiently address this issue later depending on the application, which

3

is beyond the scope of this work. Still, the algorithm ensures that the updated flow routing stays consistent across the whole

topography by respecting the following properties for each node n of the topography:

1. There exists a single boundary node b (not a local minimum), and a unique flow path from n to b. The flow path is

defined as the set of nodes P = (n, rcv(n), rcv(rcv(n)), ...,b).

2. This flow path does not contains any cycle, i.e., each node appears only once in P5

3. The receivers defining P are chosen such that it satisfies properties 1 and 2, and minimizes the energy E, defined as:

E =
∑
i∈P

Ei (1)

As a first approximation, we set Ei = zi (the altitude of the node). We will discuss later the special case of nodes under water

level.

Our method is essentially based on the computation of a graph connecting adjacent drainage basins. We define a basin as10

the set of all nodes that flow toward the same singular node (Figure 2 (b)). A basin is either a boundary basin or an inner basin

depending on whether the singular node is a boundary node or a local minimum. To better explain the problem that we want

to solve, we consider a filled topography as the result of an ideal physical process where a perfectly fluid material has been

poured onto an impermeable ground and stabilized at steady state. For a node n, we define as water level (wn) the elevation

of the fluid surface, and as a spill any node s such that ∃d ∈Donors(s)|wd =ws and zs > wrcv(s). Note that for a flow routing15

observing the aforementioned properties, the water level can be computed as wn =max(wrcv(n),zn). We also use the term

depression from Lindsay (2016) terminology, and we define it with respect to a basin B as a subset of nodes of B under water

level, characterized by wn =wrcv(n). Note that the water level of a boundary basin corresponds to the elevation of its associated

boundary node so that it contains no depression. In the case of nested depressions, the water level of a basin may be higher

than the elevations of all its nodes, which means that the spill does not always belong to B. The energy of the nodes should be20

changed to Ei =wi, but as described later, one may choose various routing strategies inside the depressions depending on the

application. Therefore, we allow any path within depressions by setting Ei to zero inside them, and keeping Ei = zi elsewhere.

One may break the problem of flow path enforcement down to three, smaller problems: find the spill of each depression,

force the flow within the depressions to be routed toward their respective spill, and ensure that the flow through the spills is

properly routed into adjacent basins. The proposed algorithm addresses this problem in an explicit manner and can be divided25

into three main stages:

1. Compute the basins and link all pairs of adjacent basins (Figure 2 (b)).

2. Select only some of the basin links computed at the previous stage and orient them such that the flow is routed consis-

tently across adjacent basins, from inner basins toward the boundary basins (Figure 2 (c)). This operation is not trivial:

an optimal selection needs a global knowledge of the whole basin graph. To do so, we use an algorithmic structure: a30

4

(a) Mesh: Nodes and Edges (b) Basin Graph: Basins and Links (c) Minimum Spanning Tree:
Basin Outflows

Figure 2. Illustration of the inputs and the first steps of the proposed flow routing algorithm. (a) The input topography is defined on top of a

mesh by a set of nodes and edges. A single edge is selected for each node, it connects the node to its flow receiver, i.e., its neighbor with the

steepest slope. Nodes with no receiver are local minima (colored in the figure). (b) All the nodes that flow to a same local minimum belong

to the same basin. A graph of basins is created by connecting together adjacent basins with links, which are materialized on the mesh by

edges representing the passes, i.e., the crossings of lowest elevation that connect each pair of basins (black thick arrows). (c) Some of the

links are selected by computing a minimum spanning tree and the corresponding passes are oriented in the direction of the flow across the

basins (unidirectional arrows). This structure is then used to update the flow receivers so that the flow reaches the domain boundaries without

being interrupted.

minimum spanning tree of the basin graph. We propose here two algorithms, a simple one with O(n logn) complexity,

and a more complex one with O(n) complexity.

3. Update the flow receivers. Using the links selected at the previous stage, we update (only some of) the receivers to

enforce the flow both within and across inner basins so that it is ensured to finally reach the boundary basins and their

associated boundary nodes. We propose three different methods (one may choose a method over another depending on5

the specific problem to solve).

Each of these stage processes the whole DEM, and as such are run only once for a given topography. They are each detailed

in the next sections.

2.1 Basin computation and linkage

This first stage consists in first assigning a basin identifier, basin_id(n), to each node n of the topography. The identifiers are10

added sequentially by starting at singular nodes and parsing the nodes using a depth first traversal in the direction of the donors

(see appendix A1). The case of flat bottomed depressions does not require any particular treatment: all nodes within flat areas

are singular nodes and therefore are each assigned a unique basin identifier.

5

Then, the links connecting all pairs of adjacent basins are retrieved. To each link also corresponds an edge of the topography,

here called a pass, which represents the crossing of lowest elevation between the two basins. For example, the linkL= (B1,B2)

connects the basins B1 and B2 and has the corresponding Pass(L) = (n1,n2), where n1 ∈B1 and n2 ∈B2 and where the

chosen (n1,n2) minimizes zpass(L) =max(zn1 ,zn2). We define a single procedure to retrieve both the links and their pass (see

appendix A2). This procedure parses each edge of the topography: if the two nodes of the current edge have each different5

basin identifiers, then (1) it adds a new link if no link has been already set for these two basins, and (2) it sets or maybe updates

the pass of that link with the current edge.

The sets of basins B and the set of retrieved links L both define a basin graph. It is worth noting that, at this stage, the

links/passes are not oriented and that only one link/pass is stored for two adjacent basins. The procedure described above runs

sequentially and won’t add the link (B2,B1) if it already added the link (B1,B2).10

2.2 Flow routing across adjacent basins

This second stage tackles the problem of selecting the right subset of links so that we obtain consistent flow paths on the basin

graph. To illustrate the proposed solution, let’s start from an inner basin. If it is filled with water, the water level will raise until

it finds a pass where water eventually pours into another, adjacent basin. The associated link is then called the outflow of the

basin. Hence, routing the flow across the basins consists in connecting all outflows such that the resulting flow paths, from15

inner basins to the boundary basins, have the same properties than stated above, i.e., those paths are unique, contain no cycle

and minimize the energy needed to reach the boundary basins.

If we add to the basin graph a virtual basin (let’s call it external basin) to which we link all the boundary basins (i.e., the

external basin may be viewed as a bucket collecting all the flow that leaves the domain), then we can represent the connected

outflows using a specific algorithmic structure: a tree. More specifically, a basin tree is a tree that satisfies the properties above:20

it actually corresponds to a minimum spanning tree of the basin graph, i.e., a subset of the basin graph resulting from a selection

of the links so that the following energy is minimized:

Etree =
∑
L∈O

zpass(L) (2)

Where O is the set of selected links (or the set of outflows) and zpass(L) is the elevation of their respective passes.

We propose two algorithms for the computation of a minimum spanning tree. Kruskal’s algorithm is very generic and simple25

with a log-linear complexity. We also propose a second algorithm, which leverages the planar nature of the basin graph to reach

a linear complexity.

2.2.1 Kruskal’s algorithm

Kruskal’s algorithm (Kruskal, 1956) is one of the most classical algorithms used for computing minimum spanning trees and is

known to have aO(m logm) complexity, wherem is the number of links. The number of links being always bounded by a linear30

function of the number n of nodes in the grid (Euler formula), using this algorithm induces a global upper bound of O(n logn)

6

Algorithm 1 Kruskal

for each Basin B do

MakeSet(B)

end for

Sort all links L by increasing weight zpass(L)

for each Link L = (B1,B2) do

if Find(B1) 6= Find(B2) then

Add (B1,B2) to the Basin Tree

Union(B1, B2)

end if

end for

on the complexity of our solution. This algorithm uses a Union-Find structure to store and merge equivalence classes of objects

(see Algorithm 1). The idea here is to parse all links L ∈ L sorted by increasing elevation zpass(L), progressively grouping each

pair of basins as a larger, virtual one (equivalence class). All subsequent paths between basins within this equivalence class are

discarded to prevent loops. The Union-Find data structure has three operations:

MakeSet Create an equivalence class containing a single element.5

Union Merge two equivalence classes.

Find Get the equivalence class of an object.

The optimal implementation of the Union-Find structure provides a O(α(N)) complexity for these operations, where N

is the number of elements in the structure (i.e., here the number of basins) and α is the inverse Ackermann function whose

complexity is lower than O(logN). This however requires first sorting the links by increasing weight (i.e., by the elevation of10

their respective passes), which finally yields a O(m logm) complexity for the whole computation.

2.2.2 Planar graphs

The problem of finding the minimum spanning tree is known to have a O(N) complexity when the graph is planar (Mareš,

2002). A planar graph is a graph which can be embedded in a plane such that none of its edges cross another one. The basin

graph described in section 2.1 is an example of planar graph. The key intuition behind the algorithm proposed in Mareš (2002)15

is that at least half of the vertices of a planar graph have at most 8 neighbors. The algorithm is then an adaptation of another

classical algorithm, named Boruvka’s algorithm (Boruvka, 1926) ; see Algorithm 2 for more details. The O(N) complexity

comes from the fact that at each step of the outer loop, we parse and remove at least half of the nodes of the graph, and∑
N +N/2+ · · ·+1< 2N . As the number of grid nodes n >N , the complexity of this algorithm is bounded by O(n). As

demonstrated by Mareš (2002), the limit of 8 neighbors for the selection of a basin in the inner loop is critical in halving the20

number of edges at each iteration of the outer loop and thus in obtaining a linear time complexity.

7

Algorithm 2 Planar Boruvka (Mareš, 2002)

Initialize the basin tree structure

while There remains nodes in the basin graph do

while There is a basin B that has less than 8 neighbors do

Add the link with the lowest neighboring pass to the basin tree

Contract the link (if the link connects basins B and Bp, remove B and append all remaining neighbors of B to Bp)

end while

Clean the graph: bucket sort all links lexicographically to remove parallel edges.

end while

A special case may arise when the basin graph is computed from a grid of 8-connectivity. In this case, the edges of the

graph may cross each other due to the diagonal connectivity, possibly making the basin graph not perfectly planar. This is,

however, rather unlikely as it implies that two passes connecting different basins are found on the two diagonals connecting

four adjacent nodes of the grid. Furthermore, this issue does not impact the correctness of the algorithm. Only the linear

complexity is not formally proven. Because it is not planar, the case of a 8-connectivity grid would fall in the second category5

mentioned by Mareš (2002) of graphs closed on graph minor. We have validated this experimentally by randomly computing

minors of different sized 8-connected graph. We found an edge density of 4, implying that half of the basins in the basin graph

are linked to at most 16 adjacent basins (and not 8 as for planar graphs) at any step of the algorithm. Therefore, we have

demonstrated the linear complexity for 8-connected graphs experimentally, although future work is needed to prove this in a

formal framework.10

2.3 Updating flow receivers

The basin tree obtained at the previous stage must be oriented before routing the flow from inner basins to the boundary basins.

This is achieved by traversing the tree in the reverse order (i.e., starting from the boundary basins) and labelling the two nodes

of each pass, one as nin (incoming flow) and the other one as nout (outgoing flow). Depending on their elevation, either nin or

nout is the spill node of the corresponding basin.15

The last stage then consists in updating the flow receivers so that any flow entering an inner basin is ensured to leave the

basin through nout. The most straightforward solution would be to only update the receiver of each local minimum p so that

rcv(p) = nout. Note that if nin has a higher elevation than nout, then two receivers must be updated: rcv(nin) = nout and

rcv(p) = nin. This very simple solution ensures topological continuity of the flow but does not preserve its spatial continuity.

We therefore propose two other, more realistic methods: one similar to depression filling and another similar to depression20

carving. Note that we use carving and filling as metaphors as our algorithm only changes the flow graph connectivity without

altering elevation values. For each of the variants, the donors and stack structures need to be updated to reflect the changes in

the receivers.

8

2.3.1 Depression carving

The idea is here to mimic the effect of a river carving a narrow trench between the bottom of the depression and the spill: a

new, single path is computed from the local minimum to the pass. In fact, the most direct path is already defined by the flow

receivers that were computed initially, but it is in the reverse order, i.e., from the pass to the local minimum. Hence, It is trivial

to follow this path and progressively revert the receivers until the local minimum is reached (see Algorithm 3).5

Algorithm 3 Depression carving

ncur = nin

nnext = rcv(nin)

while rcv(ncur) 6=∅ do

ntmp = rcv(nnext)

rcv(nnext) = ncur

ncur = nnext

nnext = ntmp

end while

2.3.2 Depression filling

Unlike the previous method, we update here the receivers as if the depressions were completely filled by some material. We

define a procedure that starts at a pass and then progressively parses all neighbor nodes in a breadth-first order as long as these

are below water level, at the same time updating the receiver of the current parsed node as being one among its neighbors that

has already been parsed (see Algorithm 4). We repeat this procedure for all depressions by traversing the basin tree from the10

boundary basins to the most inner ones so that accurate water level values can be computed during the procedure. Receivers

are chosen according to a cost function that we define here as the minimal Euclidean distance between a node and nout.

This function does not yield the perfect path patterns that one would obtain by including obstacles in the computation of the

Euclidean distance on a regular grid, but it is simple and efficient while being accurate enough. We prefer this method over a

simple breadth-first search, which depends on the order in which neighbors are visited and which leads to more pronounced15

straight lines after erosion, due to the 4 or 8 connectivity.

3 Results

Our algorithm is run under different settings to illustrate its behavior and compare it with some other, state of the art methods.

Most of the examples below are shown within the context of landscape evolution modeling, using a simple model of block

uplift vs. channel erosion by the Stream Power Law. This model simulates the evolution of the topographic surface z, which20

9

Algorithm 4 Depression filling

cost= n 7→ ‖n−nout‖

rcv(nin) = nout

queue = {nin}

while queue not empty do

n = queue.pop_front()

min_cost=∞

for all neighbors nnb of n such as znout ≥ znnb do

if nnb is not in queue then

queue.append(nnb)

else if nnb has already been parsed and cost(nnb)<min_cost then

min_cost= cost(nnb)

rcv(n) = nnb

end if

end for

end while

can be written as follows:

∂z

∂t
= U −KAm (∇z)n (3)

Where U is the uplift rate, A is the drainage area (a surrogate for water discharge), ∇z the local topographic gradient, and

K, m, n are the parameters of the Stream Power Law. The latter is solved numerically on a 2D regular grid using an implicit

scheme of linear complexity (see the FastScape algorithm described in Braun and Willett, 2013). In particular, the local gradient5

∇z is chosen as the slope between the eroded node and its receiver (forced to 0 if its value is negative in order to avoid erosion

artifacts in the case of "upslope flow" caused by updated receivers). We choose this algorithm which is particularly well suited

to our flow routing method, although some discussion on the limits of this algorithm can be found in (Campforts and Govers,

2015) for steep topography. As common settings, we use K = 7× 10−4m0.2y−1, m= 0.4 and n= 1. Grid spacing is 100 m

in both directions.10

3.1 Illustration of the algorithm

The behavior of our algorithm of flow path enforcement is best illustrated using a simple synthetic topography as input. A set

of 25 local minima are sampled on a regular grid of 500× 500 nodes and the elevation of the topographic surface is locally

computed as a fixed proportion of the distance to the nearest local minimum (Figure 3 (a)). The first step of the algorithm

delineates the basin of each local minimum and finds all possible connections (links) between the basins, located at the lowest15

pass between each pair of adjacent basins (Figure 3 (b)). Then, a minimum spanning tree is computed from the graph of these

links to find the path of minimum energy that would allow the water to leave the basins (white arrows in Figure 3 (c)). The flow

10

(a) Initial bedrock elevation (b) Basins linkage (c) Tree computation

Figure 3. Our algorithm of flow enforcement run on a synthetic case. (a) Hillshade and contour plot of the input topography with apparent

depressions. (b) basins (areas of unique, random colors) and all passes connecting adjacent basins (thin black lines). (c) Flow directions

across the basins (white arrows), as resulting from the computation of a minimum spanning tree from the basin graph, and water level (blue

areas) after some erosion is applied on the input topography.

receivers can then be updated by using the edges of this basin tree. The updated receivers are in turn used by the FastScape

algorithm to slightly erode the basin boundaries during 1 time step of 100 years. The result is shown as well as the final water

level in Figure 3 (c).

3.2 Effect of flow path enforcement strategies on eroded topographies

(a) Initial bedrock elevation (b) Simple correction (c) Carving (d) Filling

Figure 4. Demonstration of the effect of flow path enforcement on erosion, using different strategies of flow receivers "correction" within

inner basins. (a) Hillshade and contour plot of the initial topography. (b), (c) and (d) Hillshade and contour plot of the topography obtained

after running a single time step of 5,000 years with channel erosion only (no uplift), with flow receivers updated using each of the different

strategies described in section 2.3. Water level is shown in blue, and is computed by propagating the spill elevation while parsing the nodes

in the upstream order (based on updated donors).

11

Figure 1 already shows the effect of flow path enforcement vs. no enforcement on the evolution of an escarpement under

active erosion processes. A second set of experiments, shown in Figure 4, illustrates the impact that the different strategies of

flow receiver updating have on the evolution of the topographic surface under the action of channel erosion. The input synthetic

topography is defined on a 100×100 regular grid and looks like an inverted pyramid with 45◦ regular slopes, forming a single,

big depression (Figure 4 (a)). The node at the middle of the top boundary is the only node that is not part of the depression: it5

has same elevation than the node at the center of the grid and it is defined as a boundary node. A single time step of 5000 years

of erosion only (no uplift) is performed using each of the strategies described in section 2.3:

Simple correction. In this specific case, the algorithm updates the receivers of only three nodes: (1) one of the neighbors of

the boundary node, which here corresponds to the spill of the closed depression, (2) one of the neighbors of the spill that,

together with the spill, forms the pass connecting the depression to the boundary node and (3) the local minimum at the10

bottom of the depression. The new assigned receivers are respectively for (1) the boundary node itself, (2) the spill and

(3) the other node of the pass. We can see in Figure 4 (b) that this strategy doesn’t allow channel erosion to propagate

much from the boundary node into the closed depression. In fact, drainage area values close to the boundary node are

high enough to trigger erosion but the low values of drainage area in the vicinity (within the depression) prevents further

propagation of the erosion wave.15

Depression carving. Unlike the former strategy and as expected, Figure 4 (c) shows that the depression carving strategy allows

erosion to propagate toward the local minimum along a narrow and deep trench.

Depression filling. Using the depression filling strategy, flow receivers are updated over a large area of the depression as if the

water surface was replaced by a very gentle slope toward the spill. As a result, erosion affects a great part of the modelled

domain, with the emergence of a star-like pattern centered at the spill (Figure 4 (d)). The number and disposition of the20

branches of the star are due to the grid 8-connectivity used here.

Choosing one strategy over another greatly depends on the specific application. For example, the simple correction strategy

may be acceptable if one assumes that no erosion could happen in depressions below the water level. However, interrupted

drainage area patterns within the depressions may be problematic when used with erosion algorithms like the FastScape model,

which uses an implicit time scheme for solving the Stream Power Law but still treats drainage area explicitly, resulting in too25

slow opening of the closed depressions by erosion. The depression carving or depression filling strategies generally yield better

results in the latter case. These two strategies have, however, contrasted behaviors and choosing one or the other will depend

on several criteria such as the size (i.e., depth vs. volume) of the depressions.

3.3 Performances

To assess the performance of our algorithm, we have run multiple benchmarks under various settings. Although these bench-30

marks mostly take place in the framework of landscape evolution modeling, they provide results that may be useful in other

applications too. Note that for better readability, we present here only the results from benchmarks applied on a fixed grid of

16384× 16384 nodes. We obtain consistent results for other grid sizes.

12

Local Minima (×105)

Time (s)

250

300

350

400

200

150

100

0 1 2 3

Ours, O(n)
Ours, O(n log(n))
Wei 2018

Zhou 2016

Barnes 2014a

Simulation Steps
200 4 8 16

Local Minima (×105)

0

20

40

60

12

Noise:

0 %

3 %

7 %

10 %

Simulation Steps
204 8 16120

150

175

200

225

125

100

75

250

Time (s)

Ours, 0 % noise

Ours, 10%

Wei 2018, 0 %

Wei 2018, 10 %

Barnes 2014a, 0 %

Barnes 2014a, 10 %

(a) Performance of algorithms (b) Local Minima in Fastscape (c) Per Step Performances

Figure 5. Results from benchmarks assessing the performance of our algorithm for local minima resolution – including both O(n logn)

Kurskal’s and O(n) Mareš’ variants for computing the minimum spanning tree, compared to three other solutions based on variants of the

Priority-Flood depression filling algorithm proposed by Barnes et al. (2014a), Zhou et al. (2016) and Wei et al. (2018), respectively. See text

for more details about the setup of these benchmarks. (a) Execution time measured for local minima resolution applied once on a synthetic

input topography vs. total number of local minima generated in the input topography. (b) Evolution of the number of local minima detected

in the topography obtained at each of the first 20 time steps of a FastScape model run. Each curve corresponds to a given magnitude of

random perturbations added to produce spatially variable uplift rates (magnitude values are relative to a fixed uplift rate of 5×10−3 m y−1).

(c) Execution time measured for local minima resolution at each time step, with either spatially uniform or variable uplift rates (i.e., a relative

noise magnitude of either 0% or 20%). The blue curves refer to our algorithm using the O(n) variant for computing the minimum spanning

tree.

We have run benchmarks for our algorithm – including the two variants for computing the minimum spanning tree but con-

sidering only the depression filling strategy – as well as for three other, state-of-the-art algorithms of local minima resolution,

respectively proposed by Barnes et al. (2014a), Zhou et al. (2016) and Wei et al. (2018). All three of those algorithms fill the

depressions using improved variants of the "Priority-Flood" algorithm that reduce the number of nodes processed by a priority

queue. The Barnes et al. (2014a) variant used here, i.e., "Priority-Flood+ε", is only slightly optimized but has the advantage5

of filling the depressions with a nearly-flat surface so that flow directions can be determined. Interestingly, the simplicity of

this first version makes it the most efficient when the number of local minima is large (see Section 4). While being the most

optimized sequential variant that has been proposed so far, the Wei et al. (2018) variant fills the depressions with perfectly

flat surfaces and thus has to be combined with a flat resolution algorithm – we use here an optimal, O(n) algorithm proposed

by Barnes et al. (2014b). We apply the same treatment on the Zhou et al. (2016) variant. All variants fill the depressions by10

directly updating the elevation values on the grid. To ensure proper comparison with our algorithm, we thus need to run them

on a temporary copy of the elevation values before computing the flow receiver for each node of the grid. Our algorithm being

13

optimized for a sequential usage, we chose, however, not to compare it to the parallel versions of Barnes (2016) and Zhou et al.

(2017). Both the algorithms and the benchmarks are implemented using the C++ language. For the state-of-the-art algorithms,

we reuse the implementations available in the RichDEM library v2.2.9 (Barnes, 2018). The benchmarks where computed on

an Intel Xeon Silver 4110 CPU (2.1 GHz, 32.0 Go RAM). We used Microsoft Visual Studio compiler with fast optimization

options. Note that because of the differences in the design/implementation used in RichDEM vs. our code, the benchmarks5

presented here should be seen as an illustration of the theoretical complexities of the algorithm variants rather than a strict

comparison of their actual performances.

In a first set of benchmarks, we create an input topography by running the FastScape model (starting from an initial flat

surface with small random perturbations) until steady-state is reached (the uplift rate is set to 5× 10−3 m y−1), and then

by lowering the elevation of an arbitrary number of nodes down to 10−5 m below their lowest neighbors. Those nodes are10

chosen randomly on even rows and columns to make sure that we obtain the same number of local minima in the input

topography. Note that each generated basin have a size of at most 9 cells, which allows for a fine control on the cumulative

size of the depressions. Figure 5 (a) shows the execution times of our vs. state-of-the-art algorithms for an increasing number

of local minima. We can see that in these settings our algorithm (both variants for the computation of the minimum spanning

tree) globally outperforms the state-of-the-art solution of Wei et al. (2018) combined with flat resolution. Note that without15

combining it with a flat resolution algorithm, Wei et al. (2018) algorithm shows an equivalent performance to our approach,

provided that the depressions remain evenly distributed. In that case, the main difference between the two approaches is

that ours provides data structures (flow paths, basin graph) that might be reused elsewhere. By contrast, the Barnes et al.

(2014a) Priority-Flood variant shows an inverse trend: it performs much worse in the absence of depression but the execution

time rapidly decreases when increasing the total number of local minima, eventually achieving better performance than our20

algorithm. This is explained by the very simple implementation of this variant, in which all the nodes are processed by a priority

queue in the absence of depression (not optimal) while a plain queue is used for most of the nodes if the topography is largely

covered by depressions, making this variant near optimal in that specific case. Note that for high numbers of local minima we

also start to discern in Figure 5 (a) the difference in performance of the variants used to compute the minimum spanning tree,

here explained by their log-linear vs. linear complexity.25

In a second set of benchmarks, we analyze the performances of the algorithms for local minima resolution through full

simulations of landscape evolution. We run the FastScape model over 20 time steps of each 10,000 years, starting from a

flat topography with small random perturbations (thus containing many local minima) and using fixed boundary conditions,

i.e., boundary nodes all along the grid boundaries. The simulations are all based on a uniform uplift rate of 5× 10−3 m y−1

but each differ by the magnitude of the random field (created on a coarser, 1500× 1500 grid) added to produce spatially30

variable uplift rates. This magnitude ranges from 0 % to 20 % of the uniform uplift rate. As shown in Figure 5 (b), a greater

magnitude of perturbation of uplift rates reduces the rate at which the local minima disappear under the action of channel

erosion as the simulation proceed. With no perturbation, all local minima are removed after the first time step. This has

important implications for the overall time spent on resolving local minima during a simulation. Figure 5 (c) shows that, with

14

uniform uplift, our algorithm greatly optimizes this overall time compared to the Priority-Flood variant of Barnes et al. (2014a).

Even with variable uplift rates, our algorithm performs better after only a few time steps.

4 Analysis

We focus our discussion on an in-depth analysis of the differences in performance obtained by the different state-of-the-art

algorithms, as reported in the section above. Barnes et al. (2014a) propose to progressively flood the topography from exterior5

to interior, keeping in a priority queue all the parsed nodes except for the ones in depressions, which are processed using a plain

queue. The operations used in this algorithm can be split in two main categories: one handling the nd nodes in depression areas,

with nd < n the total number of nodes, and another one handling the other "regular" nodes, nr = n−nd, using the priority

queue. As a depression encloses at least one node (a local minimum) and zero or more nodes in the immediate vicinity, the total

number of nodes in depression areas is always greater or equal to the total number of local minima nl, that is, n−nd ≤ n−nl.10

Therefore, the complexity of Barnes et al. (2014a) Priority-Flood variant is bounded by k0 + k1n+ k2 (n−nl) log(n−nl),
where k0, k1 and k2 are constants. Due to the very simple formulation of this algorithm, k1 is very small. The improved variants

of Priority-Flood proposed by Zhou et al. (2016) and Wei et al. (2018) further reduce the number of nodes that are processed by

the priority queue by carefully selecting spill candidates among the regular nodes. In those variants, the total number of nodes

processed by the priority queue becomes nearly proportional to the number of local minima, inverting the formulation of the15

complexity that is here bounded by k3 + k4n+ k5nl lognl. Because those variants are more complex, k4 has higher values.

We also derive the complexity of our algorithm taking its stages separately. The first and last stages, i.e., the computation

of the basin graph and the update of flow receivers, are both bounded by k6 + k7n, with a relatively high value for the k6 and

k7 constants. The second stage, i.e., the computation of the minimum spanning tree, is either bounded by k8nl lognl when

using the Kruskal’s algorithm or by k9nl when using the algorithm proposed by Mareš (2002), with k8 < k9. Both expressions20

above are valid considering that nl ∼N (the number of basins) for N large.

The complexities of the algorithms that we have derived here are all consistent with the benchmark results shown in Figure 5

(a). The difference between the two minimum spanning tree algorithms is visible only for a large number of local minima,

as predicted by their respective asymptotic complexity, while being unnoticeable for low nl where the other stages of the

processing prevail. Similar expressions obtained for the complexity of our algorithm vs. the solution based on Wei et al. (2018)25

are also well illustrated by sub-parallel curves in the figure. The inverse trend observed for Barnes et al. (2014a) solution is

explained by its complexity, where the term (n−nl) log(n−nl) tends towards zero as nl increases.

For all the algorithms compared here, the memory consumption grows linearly with the DEM size. Barnes et al. (2014a),

Zhou et al. (2016) and Wei et al. (2018) Priority-Flood variants only use a supplementary queue to unload the priority queue,

making it very memory-efficient. By contrast, our algorithm store more information like the structures used for represent-30

ing flow paths (receivers, donors and stack), the basin graph and possibly some additional data structures like those needed

by Mareš (2002)’s algorithm. Some of this data might be required for further processing, e.g. the flow paths in landscape evo-

lution modeling applications. Other data related to the basin graph increases the memory consumption, although in practice the

15

number of local depressions – and thus the size of the graph – is small enough with respect to the size of the grid, resulting in

only a small memory overhead compared to the Priority-Flood variants.

5 Conclusions

We have presented here a new algorithm for flow path enforcement in topographies with depressions. We have designed this

algorithm within the framework of landscape evolution modeling and we have demonstrated through benchmarks that, in this5

scope, it may greatly improve performance compared to other, state-of-the-art solutions. The potential of this algorithm is,

however, not limited to landscape evolution models. On a broader scope, the basin graph and its minimum spanning tree are

generic structures that other applications may leverage, possibly through derived quantities such as the water level of each

depression. We propose here optimal methods to compute those structures and quantities. Despite the fact that our algorithm

is rather complex and requires some work to be properly implemented, it is designed in a composable way such that it is easy10

to reuse one or several of its components. Adding new features like alternative strategies of flow path enforcement within the

depressions would require only little effort, too.

While being versatile, this new algorithm does not provide an universal solution to the problem of flow routing both within

and across closed depressions. Perhaps its main limitation is the assumption of single direction flow, i.e., each node has one

unique flow receiver. Adding full support for multiple direction flow (MDF) without loosing in performance is rather difficult15

and would require a fair amount of re-design work at each of the three stages of the algorithm:

– Basin computation should take into account divergent flow (basin labels are not unique for grid nodes located on drainage

divides).

– It should be theoretically possible to route the outflow from an inner basin into more than one of its adjacent basins (this

is currently not possible using a minimum spanning tree computed from the basin graph).20

– Alternative, MDF-compliant methods should be implemented to update the flow receivers within the depressions.

Other algorithms like the Priority-Flood don’t have that limitation: they act directly on elevation values and don’t prevent us

from applying MDF flow routing methods on the modified topography.

Another limitation of this algorithm is its sequential implementation. Further work is needed to adapt it so that it could be run

on modern, multi-core and/or GPU-based architectures. Still, many use cases would benefit from the current implementation.25

These include processing datasets of moderate size on a single computer or running batches of simulations or analysis pipelines,

e.g., in the context of sensitivity analyses or inferences on model parameters.

Code availability. The code used for the implementation of the algorithm, examples and benchmarks presented in this paper is available here:

https://github.com/fastscape-lem/flow-routing-depressions. Note that this read-only repository contains a snapshot version of the fastscapelib

16

library that has been extracted for reproducibility purpose. Further maintenance and new developments will happen in the fastscapelib’s main

repository: https://github.com/fastscape-lem/fastscapelib.

Author contributions. GC designed the algorithm and implemented it including the examples/benchmarks presented in this manuscript, BB

also worked on the implementation. GC and BB worked on the redaction of the manuscript with contributions by JB, all authors contributed

to fruitful discussions throughout this study, especially JB who provided many test conditions and use cases.5

Competing interests. The authors declare that they have no conflict of interests.

Acknowledgements. We thank the reviewers for their helpful comments that greatly improved this article.

Appendix A: Algorithms

A1 Basin computation

Algorithm 5 finds in which basin belongs each node of the grid by assigning them a label. One unique label is defined (here by10

an integer) for each basin.

Algorithm 5 Basin computation

stack = ∅ (parse order, as in (Braun and Willett, 2013))

s = {outflows}

while s not empty do

n = s.top()

s.pop()

stack.push(n)

if rcv(n) = ∅ (i.e. singular node) then

label = label +1

end if

basin_id(n) = label

for all d ∈Donors(n) do

s.push(d)

end for

end while

17

A2 Basin Linkage

Algorithm 6 creates the graph of basins by linking together each pair of adjacent basins. It also finds the passes of lowest eleva-

tion between those adjacent basins. Note that the links are undirected, such that Links.contains((b0, b1)) == Links.contains((b1,

b0))

Algorithm 6 Basin linkage

Links = ∅

for each node n in stack do

if rcv(n) = ∅ (i.e. singular node) then

bcur = basin_id(n)

else if bcur is not the label of a boundary basin then

for each neighbor nnb of n with basin label bnb 6= bcur do

link = (bcur , bnb)

zpass = max(zn,znb)

if Links.contains(link) then

if elevation of the pass of Links(link) < zpass then

Update link with pass (n, nnb) and its elevation zpass

end if

else

Links.add(link) with pass (n, nnb) and its elevation zpass

end if

end for

end if

end for

18

References

Banninger, D.: Technical Note: Water flow routing on irregular meshes, Hydrology and Earth System Sciences, 11, 1243–1247,

https://doi.org/10.5194/hess-11-1243-2007, 2007.

Barnes, R.: Parallel Priority-Flood depression filling for trillion cell digital elevation models on desktops or clusters, Computers and Geo-

sciences, 96, 56–68, https://doi.org/10.1016/j.cageo.2016.07.001, 2016.5

Barnes, R.: RichDEM: Terrain Analysis Software, http://github.com/r-barnes/richdem, 2018.

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation

models, Computers and Geosciences, 62, 117–127, https://doi.org/10.1016/j.cageo.2013.04.024, 2014a.

Barnes, R., Lehman, C., and Mulla, D.: An efficient assignment of drainage direction over flat surfaces in raster digital elevation models,

Computers and Geosciences, 62, 128–135, https://doi.org/10.1016/j.cageo.2013.01.009, 2014b.10

Boruvka, O.: O jistém problému minimálním, Pràce Moravské pr̆ìrodovĕdecké spolec̆nosti, 3, 37–58, 1926.

Braun, J. and Willett, S. D.: A very efficient O (n), implicit and parallel method to solve the stream power equation governing fluvial incision

and landscape evolution, Geomorphology, 180, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.

Campforts, B. and Govers, G.: Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law,

Journal of Geophysical Research: Earth Surface, 120, 1189–1205, https://doi.org/10.1002/2014JF003376, 2015.15

Cordonnier, G., Braun, J., Cani, M.-P., Benes, B., Galin, E., Peytavie, A., and Guérin, E.: Large scale terrain generation from tectonic uplift

and fluvial erosion, Computer Graphics Forum, 35, 165–175, https://doi.org/10.1111/cgf.12820, 2016.

Jenson, S. and Domingue, J.: Extracting topographic structure from digital elevation data for geographic information system analysis, Pho-

togrammetric Engineering and Remote Sensing, 54, 1593–1600, 1988.

Jones, N., Wright, S., and Maidment, D.: Watershed delineation with triangle-based terrain models, Journal of Hydraulic Engineering, 116,20

1232–1251, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1232), 1990.

Kruskal, J. B.: On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical

society, 7, 48–50, 1956.

Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models, Hydrological

Processes, 30, 846–857, https://doi.org/10.1002/hyp.10648, 2016.25

Mareš, M.: Two linear time algorithms for MST on minor closed graph classes, ETHZ, Institute for Mathematical Research, 2002.

O’Callaghan, J. and Mark, D.: The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image

Processing, 28, 323–344, https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.

Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The prediction of hillslope flowpaths for distributed hydrological modeling using

digital terrain models, Hydrological Processes, 5, 59–80, https://doi.org/10.1002/hyp.3360050106, 1991.30

Rieger, W.: A phenomenon-based approach to upslope contributing area and depressions in DEMs, Hydrological Processes, 12, 857–872,

https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<857::AID-HYP659>3.0.CO;2-B, 1998.

Sambridge, M.: Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophysical Journal International,

138, 479–494, https://doi.org/10.1046/j.1365-246X.1999.00876.x, 1999.

Tarboton, D.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources35

Research, 33, 309 –319, https://doi.org/10.1029/96WR03137, 1997.

19

https://doi.org/10.5194/hess-11-1243-2007
https://doi.org/10.1016/j.cageo.2016.07.001
http://github.com/r-barnes/richdem
https://doi.org/10.1016/j.cageo.2013.04.024
https://doi.org/10.1016/j.cageo.2013.01.009
https://doi.org/10.1016/j.geomorph.2012.10.008
https://doi.org/10.1002/2014JF003376
https://doi.org/10.1111/cgf.12820
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1232)
https://doi.org/10.1002/hyp.10648
https://doi.org/10.1016/S0734-189X(84)80011-0
https://doi.org/10.1002/hyp.3360050106
https://doi.org/10.1002/(SICI)1099-1085(199805)12:6%3C857::AID-HYP659%3E3.0.CO;2-B
https://doi.org/10.1046/j.1365-246X.1999.00876.x
https://doi.org/10.1029/96WR03137

Tucker, G. E. and Hancock, G.: Modelling landscape evolution, Earth Surface Processes and Landforms, 35, 28–50,

https://doi.org/10.1002/esp.1952, 2010.

Wei, H., Zhou, G., and Fu, S.: Efficient Priority-Flood depression filling in raster digital elevation models, International Journal of Digital

Earth, 0, 1–13, https://doi.org/10.1080/17538947.2018.1429503, 2018.

Zhou, G., Sun, Z., and Fu, S.: An efficient variant of the Priority-Flood algorithm for filling depressions in raster digital elevation models,5

Computers and Geosciences, 90, 87–96, https://doi.org/10.1016/j.cageo.2016.02.021, 2016.

Zhou, G., Liu, X., Fu, S., and Sun, Z.: Parallel identification and filling of depressions in raster digital elevation models, International Journal

of Geographical Information Science, 31, 1061–1078, https://doi.org/10.1080/13658816.2016.1262954, 2017.

20

https://doi.org/10.1002/esp.1952
https://doi.org/10.1080/17538947.2018.1429503
https://doi.org/10.1016/j.cageo.2016.02.021
https://doi.org/10.1080/13658816.2016.1262954

