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Abstract—Approximate computing paradigm provides meth-
ods to optimize algorithms with considering both computational
accuracy and complexity. This paradigm can be exploited at
different levels of abstraction, from technological to application
levels. Approximate computing at algorithm level aims at re-
ducing computational complexity by approximating or skipping
block functions of the computation. Numerous applications in the
signal and image processing domain integrate algorithms based
on discrete optimization techniques. These techniques minimize
a cost function by exploring the search space. In this paper, a
new approach is proposed to exploit the computation-skipping
approximate computing concept by using the Smart Search Space
Reduction (SSSR) technique. SSSR enables early selection of
the best candidate configurations to reduce the search space.
An efficient SSSR technique adjusts configuration selectivity to
reduce execution complexity while selecting the most suitable
functions to skip. The High Efficiency Video Coding (HEVC)
encoder in All Intra (AI) profile is used as a case study to
illustrate the benefits of SSSR. In this application, two functions
use discrete optimization to explore different solutions and select
the one leading to the minimal cost in terms of bitrate/quality and
computational energy: coding-tree partitioning and intra-mode
prediction. By applying SSSR to this use case, energy reductions
from 20% to 70% are explored through Pareto in Rate-Energy
space.

I. INTRODUCTION

Nowadays, optimizing energy consumption in embedded
systems is of primary concern for the design of autonomous
devices. The emerging domain of Internet of Things (IoT)
requires designing ultra low-power systems. To reduce the
computational energy consumption, new techniques from cir-
cuit to system levels have been proposed in the last two
decades. Technologies such as FinFet and Fully Depleted
Silicon on Insulator (FD-SOI) continue the trend of shrinking
down transistors and reducing their leakage current, providing
more energy efficient hardware. At system level, methods are
developed to adapt the instantaneous processing capacity to the
requirements of the running applications. For modern System-
on-Chip, there are two main power management techniques
that minimize the energy consumption. By combining clock
gating and power gating, Dynamic Power Management (DPM)
[1] is used to turn a processing core into a low-power state
when it is not in use. To reduce the consumed dynamic power,
Dynamic Voltage and Frequency Scaling (DVFS) is used to

reduce both hardware clock frequency and supply voltage until
real-time constraints are precisely met.

The approximate computing paradigm has been emerging
for a decade and can produce significant improvements from
technological to system levels. Research works focus more on
technological, logic [2] and architecture level while algorithm
level has not been widely investigated despite the significant
energy gain opportunities. At algorithm level, incremental
refinement [3] has been proposed for iterative process and loop
perforation [4] has been proposed for repetitive structures. In
this paper, we focus on algorithms using discrete optimiza-
tion techniques which aim at minimizing a cost function by
exploring the search space. These optimization techniques are
referred to as Minimization based on Search Space Exploration
(MSSE) in the rest of the paper. To decrease their energy
consumption, the challenge is then to reduce the search space,
skipping low value-added computation without sacrificing the
application performance.

In this paper, a new approach is proposed to exploit the
computation-skipping concept by using a Smart Search Space
Reduction (SSSR) technique. This technique aims at early se-
lecting the best performing processing functions and reducing
the search space. Designing efficient SSSR techniques and
adjusting the parameters that balance the complexity reduction
and the efficiency of the approximate application is not trivial.
A All Intra (AI) profile High Efficiency Video Coding (HEVC)
encoder is used as a case study to illustrate the benefits of our
approach. The HEVC encoder integrates several algorithms
with MSSE. Among these, coding-tree partitioning aims at
finding the best decomposition of a block of 64x64 pixels in
smaller blocks and intra-mode prediction enables to find the
best mode to predict a block from its neighbors.

The rest of the paper is organized as follows. We first
provide the related works in Section II, and then we introduce
the proposed method in Section III. The method is then applied
to analyze the HEVC encoder in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORKS

A. Approximate computing at algorithmic level

In order to reduce energy consumption, a few approximate
computing techniques have been proposed to decrease the
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Fig. 1. Minimization based on Search Space Exploration (MSSE) algorithm categories

computational complexity or the computational load. On the
one hand, the inherent error resilient blocks can be modi-
fied or skipped, computations can be stopped early to save
power, or memory accesses can be ignored. On the other
hand, some intricate computations inside these blocks can
be approximated. To identify the computation error-resilient
blocks, approximation-aware programming languages have
been created (for instance Eon [5], EnerJ [6], and Rely [7]).
These languages allow the programmer to identify the parts of
the code that can tolerate an error and the parts where higher
accuracy is required. From this information, the methods
presented below can be used.

In [3], the concept of incremental refinement is introduced.
The purpose is to reduce the number of iterations of an
iterative processing. By skipping part of the processing, the
energy can be reduced.

Loop perforation is proposed in [4]. The loops that can
tolerate approximation errors are in a first step identified,
and then transformed so as to execute a certain number of
iterations. This paper proposes Pareto curves for the user to be
able to choose the best perforation strategy depending on his
requirements. On tunable loops, loop perforation has shown
an important reduction in terms on computation time (up to
seven times) whereas the accuracy has been decreased to less
than 10%.

Another solution to reduce computational complexity con-
sists in identifying blocks that can be skipped with a minimum
impact on the output [8]. These blocks can be permanently
or periodically skipped depending on the quality constraints
of the application. Once a trade-off between the required
precision and the energy consumption has been found, a
parameter can be used to activate or not the selected blocks.
This approximate computing method can be applied to a
domain conservation process [8], used to enhance a signal
property.

Computation of intricate mathematical functions can be
replaced by their approximations. The use of function ap-
proximation has the asset of being able to target the required

precision, using well-known algorithms like multipartite tables
[9], CORDIC algorithm [10] or polynomial approximation
[11].

B. Approximate computing for algorithms with MSSE

In this paper, we focus on algorithms solved by discrete
optimization techniques and which aim at minimizing a cost
function by exploring a search space. These MSSE algorithms
are based on the concept of testing different candidates (Si)
and selecting the best one as illustrated in Figure 1a. Numerous
applications in image and signal processing integrate MSSE. In
telecommunications, channel decoding and MIMO decoding
such as sphere decoding use MSSE algorithms. This concept is
also used in image processing for classification operations such
as in a Nearest Neighbor classifier and in video processing,
for instance for motion estimation. In video compression, as
depicted in our case-study presented in section IV, MSSE
algorithms are used for coding-tree partitioning and Intra-
mode prediction.

An exhaustive search is a straightforward approach to
process MSSE but it can require much more computation
depending on the search space size. A challenge for an MSSE
algorithm implementation is to reduce the search space with-
out decreasing the performance of the optimization solution
(Sopt). The best solution must be contained in the reduced
search space. To the best of our knowledge, no approach
has been proposed in literature that focuses on approximate
computing for MSSE algorithms.

III. APPROXIMATE COMPUTING METHODOLOGY

A. Search space reduction techniques

For MSSE algorithms, the search space reduction techniques
can be classified into two categories. The first one considers
initially the entire search space and then incrementally reduces
the search space from decisions taken from intermediate
results. Parts of the search space which can not lead to the best
solution are removed. The discrete optimization problem can
be formulated with a tree representing the different solutions



Fig. 2. The Smart Search Space Reduction (SSSR) method

(Si). The branch and bound strategy can be used to reduce the
search space as illustrated in Figure 1b. This strategy exploits
the concept of early termination. The exploration of the tree
branch is stopped if the minimal cost which can be obtained
for the exploration of this branch is higher than the best cost
which has already been obtained for the exploration of the
rest of branches. The efficiency of this technique is based
on the availability of an heuristic that quickly finds a good
solution. This kind of technique can ensure to find the optimal
solution (Sopt) even if the search space is cut-down. However,
the drawback of such solutions is the unpredictability of
the execution time. Thus the gain in terms of energy can
not be predicted or adjusted with parameters controlling the
approximation.

The second category is based on a coarse estimation and a
refinement of this initial solution to find the best configuration
as depicted in Figure 1c. An efficient coarse solution predictor
providing a good estimation with low computational complex-
ity can improve the performance of such solutions. With this
technique applied for energy minimization, the gain in terms
of energy can be controlled by adjusting the search space
around the coarse estimation. Nevertheless, optimality can not
be ensured. This second category of search space reduction
techniques is investigated in this paper.

B. The Smart Search Space Reduction (SSSR) method

The new SSSR design method of approximate computing for
applications with MSSEs is depicted in Figure 2. It consists of
the steps described below.

1) MSSE Identification: In the first step of the Smart
Search Space Reduction (SSSR) method, the developer must
identify the MSSE algorithms in the application. MSSEs can
be independent or interlocked.

2) MSSE Classification According to Potential Cost Gain:
The second step aims at ordering each MSSE according to the
cost reduction opportunity it offers. The cost metric, defined
by the developer, can be either energy, complexity, execution
time, etc. It is an implementation metric to optimize. The qual-
ity metric, also defined by the developer, may be a Bit Error
Rate (BER) for a telecommunication application, a Signal-to-
Noise Ratio (SNR) for a signal processing application, or a
bitrate/quality for a video compression application. It is an
application performance metric to optimize.

Depending on the cost and quality metrics, different Pareto
curves will be obtained between cost and quality. Thus, the
reduction of the search space will not lead to the same
application configurations. Let the Minimal Cost Point (MCP),
associated to an MSSE algorithm, be the theoretical lower
bound of the implementation cost (e.g. the minimal energy)
that enables the optimal quality (e.g. the optimal bitrate). Let
CMCP be the cost that can be obtained if the process is able to
perfectly predict the optimal solution. In this case of optimal
prediction, only one solution is tested, the optimal one. It leads
to the minimum cost for optimal quality.

The MCP may be obtained by a two-pass approach. The first
pass is an exhaustive search identifying the optimal solution
in terms of quality. This exhaustive search has two objectives:
obtaining the worst case cost due to exhaustive search, and the
optimal solution that will be used in the second pass. In the
second pass, the MSSE algorithm only executes the optimal
solution identified in the previous pass. The CMCP is the cost
of this second pass. The cost reduction opportunity is then
defined by the CMCP from the cost of the exhaustive search.

The output of this MSSE Classification step is Lmsse,
the ordered list of MSSEs according to the cost reduction
opportunities.

3) MSSE Approximation: The approximation process is
carried out for each MSSE algorithm of the ordered list Lmsse

until sufficient cost reduction is obtained. This process starts
with the MSSE algorithms having the highest opportunity in
terms of cost reduction and progressively the approximations
associated to each MSSE algorithm can be combined.

a) Coarse Solution Predictor Design: In this step, the de-
veloper has to design and develop an efficient coarse solution
predictor. The challenge of this step is to define a predictor
model with a moderate computation complexity overhead and
able to provide a solution as close as possible to the optimal
solution. In the context of approximate computing, coarse
solution predictor with limited computation complexity are
preferred to precise and costly reduction cost techniques in
order to reduce significantly the implementation cost. Complex
coarse solution predictor can annihilate the cost reduction
obtained by the search space reduction. Moreover, complex
solution predictor requires both long design and development
times. Let CCP and QCP be respectively the normalized



computation cost of coarse predict (CP) solution and the qual-
ity degradation associate to this configuration. The difference
between CMCP and CCP is manly due to the over-cost of the
coarse predictor computation.

b) Approximation Management: This step aims at ex-
panding the search space around the solution obtained with
the coarse solution predictor. Expanding the search space
improves the quality because the probability to select the
optimal solution is higher. Nevertheless, this is at the expense
of the implementation cost. Firstly, the different parameters
allowing to explore the cost-quality trade-off are enumerated
and the parameter bounds are defined. These parameters are
the coarse solution predictor parameters and those which
define how the search space is expanded from the coarse
estimation. Secondly, a fast quality evaluation approach is used
to extract the configurations closed to the Pareto front. This
fast approach is used to quickly remove the configurations
which are far from the Pareto front. The quality is evaluated
on a subset of the parameter values to select the values leading
to configurations close to the Pareto front. The fast quality
evaluation is carried-out by limiting the amount of input
data processed. This leads to a statistical estimation with a
moderate accuracy but sufficient to detect configurations close
to the Pareto front. Thirdly, the interesting configurations are
refined by testing more parameter values on the complete input
data set.

4) Run-time Approximation Management: The aim of the
last step is to design and implement the run-time management
of the approximation. This controller defines the strategy to
control the approximation parameters at run-time. It deter-
mines the best parameter value configuration according to the
requirement in terms of quality and cost. These parameter
values are determined from the Pareto front obtained in the
previous step. To measure the global gain in terms of energy
the quality/energy trade-off is evaluated on a real scenario.

IV. CASE STUDY: HEVC ALL INTRA ENCODER

A. Overview of HEVC Encoding

An HEVC encoder is based on a classical hybrid video
encoder structure that combines Inter and Intra predictions.
While encoding in HEVC, each frame is split into equally-sized
blocks named Coding Tree Units (CTUs) (Figure 3). Each
CTU is then divided into Coding Units (CUs), themselves
nodes in a quad-tree. In HEVC, the size of CUs is equal
to 2N × 2N with N ∈ {32, 16, 8, 4}. The HEVC encoder
starts by predicting the blocks from their environment (in time
and space). To perform the prediction, CUs may be split into
Prediction Blocks (PBs) of smaller size. In intra prediction
mode, PBs are square and may take the size of 2N × 2N (or
N ×N only when N = 4). The HEVC intra-frame prediction
is complex and supports a total of 35 modes performed at
the level of PB including planar (surface fitting) mode, DC
(flat) mode and 33 angular modes [12]. After computing this
prediction, the encoder calculates the residuals (prediction
error) by subtracting the prediction from the original samples.
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Depth 0: CB 64x64

Depth 1: CB 32x32

Depth 2: CB 16x16

Depth 3: CB 8x8

Depth 4: CB 8x8 with PB 4x4

Fig. 3. Quad-tree structure of a CTB divided into CBs

The residual is then transformed by a linear spatial transform,
quantized, and entropy coded.

The HEVC encoder contains also a decoder processing loop
since the decoded picture is required by the encoder Intra and
Inter predictions. This decoder loop is composed of inverse
quantization and inverse transform steps that reconstruct the
residual information (i.e. the error of the prediction). The
residuals are added to the predicted samples to generate a
decoded picture (also called reconstructed samples). In the
case of Intra encoding, reconstructed samples are stored in
the current picture buffer and used for predicting future
blocks. Finally, reconstructed samples are post-processed by
a deblocking filter and a Sample Adaptive Offset filter (SAO)
(used for Inter prediction) that generates the parameters of the
decoding filter and appends them to the bitstream. To achieve
the best Rate-Distortion (RD) performance, the encoder per-
forms an exhaustive search process, named Rate-Distortion
Optimization (RDO), testing every possible combination of
partitioning structures with the 35 Intra prediction modes. This
exhaustive search constitutes an MSSE algorithm.

B. Experimental Setup

All experimentations are performed on one core of the
embedded EmETXe-i87M0 platform from Arbor Technologies
based on an Intel Core i5-4402E processor at 1.6 GHz. The
studied HEVC software encoder is Kvazaar [13]–[15] in AI
configuration. Each of the tested configurations is used to
encode 100 frames of 4 high-resolution (1080p) reference
video sequences: Cactus, BasketballDrive, BQTerrace and
ParkScene with Quantization Parameters (QPs) 22, 27, 32,
37 [16].

To measure the energy consumed by the platform, Intel
Running Average Power Limit (RAPL) interfaces are used to
get the energy of the CPU package, which includes cores,
IOs, DRAM and integrated graphic chipset. As shown in
[17], RAPL power measurements are coherent with external



measurements and [18] proves the reliability of this internal
measure across various applications.

C. Experimental Results on Applying SSSR to the Case Study

1) MSSE Algorithm Identification: In HEVC Intra encoding,
the selections of Rate-Distortion (RD)-wise best PB size and
Intra prediction mode are determined by the RDO process.
The RDO process is composed of two interlocked iterative
parts. The coding-tree partitioning aims at finding the best de-
composition of a CTU of 64x64 pixels into CUs as illustrated
in Figure 3. Then, for all CUs, Intra-mode prediction aims at
finding the best mode to predict blocks from its neighbors.

2) MSSE Classification: In this work, an energy metric
is used to classify and evaluate the MSSEs. We define the
theoretical lower bound of the energy consumption called in
the methodology MCP for the two MSSEs of the RDO process:
Coding-tree partitioning and Intra-mode prediction. The MCP
is the energy obtained when the encoder is able to perfectly
predict the best solution and thus only this solution is tested
to encode the CTU. Therefore, the energy consumption of the
search process is reduced to the energy consumption of the
solution and so the MCP is the minimal energy consumption
point that can be achieved for the highest encoding quality.

Table I summarizes the energy reduction opportunities for
the different considered video resolutions. The results show
that the search space is similar across all resolutions and
that the largest energy reduction search space occurs at the
Coding-tree partitioning with up to 78.1% of potential energy
reduction whereas working on the Intra-mode prediction offers
30% at best. The results lead to the conclusion that the energy
problematic can be more efficiently addressed by reducing
complexity at the Coding-tree partitioning.

3) MSSE Approximation:
a) Coarse Solution Predictor Design: In this case, the

coarse solution predictor aims to predict the coding-tree
partitioning from video frame content. [19], [20] show the
relationship between CU size and the corresponding vari-
ance properties. Based on this observation, they propose a
variance-aware coding-tree prediction. The energy reduction
technique used in this paper follows the same algorithm. A
video sequence is split into equal Groups of Frames (GOF)
of size F . The first frame of a GOF is encoded with a
full RDO process (unconstrained in terms of energy). Then
the variance of the selected CUs according their sizes are
used to compute variance thresholds on-the-fly. For following

TABLE I
ENERGY REDUCTION OPPORTUNITIES (IN J)

Res.
Energy for
exhaustive
search in J

Energy for
MCP in J

Difference
(in J)

Difference
(in %)

IM CT IM CT IM CT
2k 9710 7438 3398 2272 6311 23.4 65.0
1080p 4813 3663 1560 1150 3253 23.9 67.6
720p 2204 1722 911 483 1294 21.9 58.7
480p 1120 833 317 287 803 25.6 71.7
240p 291 209 69 81 222 27.9 76.3

TABLE II
FIRST SET OF PARAMETERS

Parameter Values
F 1, 2, 4, 8, 16, 32, 50
N 1, 2, 3, 4

Normalized Energy
20 30 40 50 60 70 80 90 100
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Fig. 4. Pareto in Rate-Energy space from the first set of parameters

frames of the GOF, the variance of each CU of each size are
recursively compared to the thresholds to build the coding-tree
partitioning.

b) Approximation management: The first parameter that
impacts the encoding quality and energy consumption is the
number of frames F in the GOF. Since applying the RDO
process on the predicted depth map is the result of a coarse
estimation, it is possible to improve the process by exploring
more depths around the predicted optimum. The second pa-
rameter N defines the number of depth values tested around
the prediction, this for each constrained CTU.

Since video encoding is time consuming, a fast quality
evaluation approach with a restricted parameter set is used
to extract the configurations close to the Pareto front. Table II
summaries the first set of parameters used to explore the trade-
off between energy consumption and quality. Bjøntegaard
Delta Bit Rate (BD-BR) [21] is commonly used in video
compression to measure the compression efficiency difference
between two encodings. The BD-BR reports the average
bit rate difference in percent for two encoding algorithms
considering the same Peak Signal-to-Noise Ratio (PSNR).
F = 1 represents an encoding without a constrained frame
(anchor). The anchor encoding is used to normalize the energy
consumption and compute BD-BRs.

c) Quality & Cost Evaluation: Figure 4 shows the Rate-
Energy space of all the combinations of parameters defined
in Table II. Identical markers correspond to different values
of F for a fixed value of N . As shown in Figure 4, the
coarse solution predictor is able to predict a solution close
to the MCP in term of energy; the difference between CMCP
and CCP is around 2% of energy. The results show that the
relation between energy consumption and BD-BR seems close
to linear compared to F for a fixed value of N . Nevertheless,
a significant gap in term of BD-BR divides points between
N = 1 and N = 2. This observation requires to refine to
refine N and to use non-integer values. To explore non-integer
numbers of depths, CTUs in constrained frame are split in two



TABLE III
SECOND SET OF PARAMETERS

Parameter Values
F 1, 2, 4, 8, 12, 32, 50

N
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3 ,3.5

Normalized Energy
20 30 40 50 60 70 80 90 100
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Fig. 5. Pareto in Rate-Energy space from the second set of parameters

categories: (N − bNc) × 100 per cent of CTUs are encoded
with dNe depths and (1 − (N − bNc)) × 100 per cent with
bNc depths.

Table III resumes the second set of parameters used to
explore the trade-off between energy consumption and quality.
Figure 5 shows the Rate-Energy space of all the combinations
of parameters defined in Table III. The Figure 5 shows that
Pareto front have an inflection point (illustrated by the black
line in Figure 5). This inflection point split the Pareto front into
two parts (A and B). In part A, a normalized energy reduction
of up to 60% has a strong impact on the quality. The points
of the Pareto front are generated with a high value of F and
a low value of N . In the other hand, in part B, the quality
degradation increases slowly when the consumed energy is
reduced. The configurations are obtained with F = 2 and a
high value of N . To conclude, the encoder has to play on both
F and N parameters respectively the size of the GOF and the
number of explored depths to control the energy consumption
of the HEVC encoder with a aceptable quality degradation.

V. CONCLUSION

In this paper, we propose a new methodology to exploit
the computation-skip concept by using a SSSR technique to
explore the trade-offs between degradation and cost reduction
in MSSE applications. The methodology is applied on HEVC
Intra video encoder. By applying SSSR to this use case, energy
reductions from 20% to 70% are explored through Pareto in
Rate-Energy space. Future work will consider Intra prediction
process as second MSSE and combined the approximations
associated to two MSSEs of HEVC Intra encoder.
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