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Abstract

The approximate computing paradigm provides methods to optimize algorithms while considering both application qual-
ity of service and computational complexity. Approximate computing can be applied at different levels of abstraction,
from algorithm level to application level. Approximate computing at algorithm level reduces the computational complex-
ity by approximating or skipping computational blocks. A number of applications in the signal and image processing
domain integrate algorithms based on discrete optimization techniques. These techniques minimize a cost function
by exploring an application parameter search space. In this paper, a new methodology is proposed that exploits the
computation-skipping approximate computing concept. The methodology, named Smart Search Space Reduction (Sssr),
explores at design time the Pareto relationship between computational complexity and application quality. At run time,
an approximation manager can then early select a good candidate configuration. Sssr reduces the run time search space
and, in turn, reduces computational complexity. An efficient Sssr technique adjusts at design time the configuration
selectivity while selecting at run time the most suitable functions to skip. The real time High Efficiency Video Cod-
ing (Hevc) encoder in All Intra (AI) profile is used as a case study to illustrate the benefits of Sssr. In this application,
two discrete optimizations are performed. They explore different coding parameters and select the values leading to
the minimal cost in terms of a tradeoff between bitrate, quality and computational energy by acting on both the Hevc
coding-tree partitioning and the intra-modes. Combining two Sssrs iterations on this use case, the energy consumption
is reduced by up to 77%. Moreover, the combination of the two Sssrs iterations in comparison to using only one reduces
the BD-BR bitrate/quality metric by 4% for the same energy consumption.

Keywords: approximate computing, high efficiency video coding, energy optimization.

1. Introduction

Nowadays, optimizing energy consumption in embed-
ded systems is of primary concern for the design of au-
tonomous devices. The emerging domain of the Inter-
net of Things (IoT) requires designing ultra low-power
systems. To reduce the computational energy consump-
tion, new techniques from circuit to system levels have
been proposed in the last two decades. Technologies
such as FinFet [33] and Fully Depleted Silicon on Insu-
lator (FD-SOI) [29] continue the trend of shrinking down
transistors and reducing their leakage current, providing
more energy efficient hardware. At system level, meth-
ods are developed to adapt the instantaneous processing
capacity to the requirements of the running applications.
Two power management techniques are mainly used to
minimize the energy consumption of modern Systems-on-
Chips, namely DPM and Dvfs. Dynamic Power Manage-
ment (DPM) [1] consists in combining clock gating and
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power gating to turn a processing core into a low-power
state when it is idle. Dynamic Voltage and Frequency Scal-
ing (Dvfs) [23] minimizes the consumed dynamic power
by reducing both hardware clock frequency and supply
voltage until real-time constraints are met.

Approximate computing relies on the ability of many
applications and systems to tolerate some loss of qual-
ity in the computed result. The approximate computing
paradigm has been emerging for a decade and can pro-
duce significant improvements from technological to sys-
tem levels. Research works focus more on technological,
logic [6], and architecture levels while algorithm level has
not been widely investigated despite the significant energy
gain opportunities. At the algorithm level, incremental
refinement [22] has been proposed for iterative processes
and loop perforation [37] for repetitive structures. In this
paper, the focus is put on algorithms that use discrete op-
timization techniques, exploring a parameter search space,
to minimize a cost function. The optimization process con-
tributes in creating costly algorithms and most existing
optimization methods tend to raise the data dependency
of the considered algorithm complexity. These algorithms
are referred to as Minimization based on Search Space Ex-
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Figure 1: The dimensions of approximate computing [32]

ploration (Msse) algorithms in the rest of the paper. To
decrease the energy consumption of Msse algorithms, a
challenge is to reduce the search space

In this paper, a new approach is proposed to exploit
the computation-skipping concept by using a Smart Search
Space Reduction (Sssr) technique. This technique is not
automatic but aims at classifying computing functions ac-
cording to their potential cost gain to reduce the search
space. Designing efficient Sssr techniques and adjusting
the parameters that balance the complexity reduction and
the efficiency of the approximate application is not trivial
and needs an in-depth knowledge of the application. An
All Intra (AI) profile High Efficiency Video Coding (Hevc)
encoder is used as a case study to illustrate the benefits
of the proposed approach. The Hevc encoder integrates
several algorithms based on Msse, including a coding-tree
partitioning that finds a good decomposition of a block
into smaller blocks through quad-tree partitioning, and an
intra-mode prediction that finds good modes (configura-
tions) to predict a block of pixels from its neighbor pixels.
In this work, the two Sssrs are combined to manage effi-
ciently the encoder.

The rest of the paper is organized as follows. We first
present the related works in Section 2, and then we intro-
duce the proposed method in Section 3. The method is
then applied to analyze the Hevc encoder in Section 4.
Finally, Section 5 concludes the paper.

2. Related Works

2.1. Approximate Computing Dimensions

To explore the energy-quality trade off, approximate
computing provides three degrees of freedom to act on [32]:
data, hardware, and computation (or algorithm) levels, as
illustrated in Figure 1.

Approximation on the processed data dimension con-
sists in reducing the quality of the application in a con-
trolled way by using: less up-to-date data (temporal deci-
mation), less input data (spatial decimation), less accurate
data (word-length optimization) or even corrupted data.

On the hardware dimension of approximate computing
techniques, the exactness of the computation support can
be relaxed with different techniques. At the technological
level, a voltage overscaling technique can be used to reduce
energy consumption. Working at near threshold regime or
even at sub threshold regime achieves major energy con-
sumption reductions but leads to computation errors due
to an increase in circuit delay. Nevertheless, these timing
errors may be tolerable if their probability of occurrence
is sufficiently low. Techniques have been proposed to com-
pensate these errors [27] or to maintain these errors within
reasonable bounds [19]. At a logic level, a functionality can
be approximated by simplifying logic. An approximate
hardware module is implemented with a truth table that
slightly differs from the exact hardware module. In [35]
probabilistic pruning technique is proposed to optimize the
logic. The idea is to prune parts of the circuits which are
rarely used and for which the approximation error due to
pruning is moderate. Approximate computing circuits are
designed for specific functional units like adder and mul-
tiplier operators. In [21], probabilistic pruning is used to
design adders. Different adder circuits [10, 5] are approxi-
mated with speculative techniques. Speculative techniques
aim at relaxing the constraint on the critical path of the
adder corresponding to the carry propagation chain.

The third dimension related to algorithm level is inves-
tigated in this paper and analyzed in the next section.

2.2. Approximate Computing at Algorithm Level

A few approximate computing techniques have been
proposed to decrease computational complexity with the
objective to reduce energy consumption. On the one
hand, the inherently error resilient blocks can be mod-
ified or skipped, computations can be stopped early to
save power, or memory accesses can be ignored. On
the other hand, some intricate computations inside these
blocks can be approximated. To identify the computa-
tion error-resilient blocks (blocks where the impact of er-
rors is limited), approximation -aware programming lan-
guages have been created like Eon [38], EnerJ [34], and
Rely [7]. Approximation-aware programming languages
allow the programmer to identify the parts of the code
that can tolerate an error and the parts where higher ac-
curacy is required. Once the different parts of the code
of an application have been classified, the next presented
methods can be used.

The concept of incremental refinement, introduced
in [22], consists in reducing the number of iterations of
an iterative processing. By skipping part of the process-
ing, the energy can be reduced. In [8], authors propose
to explore the algorithm parameters in a Support Vector
Machine algorithm to control application complexity.

Loop perforation is proposed in [37]. The loops that
can tolerate approximation errors are identified in a first
step, and then transformed to execute a certain number of
iterations. In [37] a Pareto front enables the application
developer to select the best perforation strategy depending

2



.
.
.

Figure 2: Msse algorithm with exhaustive
search. Each branch represents a full
solution computation.
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Figure 3: Msse algorithm with branch &
bound technique. Early termination stop
the exploration of branches which can not
lead to the best solution.
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Figure 4: Msse algorithm with Sssr tech-
nique. Coarse estimation is carried-out
and a refinement is applied to best can-
didates.

on his requirements and constraints. When applied to tun-
able loops on applications from the PARSEC benchmark
suite [2], loop perforation provides important reduction in
terms on computation time, up to seven times, whereas
the accuracy has been decreased by less than 10%.

Another solution to reduce computational complexity
consists of identifying blocks that can be skipped with
a minimum impact on the output [30]. Selected blocks
can be permanently or periodically skipped depending on
the quality constraints of the application. Once a given
trade-off between the required precision and the energy
consumption has been reached, a parameter can be used
to activate or not the selected blocks. This approximate
computing technique can be applied to a domain conserva-
tion process [30]. This process is used to enhance a signal
property. For example, in an Hevc decoder, the differ-
ent filters have been approximated to decrease its energy
consumption.

As another appoximate computing method, the com-
putation of intricate mathematical functions can be re-
placed by its approximation. An important advantage of
using function approximation is that the targeted preci-
sion of the approximated function can be precisely con-
trolled, using well-known algorithms such as multipartite
tables [9], CORDIC algorithm [42], or polynomial approx-
imation [3].

2.3. Approximate Computing for M sse Algorithms

In this paper, we focus on processes achieving dis-
crete optimization based on Minimization based on Search
Space Exploration (Msse) algorithms for which the main
purpose is to minimize a cost function by exploring a
search space. As illustrated in Figure 2, the studied Msse
algorithms consists of testing different candidate solutions
Si (i ∈ [1, n]) to select the optimal one that minimizes
the cost function. Numerous applications in the image
and signal processing domain integrate Msse algorithms.
In telecommunications, channel decoding and MIMO de-
coding such as sphere decoding use Msse algorithms. For
example, in [13], authors use the properties of an Msse

algorithm to select the best transmission configuration in-
cluding the modulation spectral efficiency and ECC code
rate that maximises the quality of a wireless received scal-
able video over MIMO channels. Msse algorithms are also
used in image processing applications for classification op-
erations such as in the Nearest Neighbor classifier, and in
video processing applications, for instance in motion es-
timation [40]. In video compression, as depicted in the
case-study presented in Section 4, Msse algorithms are
notably used for coding-tree partitioning and Intra-mode
prediction.

An exhaustive search, presented in Figure 2, is a
straightforward approach to process Msse but it may re-
quire much computation, depending on the search space
size. A challenge for an Msse algorithm implementation
is to reduce the search space while minimizing the impact
on the approximated optimal solution S̃opt compared to
the optimal solution under the full search space Sopt. Ide-
ally, the optimal solution must be contained in the reduced
search space (S̃opt = Sopt). To the best of our knowledge,
no approach has been proposed in literature that focuses
on approximate computing based on Msse algorithms.

3. Approximate Computing Methodology

3.1. Search Space Reduction Techniques

For Msse algorithms, the search space reduction tech-
niques can be classified into two categories: branch-and-
bound and Sssr. The branch-and-bound techniques ini-
tially consider the entire solution search space. Then,
based on intermediate results, the branch-and-bound tech-
nique automatically prunes the search space by excluding
the least likely solutions. Hence, parts of the search space
which can not lead to the optimal solution are removed.
The discrete optimization problem can be formulated with
a tree representing the different solutions Si. The branch-
and-bound technique can be used to reduce the search
space. This technique exploits the concept of early ter-
mination. The exploration of the branch is stopped if the
minimal cost which can be obtained for the exploration
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Figure 5: The Smart Search Space Reduction (Sssr) method

of this branch is higher than the best cost which has al-
ready been obtained during the exploration of the previous
branches, as illustrated in Figure 3. The efficiency of this
technique is based on the availability of a heuristic that
quickly finds a good solution. This technique can guaran-
tee that the optimal solution Sopt is found, even though the
search space is pruned. However, the drawback of branch-
and-bound techniques is the unpredictability of their ex-
ecution time [13]. Thus, the gain in terms of energy can
not be predicted or adjusted with parameters controlling
the approximation.

The Smart Search Space Reduction (Sssr) techniques
first select a subset of initial solutions in the search space,
based on a coarse estimation of their cost, called predic-
tion. Then a refinement of selected initial solutions is com-
puted to find the best solution among them, as depicted in
Figure 4. An efficient coarse solution predictor providing
a good estimation with low computational complexity can
improve the quality of such solutions. With Sssr tech-
niques applied to energy minimization, the gain in terms
of energy can be controlled by adjusting the search space
around the coarse estimation. Nevertheless, optimality
can not be ensured which depends on the accuracy of the
prediction step. This Sssr second category of search space
reduction technique is investigated in this paper.

3.2. The Smart Search Space Reduction (Sssr) Method

As explained previously, the branch-and-bound tech-
niques aim to converge as fast as possible towards the best

Algorithm 1: The Smart Search Space Reduc-
tion (Sssr) method

Data: An application A to optimize and a
training data set D

Result: A pareto point cloud over NFP cost C
and application quality Q, with points
tagged by approximation parameters.

1 Identify the Msses in A;
2 Define the Cost metric C;
3 for all M sses do
4 Apply an exhaustive search on the Msse using

D;
5 Get the optimal solutions of the Msse;
6 Force the Msse to only compute the optimal

solution and measure the minimum cost;
7 Derive the Mcp of the Msse

8 Order the Msses according to their Mcps;
9 while the approximation result is not satisfactory

for the specific use case do
10 Select the next Msse in ascending Mcp order;
11 Design a coarse solution predictor for this

Msse;
12 Define the approximation parameters Γ ;
13 Define a set i of Γ values;
14 Evaluate the resulting cost and quality (Ci, Qi)

on D;
15 Extract the set f of Γ configurations on the

Pareto front;
16 if (Cf , Qf ) is not satisfactory

and i can be refined then
17 Redefine a set i of Γ values;
18 Go back to line 14;

solution in a search space, with the objective to reduce the
search cost. However, contrary to the Sssr design method,
they do not offer features to control the search cost. Con-
trary to branch-and-bound techniques, the new Sssr de-
sign methodology detailed in this paper is control-oriented
and lets the system, at run time, choose a searching meth-
ods in a set of solutions ranging from a minimal search to
a full search.

The new Sssr design method for applications based on
Msses algorithms is depicted in Figure 5 and formalized
by Algorithm 1. It consists of the 3 first steps performed at
design time to manage the approximation at the run time,
as detailed below. The goal of the first step is to iden-
tify the Msses in the application. Then, these Msses are
classified according to their potential cost gain. The third
step consists of designing a predictor to manage the ap-
proximation and to reduce the cost of the Msse according
to an acceptable quality degradation. In the fourth step,
a run-time management of the approximation is set-up.

4



3.2.1. Step 1: M sse Identification

In the first step of the Smart Search Space Reduc-
tion (Sssr) method, the developer must manually identify
the Msse algorithms in the application A. Msses can be
independent or nested. The nesting of Msse algorithms in
the application has no consequence on the methodology,
each Msse being studied independently.

3.2.2. Step 2: M sse Classification

The second step aims at ordering the identified Msses
according to the cost reduction opportunity they offer.
The cost metric, defined by the developer, can be energy,
complexity, execution time, or a combination of several of
these metrics. It is an implementation metric to optimize.
The nature of quality metric, also defined by the developer,
depends on the application domain and purpose. Quality
metric may be a Bit Error Rate (BER) for a telecommu-
nication application, a Signal-to-Noise Ratio (SNR) for a
signal processing application, or a bitrate/quality ratio for
a video compression application.

Depending on cost and quality metrics, different Pareto
curves will be obtained, offering trade offs between cost
and quality. Thus, the reduction of the search space will
not lead to the same application configurations. Let the
Minimal Cost Point (Mcp), associated to an Msse algo-
rithm, be the theoretical lower bound of the implementa-
tion cost (e.g. the minimal energy) that enables the opti-
mal quality (e.g. the optimal bitrate). Let CMcp be the
cost that can be obtained if the optimal solution is able to
be perfectly predicted. In this case of optimal prediction,
only one solution is computed, the optimal one. It leads
to the minimum cost for an optimal quality.

The Mcp is obtained by a two-pass approach. The
first pass is an exhaustive search identifying the optimal
solution in terms of quality over a representative training
data set D. This exhaustive search has two objectives: ob-
taining the worst case cost by exhaustive search, and the
optimal solution over the training set D that will be used
in the second pass. The exhaustive search reveals at design
time a solution close to the optimal solution (under the hy-
pothesis that the training data set D is representative of
the run time processed data) that will be approached at
run time by the Pareto prediction. In the second pass, the
Msse algorithm only executes the “optimal over training
data” solution identified in the previous pass. The CMcp
is the cost of this second pass. The cost reduction oppor-
tunity is then defined by the CMcp from the cost of the
exhaustive search.

The output of this Msse Classification step is Lmsse,
the ordered list of Msses according to the cost reduction
opportunities.

3.2.3. Step 3: M sse Approximation

The approximation process is carried out for each Msse
algorithm of the ordered list Lmsse until sufficient cost
reduction is obtained. This process starts with the Msse

algorithms having the highest opportunity in terms of cost
reduction and progressively the approximations associated
to each Msse algorithm can be combined.

Substep: 3.1: Coarse Solution Predictor Design. In this
step, the developer has to design and develop an efficient
coarse solution predictor. The challenge of this step is
to define a predictor model with a moderate computa-
tion complexity overhead and able to provide a solution
as close as possible to the optimal solution. In the con-
text of approximate computing, coarse solution predictors
with a limited computation complexity are preferred to
precise and expensive cost reduction techniques in order
to reduce significantly the implementation cost. Complex
coarse solution predictors can annihilate the cost reduc-
tion obtained by the search space reduction. Moreover, a
complex predictor solution requires both long design and
development times. Let CCP and QCP be respectively
the normalized computation cost of Coarse Predictor (CP)
and the quality degradation associated to this configura-
tion. The difference between CMcp and CCP is likely to
be mainly due to the overhead of the Coarse Predictor
computation.

Substep 3.2: Approximation Management. This sub-step
aims at expanding the search space around the solution
obtained with the coarse solution predictor. Expanding
the search space improves the quality because it increases
the probability to include the optimal solution in the set of
tested solutions. Nevertheless, this expansion is performed
at the expense of some implementation cost. Firstly, the
different approximation parameters Γ involved in explor-
ing the cost-quality trade-off are enumerated and a set of
parameter values i is defined. These approximation pa-
rameters Γ serve the coarse solution predictor and de-
fine how large the search space is from the coarse esti-
mation. Secondly, a fast quality evaluation approach is
used to extract the configurations that are close to the
multi-objective Pareto front. This fast approach is used
to quickly remove the configurations (Cf , Qf ) in all the
configuration tested (Ci, Qi) which are far from the Pareto
front. The quality is evaluated on a subset of the approxi-
mation parameters Γ values to select the values leading to
configurations (Cf , Qf ) close to the Pareto front. The fast
quality evaluation is carried-out by limiting the amount
of processed input data. This leads to a statistical esti-
mation with a moderate accuracy, yet sufficient to detect
configurations (Cf , Qf ) close to the Pareto front. Thirdly,
the most interesting configurations of Γ values are refined
by testing more approximation parameters values on the
complete input data set.

At the end of this step, the developer can choose to
go back at the beginning of the Step 3 to combine another
Msse in the approximation. Three main reasons can bring
the developer to work on multiple Msses in an energy
oriented use case:
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• if the developer has energy constraints not achievable
with one Msse alone,

• if the developer wants to have a fine grain manage-
ment of the energy to match an energy budget,

• if the developer wants to achieve the best possible
quality for a given energy reduction.

3.2.4. Run-time Approximation Management

The aim of the last step is to design and implement
the run-time management of the approximation. This last
part is out of scope of this paper. This controller defines
the strategy to control the approximation parameters at
run-time. It determines the best parameter value config-
uration according to the requirements in terms of quality
and cost. These parameter values are determined from the
Pareto front obtained in the previous step. To measure
the global gain in terms of,e.g. energy, the quality/energy
trade-off is evaluated on a real scenario. The design of the
run-time manager is not in the scope of this paper.

To conclude, by using the Sssr methodology, a de-
signer follows a straightforward flow that exploits the
computation-skip approximate computing concept to ex-
plore the trade-offs between algorithm degradation and
computational cost reduction. The identification of the
Msse parts of the algorithm is the only prerequisite to ap-
ply the methodology. Sssr requires manual design steps
that complicate the design process. However, they are
the price to pay for obtaining large energy gains. Future
works include an evaluation of the Design Productivity of
the Sssr methodology.

3.3. Application Example of Sssr

The rest of this paper illustrates the Msse concept on a
video compression use case. The same methodology could
be applied for instance to the stereo vision application from
[26, 28] where a Msse is present. Stereo matching algo-
rithms aim at creating 3D measurement from two 2D im-
ages. Stereo matching algorithm measures the similarity of
pixels from the two input images to deduce the disparity
level for each pixel of the images. Local [26] and semi-
local [28] methods perform their searches on a limiting
number of candidate pixels which constitutes a Msse algo-
rithm. Applying our methodology on these Stereo match-
ing algorithm can be briefly summarized as follow:

• design a coarse solution predictor which predicts the
best candidate pixel,

• increase the number of tested pixels around the pre-
dicted one as approximation parameter,

• measure the degradation of depth map quality ac-
cording to the number of tested pixels around the
predicted one.

Such an additional study is kept as a future work on Msse
management.

4. Case study: The Hevc All Intra Encoder

4.1. Overview of HEVC Encoding
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Figure 6: Block diagram of HEVC intra encoder composed by several
blocks: Intra Picture Process (IPP), Intra Picture Estimation (IPE),
Transform (T), Quantization (Q), Inverse Quantization (Q−1), In-
verse Transform (T−1), Current Picture Buffer (CPB), Deblocking
Filter (DF), Sample-Adaptive Offset (SAO) and Entropy Coding
(EC)

An Hevc encoder is classically based on a hybrid video
encoder structure that combines Inter and Intra predic-
tions. This work is only focused on Intra encoding, Figure
6 illustrates the block diagram of an Hevc intra encoder.
While encoding in Hevc, each frame is split into equally-
sized blocks named Coding Tree Units (CTUs) (Figure 7).
Each CTU is then divided into Coding Units (CUs), them-
selves nodes in a quad-tree. In Hevc, the size of CUs is
equal to 2N × 2N with N ∈ {32, 16, 8, 4}. The Hevc
encoder starts by predicting the blocks from their envi-
ronment (in time and space). To perform the predictions,
CUs may be split into Prediction Blocks (PBs) of smaller
size. In intra prediction mode, PBs are square and may
take the size of 2N×2N (or N×N only when N = 4). The
HEVC intra-frame prediction is complex and supports a
total of 35 modes (illustrated on Figure 8) performed at
the level of PB including planar (surface fitting) mode, DC
(flat) mode and 33 angular modes [39]. Figure 8 shows
an example of an intra-prediction with N ×N PB size of
8×8 and the intra-prediction modes. After computing this
prediction, the encoder calculates the residuals (prediction
error) by subtracting the prediction from the original sam-
ples. The residual is then transformed by a linear spatial
transform, quantized, and finally entropy coded.

The Hevc encoder also contains a decoder process-
ing loop since the decoded picture is required by the en-
coder to perform Intra and Inter predictions. This decoder
loop is composed of inverse quantization and inverse trans-
form steps that reconstruct the residual information (i.e.
the error of the prediction). The residuals are added to
the predicted samples to generate a decoded picture (also
called reconstructed samples). In the case of Intra en-
coding, reconstructed samples are stored in the current
picture buffer and used for predicting future blocks. Fi-
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nally, reconstructed samples are post-processed by a de-
blocking filter and a Sample Adaptive Offset filter (SAO)
(used for Inter prediction) that generates the parameters
of the decoding filter and appends them to the bitstream.
To achieve the best Rate-Distortion (RD) performance,
the encoder performs an exhaustive search process, named
Rate-Distortion Optimization (RDO), testing every possi-
ble combination of partitioning structures combined with
the 35 Intra prediction modes. This exhaustive search con-
stitutes an Msse algorithm.

In order to decrease the computational complexity of
Hevc Intra encoding, a fast intra mode decision called
Rough Mode Decision (RMD) [44, 45] was added in the
reference software Hevc test Model (HM) [15]. This tech-
nique splits the Intra prediction process into two succes-
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Figure 9: Intra prediction steps

sive steps: RMD and RDO as illustrated in Figure 9. RMD
consists in constructing a candidate mode list which is then
tested in the full RDO process. RMD method computes
for each mode m a cost JRMD(m) described by Equation 1,
where DP is the sum of absolute values of the Hadamard
transformed coefficients of the prediction residue, λP is a
Lagrangian multiplier (which depends of the Quantization
Parameter (QP)) and RP is the number of bits necessary
to encode the prediction mode information.

JRMD(m) = DP + λP ·RP (1)

RP is constant and equal for all modes different from
the three Most Probable Modes (MPMs), which require
lower signalling (rate). The Nm modes with the lowest
costs JRMD(m) are then evaluated by the full RDO pro-
cess to select the best among them. Nm depends on the
CU size N and is defined by Equation 2. The RDO step
is much more complex than the RMD step. As the RMD
step orders the modes according to their costs, the RDO
step can be skipped to limit the encoding complexity. In
this work, only the RMD step is applied and the mode mŝ

with the smallest cost JRMD(m) is selected.

Nm

 8, N ∈ {4, 8}
3, N ∈ {16, 32}
3, N ∈ {64}

(2)

4.2. Related Work on Methodologies

Several approaches have been proposed to reduce the
complexity by shrinking search spaces of Hevc encoder
specific part. In [14], authors propose a methodology to
optimize the coding mode evaluation (between Intra and
Inter prediction according to the Prediction Unit (PU)
partitioning of the image). The modes are ordered ac-
cording to the order of appearance. The modes are tested
one by one according to the previous order but the next
mode is only tested if the previous one has improved the
obtained cost. This methodology exploits the concept
of early-termination (detailed in Section 3.1) and is not
adapted to control the energy consumption.

For Inter prediction, the motion estimation process
uses Block Matching algorithms to determine the motion
vectors representing the displacement of a block between
a reference frame and the current frame. Many algorithms
were proposed for motion estimation over the last 20
years, as for example Three Step Search, New Three Step
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Table 1: Energy reduction opportunities (in J) [25]

Res.

Energy for

exhaustive

search

Energy for

Mcp
Reduction

Reduction

(in %)

IM CT IM CT IM CT

2k 9710 7438 3398 2272 6311 23.4 65.0

1080p 4813 3663 1560 1150 3253 23.9 67.6

720p 2204 1722 911 483 1294 21.9 58.7

480p 1120 833 317 287 803 25.6 71.7

240p 291 209 69 81 222 27.9 76.3

Average 24.5 67.9

Search [20], Four Step Search [31], Diamond Search [46],
etc. These techniques reduce the number of tested blocks
when compared to a full search. They all rely on a branch-
and-bound approach and, because they are iterative and
the number of blocks tested is not predictable, they can
not, contrary to our proposed method, be used to predict
the complexity of this part of the Inter prediction process.

Contrary to our propose methodology in this paper,
these techniques do not allow to control the energy con-
sumption from the minimal search to a full search.

4.3. Experimental Setup

All experimentations are performed on one core of the
embedded EmETXe-i87M0 platform from Arbor Tech-
nologies based on an Intel Core i5-4402E processor at 1.6
GHz. The studied Hevc software encoder is Kvazaar [17,
18, 41] in AI configuration. Each of the tested con-
figurations is used to encode 100 frames of 4 high-
resolution (1080p) reference video sequences: Cactus, Bas-
ketballDrive, BQTerrace and ParkScene with QPs 22, 27,
32, 37 [4].

4.3.1. Cost Metric

The energy consumption is used as the optimized cost
in the rest of this study. To measure the energy con-
sumed by the platform, Intel Running Average Power
Limit (Rapl) interfaces are used to get the energy of the
CPU package, which includes cores, IOs, DRAM and inte-
grated graphic chipset. As shown in [12], Rapl power mea-
surements are coherent with external measurements and
[11] proves the reliability of this internal measure across
various applications. In this work, only the power gap be-
tween IDLE state and video encoding is measured. The
CPU is considered to be in IDLE state when it spends
more than 90% of its time in the C7 C-states mode. The
C7 state is the deepest C-state of the CPU characterized
by all core caches being flushed, the PLL and core clock
being turned off as well as all uncore domains.

4.3.2. Quality Metric

Bjøntegaard Delta Bit Rate (BD-BR) and Bjøntegaard
Delta Psnr (BD-Psnr) [43] is commonly used in video

compression to measure the compression efficiency differ-
ence between two encodings. The BD-BR reports the av-
erage bit rate difference in percent for two encoding at the
same quality: Peak Signal-to-Noise Ratio (Psnr). Simi-
larly, the BD-Psnr measure the average Psnr difference
in decibels (dB) for two different encoding algorithms con-
sidering the same bit rate. In the rest of this work, BD-BR
is used as the quality metric where positive BD-BR values
correspond to BD-BR loss.

4.4. Experimental Results on Applying Sssr to the Case
Study

4.4.1. M sse Algorithm Identification

In Hevc Intra encoding, the selections of Rate-
Distortion (RD)-wise best PB size and Intra prediction
mode are determined by the RDO process. The RDO pro-
cess is composed of two nested Msses: Coding-tree par-
titioning (CT) and Intra-mode prediction (IM). Coding-
tree partitioning (CT) aims at finding the best quad-tree
decomposition of a CTU of 64x64 pixels into CUs as illus-
trated in Figure 7. Then, for all CUs, Intra-mode predic-
tion (IM) aims at finding the best mode to predict blocks
from its neighbors.

4.4.2. M sse Classification

In this work, an energy metric is used to classify
and evaluate the Msses. We define the theoretical lower
bound of the energy consumption called in the method-
ology Mcp(CT) and Mcp(IM) for the two Msses of the
RDO process: respectively Coding-tree partitioning (CT)
and Intra-mode prediction (IM). The Mcp is the energy
obtained when the encoder is able to perfectly predict the
best partitioning solution and thus only the optimal solu-
tion is processed to encode the CTU [25]. Therefore, the
energy consumption of the search process is reduced to the
energy consumption of the solution and the Mcp is the
minimal energy consumption point that can be achieved
for the highest encoding quality.

Table 1 summarizes the energy reduction opportuni-
ties between optimal (best complexity case) and full search
(worst case) solutions at different video resolutions. The
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results are extracted from [25]. They are obtained by ap-
plying the two-pass approach as defined in the Msse Clas-
sification Step 2 presented in Section 3.2.2. The results
show that the search space is similar across all resolutions
and the largest energy reduction search space occurs when
optimizing the Coding-tree partitioning, with up to 76.3%
of potential energy reduction while working on the Intra-
mode prediction offers 27.9% at best. The results lead to
the conclusion that the energy problematic can be more ef-
ficiently addressed by reducing complexity at the Coding-
tree partitioning.

4.4.3. Coding-Tree Partitioning M sse Approximation

Coarse Solution Predictor Design. In this case, the
coarse solution predictor aims to predict the coding-tree
partitioning from video frame content. Authors of [16, 36]
show the relationship between CU size and the correspond-
ing block variance of the image. Based on this observation,
they propose a variance-aware coding-tree prediction. The
energy reduction technique used in this paper follows a
similar algorithm. A video sequence is split into equal
Groups of Frames (GOF) of size F . The first frame of a
GOF is encoded with a full RDO process (unconstrained
in terms of energy). Then the variance of the selected
CUs according their sizes are used to compute variance
thresholds on-the-fly. For following frames of the GOF,
the variance of each CU of each size are recursively com-
pared to the thresholds to choose if the CU has to be split.
The coding-tree partitioning is built by this process.

Approximation Management. The first parameter
that impacts the encoding quality and energy consumption
is the number of frames F in the GOF. The second param-
eter Nd defines the number of depth values tested around
the prediction for each constrained CTU [24]. Since ap-
plying the RDO process on the predicted depth map is the
result of a coarse estimation, it is possible, without com-
promising too much the complexity, to improve the process
by exploring more depths around the predicted optimum.

Table 2: First set of parameters to explore CT Msse

Parameter Values

F 1, 2, 4, 8, 16, 32, 50

Nd 1, 2, 3, 4

Since video encoding is time consuming, a fast qual-
ity evaluation approach with a restricted parameter set
is used to extract the configurations close to the Pareto
front. Table 2 summaries the first set of parameters used
to explore the trade-off between energy consumption and
BD-BR. F = 1 represents an encoding without a con-
strained frame (anchor). The anchor encoding is used
to normalize the energy consumption (upper bound) and
compute BD-BRs.

Normalized Energy
20 30 40 50 60 70 80 90 100

B
D

-B
R

 (
%

)

0

2

4

6

8

10

CP

N
d
 = 1

N
d
 = 2

N
d
 = 3

N
d
 = 4

Pareto front
MCP

CT

Figure 10: Pareto in Rate-Energy space from the first set of param-
eters defined in Table 2 (exploring the CT Msse)

Quality & Cost Evaluation. Figure 10 shows the Rate-
Energy space of all the combinations of parameters defined
in Table 2. Identical markers correspond to different values
of F for a fixed value of Nd. As shown in Figure 10, the
coarse solution predictor is able to predict a solution close
to the Mcp(CT) in term of energy; the difference between
CMcp(CT) and CCP is around 2% of energy. The results

also show that the relation between energy consumption
and BD-BR seems close to linear compared to F for a fixed
value of Nd. Nevertheless, a significant gap in term of
BD-BR divides points between Nd = 1 and Nd = 2. This
observation requires to refine Nd and to use non-integer
values. To explore non-integer numbers of depths, CTUs
in a constrained frame are split into two categories [24]:
(Nd − bNdc) × 100 per cent of CTUs are encoded with
dNde depths and the rest with bNdc depths.

Table 3 summarizes the second set of parameters used
to explore the trade-off between energy consumption and
quality. Figure 11 shows the Rate-Energy space for all
the combinations of parameters defined in Table 3. This
figure shows that for normalized energy reduction of up
to 60%(below 40% in Figure 11), the points of the Pareto
front are generated with a high value of F and a low value
of Nd. On the other hand, for normalized energy reduc-
tions of less than 40% (higher than 60% in Figure 11) the
configurations are obtained with F = 2 and a high value
of Nd. The encoder has to play on both F and Nd param-
eters respectively the size of the GOF and the number of
explored depths to control the energy consumption of the
Hevc encoder.

Table 3: Second set of parameters to explore CT Msse

Parameter Values

F 1, 2, 4, 8, 12, 32, 50

Nd
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3 ,3.5
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Figure 11: Pareto in Rate-Energy space from the second set of pa-
rameters defined in Table 3 (exploring the CT Msse)

4.4.4. Intra-Mode Prediction M sse Approximation

Coarse Solution Predictor Design. The Kvazaar en-
coder includes a feature that reduces the computational
complexity of RMD. This feature reduces the number of
angular prediction modes candidates and is divided in two
successive steps illustrated in Figure 12:

1. Coarse Step: for each PU N × N , the number of
angular modes tested in RMD is reduced by increas-
ing the angular step-size (θN ). Lets Θ be the set of
(θ32, θ16, θ8, θ4). In Kvazaar: Θ is fixed to (8, 8, 4, 2).
The Coarse Step always test DC, Planar and MPM
modes.

2. Refinement Step: the goal of this step is to refine
the dominant prediction direction mŝ obtained from
the previous step. The angular step size is reduced

by half θ′N =
θN
2

and the RMD process computes

the cost JRMD(mŝ ± θ′N ) of the direction around
the prediction mode obtained from the previous step.
This step is repeated with the new dominant direc-
tion until the angular step size becomes 1.

Figure 12 illustrates the process for θ = 8. In the
Coarse step, angular modes {2, 10, 18, 26, 34} are tested
and the angular mode 10 which lead to the minimal cost
is selected. Then, the Refinement step is iterated 3 times.
In the first iteration, the angular step size is reduced to
4: modes {6, 14} are tested and modes 14 is selected. In
the second iteration, the step size is reduced to 2: modes
{12, 16} are tested and modes 16 is selected. In the last
iteration, the step size is reduce to 1: modes {15, 17} are
tested and modes 15 is finally selected.

In the reference configuration, this feature is disabled
and all modes are tested in RMD process.

Approximation Management. The minimal and max-
imal number of modes tested by RMD according to θN are
given respectively by Equations 3 and 4. The number of
modes tested by RMD depends on whether the MPMs is
already included in the set of modes. The first and second
terms of Equations 3 and 4 correspond to the first and
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11
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15
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17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0: Planar
1: DC

34

Figure 12: RMD complexity reduction steps description for θ = 8

Figure 13: Minimal number of modes tested by the RMD process
according to θN

second steps of the RMD algorithm while the third term
adds the number of no angular modes plus the MPM.

Figure 13 shows the minimal number of modes tested
by the RMD process according to θN during the two steps
and the total as described by Equation 3.

minmode(θN ) =

⌈
33

θN

⌉
+ blog2(θN )c+ 2 (3)

maxmode(θN ) =

⌈
33

θN

⌉
+ blog2(θN )c+ 5 (4)

To explore the Msse linked to the Intra mode predic-
tion, a set of θN ∈ {2, 4, 8, 12} (corresponding to testing
respectively 20, 13, 10 and 8 modes) is defined.

Quality & Cost Evaluation. For N ∈ {32, 16, 8, 4},
4096 encodings are needed to try all combinations of Θ
with θN ∈ {2, 4, 8, 12}. The number of experimentations
is reduced to study the impact of θN for each size N of
CU independently. The video sequences are encoded with
θN ∈ {2, 4, 8, 12} for a fixed value of N ∈ {32, 16, 8, 4} one
at a time. The other angular step-sizes are fixed to the
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default value of Kvazaar: Θ = (8, 8, 4, 2).

Figure 14: Pareto in Rate-Energy space when θN ∈ {2, 4, 8, 12} for
a fixed value of N and other fixed (exploring the IM Msse)

Figure 14 shows the Rate-Energy space for each CU
size N . In other words, Figure 14 shows the impact of
θN for each value of N independently. Results show that
the relation between energy consumption and BD-BR ac-
cording to θN is not linear, and this for all CU sizes. The
configurations with bad trade-off between energy reduc-
tion and BD-BR increase are then removed to build a new
set of θN parameters summarized in Table 4.

Table 4: Set of θN parameters to explore the IM Msse

Parameter θ Values

θ32 2, 4, 8

θ16 2, 4, 8

θ8 2, 4

θ4 2, 4
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Figure 15: Pareto in Rate-Energy space generated from all 3 × 3 ×
2 × 2 = 36 combinations of parameter values defined in Table 4
(exploring the IM Msse)

Figure 15 shows the results of the 36 configurations de-
fined by the Table 4. The difference between the energy
reduction opportunities CMcp(IM) and CCP of the Intra-

Mode Prediction Msse is around 5% of energy. Figure 15
shows that for the set (θ32, θ16, θ8, θ4), a better configu-
ration than the Kvazaar default one (8, 8, 4, 2) (cfgkva in

green in Figure 15) can be used for the same energy re-
duction.

4.4.5. Combination of M sses

The goal of this part is to study the combination of the
two Msses: Coding-tree partitioning (CT) and Intra-mode
prediction (IM). As explained in Section 4.4.3, the Msse
linked to the CT can be explored with two parameters F
and Nd. From results of Figure 11, the configuration of the
parameters F and Nd of the Pareto Front are extracted.

The Msse linked to the IM depends on a set of θN
which is viewed as one parameter to combine the Msses.
In addition to the Kvazaar default configuration (cfgkva),
3 other configurations (cfg1, cfg2, cfg3) are extracted from
results of the Figure 15 which correspond to significant
gap in the Pareto front. Table 5 summarizes the configu-
rations.

Table 5: Configurations extracted from results of the IM Msse anal-
ysis

Configuration Θ

cfgkva (8, 8, 4, 2)

cfg1 (8, 4, 2, 2)

cfg2 (8, 4, 2, 4)

cfg3 (8, 4, 4, 4)
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Figure 16: Pareto in Rate-Energy space from the set of Θ defined in
Table 5 (exploring the combination of the CT and IM Msses)

Figure 16 shows the results when the configurations
described in Table 5 are applied on the configurations ex-
tracted from the front of the Rate-Energy space of the
Figure 11. From 100% to 45% of normalized energy con-
sumed, the results of the 4 configurations are interwined.
In the other hand, for an energy consumed less than 45%,
the cfg3 have better results for a major part of the Rate-
Energy space. As for the CT Msse, Figure 16 shows that
it is possible to control the energy consumed from 100%
to 23%. The results of Figure 15 are finally added in the
Rate-Energy space as shown in Figure 17.

Figure 17 summarizes the best results (extracted from
the Pareto front) of the CT Msse study of the Section
4.4.3, the IM Msse study of the Section 4.4.4 and the
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Figure 17: Pareto in Rate-Energy space from the CT Msse, the IM
Msse and the combination of the two Msses: CT & IM

combination of these two Msses CT & IM, i.e. when the
three parameters F , Nd and Θ are used.

Figure 17 shows that for all normalized energy target,
the combination of the two Msses (CT & IM) obtains
better results than the exploration of the CT Msse alone.
For example, for 32.5% of normalized energy consumed,
the combination of the two Sssrs compared to the case of
CT alone reduces the BD-BR by 4%: from 7.3% to 3.3%.
Figure 17 shows that the Pareto front has an inflection
point (illustrated by the black line in Figure 17). This in-
flection point splits the Pareto front into two parts (A and
B). In part A, a normalized energy reduction of up to 23%
of energy consumed has a strong impact on the quality. In
the other hand, in part B, the quality degradation is less
impacted when the consumed energy is reduced.

To conclude on these results, playing with the two
Msses of the HEVC use case has been demonstrated to
yield better energetic results than just using one Msse,
and the Sssr methodology has been shown to give pre-
cise answers on the opportunities of gain brought by each
Msses. These results motivate for the Sssr methodol-
ogy that provides a systematic mechanism to explore and
evaluate the approximation opportunities of Msse-based
applications.

On the considered use case, inflexion points on the
Pareto curves guide the designer when choosing the right
configuration that does not suffer significantly from a low
of diminishing return. This is the case for instance in Fig-
ure 17 where a designer is advised to target the left-hand
side of region B where energy gains are relatively high and
BD-BR losses are low.

5. Conclusion

This paper has proposed a new methodology to exploit
the computation-skip approximate computing concept by
using an Sssrs technique to explore the trade-offs between
degradation and cost reduction in applications with Mini-
mization based on Search Space Exploration (Msse). The
methodology is applied to an Hevc Intra video encoder.
By using Sssr on the two discrete optimization loops of

this use case (Coding-tree partitioning (CT) and Intra-
mode prediction (IM)), energy consumption has been re-
duced by up to 68% with a degradation of 3.8% of BD-BR
(as shown at the left-hand side of region B in Figure 17)
and up to 77% with a degradation of 9.2% of BD-BR (as
shown at the left-hand side of region A in Figure 17).
Moreover, the combination of the two Sssrs in comparison
to using CT alone reduces the BD-BR from 7.3% to 3.3%
for the same energy consumption of 32.5%. Future work
will use this methodology and its results to implement the
last step of run-time approximation management and con-
trol the energy consumption of an Hevc Intra encoder for
a given energy consumption budget.
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