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Generalized Pareto processes for simulating space-time extreme

events: an application to precipitation reanalyses

F. Palacios-Rodŕıguez ∗†G. Toulemonde‡, J. Carreau §, T. Opitz ¶

Monday 16th December, 2019

Abstract

To better manage the risks of destructive natural disasters, impact models can be fed with simu-
lations of extreme scenarios to study the sensitivity to temporal and spatial variability. We propose
a semi-parametric stochastic framework that enables simulation of realistic spatio-temporal extreme
fields using a moderate number of observed extreme space-time episodes to generate an unlimited
number of extreme scenarios of any magnitude. Our framework draws sound theoretical justification
from extreme value theory, building on generalized Pareto limit processes. For illustration on hourly
gridded precipitation data in Mediterranean France, we calculate risk measures using extreme event
simulations for yet unobserved magnitudes.

Keywords: extreme-value theory; precipitation; space-time Pareto processes; stochastic simula-
tion; risk analysis.

1 Introduction

Extreme events of geophysical processes such as precipitation extend over space and time, and they can en-
tail devastating consequences for human societies and ecosystems. Flash floods in southern France consti-
tute highly destructive natural phenomena causing material damage and threatening human lives (Vinet
et al., 2016), such as the two catasthrophic flash-flood events in Gard region on Septembre 2002 (Delrieu
et al., 2005), and in Montpellier-Grabels on October 2014 (Brunet et al., 2018). Since damage and costs
of floods have been increasing over the last decades, the understanding of temporal and spatial variability
of rainfall patterns generating such floods receives considerable attention from the authorities (European
Environment Agency, 2007). To help with this understanding, we develop a method to stochastically
simulate realistic spatio-temporal extreme scenarios, which can be fed to impact models. Examples of
impact models are urban flood models (such as shallow water models in Guinot and Soares-Frazão (2006)
and Guinot et al. (2017)), which produce hydrological variables (such as water height or water speed),
based on which experts make decisions about flood risk.
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cias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias número 3, Madrid, 28040, Spain. Telephone:
+34 91 394 4432. E-mail: fatima.palacios@ucm.es.
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Extreme-value theory (EVT) for spatial data proposes data-based stochastic modeling of such extreme
events for predicting probabilities, risks and uncertainty behavior (Coles, 2001; de Haan and Ferreira,
2006; Ferreira and de Haan, 2014). Due to very complex deterministic and probabilistic patterns in
such processes and the high dimension of data sets, realistic spatio-temporal modeling is challenging.
In this work, we instead develop a data-driven non-parametric approach to handle extremal space-time
dependence by transforming observed marginal quantiles in a spatially and temporally coherent way. We
illustrate our method on a high-dimensional data set of gridded hourly reanalysis data. Our procedure
draws sound justification from asymptotic theory for threshold exceedances with a strong probabilistic
interpretation. We will explain how it allows us to flexibly define extreme episodes in space-time data
based on different ways of aggregating marginal return periods over space and time.

Block-maxima and peaks-over-threshold (POT) methods are two widely known strategies in univariate
EVT to identify extreme events in a data set. While the block-maxima method is based on the division
of the observation period into non-overlapping periods of equal size (for instance months or years) to
extract the maximum observation in each period (Ferreira and de Haan, 2015), the POT method con-
sists in the study of positive exceedances above a given high threshold (Pickands III, 1975; Embrechts
et al., 1997; Beirlant et al., 2004). Max-stable processes, introduced by de Haan (1984), are the nat-
ural infinite-dimensional generalization of the univariate generalized extreme value (GEV) distribution,
which constitutes the only limiting distribution in block-maxima approach. Ferreira and de Haan (2014)
and Dombry and Ribatet (2015) showed that generalized Pareto (GP) processes are the only possible
asymptotic limits for threshold exceedances. Both approaches are closely linked through theoretical tail
stability properties.

Several approaches were developed for stochastic simulation of spatial max-stable fields (Dombry
et al. (2013, 2016); Oesting et al. (2018b,a)). Since max-stable processes are linked to the block-maxima
approach, their realizations aggregate information of several of the underlying original events which may
limit the physical interpretations of the simulated processes. Consequently, these simulations appear to
be more appropriate for studying long-term events such as the erosion of the coastline (Chailan et al.,
2017).

On the other hand, GP processes represent the original events that fulfill a threshold exceedance
condition. They can be represented constructively by multiplying a random scaling variable with a so-
called spectral process, the latter characterizing the spatial variation in the extreme events (Ferreira and
de Haan (2014); Dombry and Ribatet (2015); Thibaud and Opitz (2015)). In practice, one usually first
fits a parametric model for the spectral processes, and the estimators are then plugged in for simulation.
In contrast, we here develop an algorithm for extracting observed spectral processes from data, and we
then combine them with newly sampled scaling variables to generate new realizations of the extreme
events.

Since extreme events are frequently spatio-temporal in nature, their extension and duration have to
be accounted for. A semi-parametric method to simulate extreme spatio-temporal fields of wave heights
in the Gulf of Lion (France) was proposed in Chailan et al. (2017) based on methods for the spatial
setting developed by Caires et al. (2011) and Ferreira and de Haan (2014). The approach proposed in
our work is motivated by Chailan et al. (2017) and provides three major novelties. Firstly, our procedure
allows for an infinite number of simulations. Secondly, we embed our semiparametric resampling scheme
in the framework of GP processes, which allows for a clear probabilistic interpretation of extreme events.
Thirdly, a flexible general procedure is presented to identify extreme events and quantify their magni-
tude by accounting for space-time aggregation through homogeneous cost functionals that encapsulate
operations such as averaging or taking maxima. In multivariate extreme value analysis, i.e., when the
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observation domain consists of only a few points, our approach is closely related to empirical spectral
measures, which have become a standard tool for estimating extremal dependence (e.g., Beirlant et al.
(2004)).

The paper is structured as follows. Section 2 presents the theory for space-time GP processes. Tech-
niques to practically implement and validate the spatio-temporal GP framework are proposed in Section 3.
Our algorithm to generate extreme space-time scenarios is developed in Section 4. We illustrate our ap-
proach on hourly rainfall reanalysis data available on a 1 km2 grid in Southern France over a 10-year
period from 1997 to 2007 in Section 5. In this case study, we perform a comparative analysis based on
two conventional risk measures using simulated extreme scenarios. Conclusions and future research are
given in Section 6.

2 Theory of space-time GP processes

We write S for a compact subset of Rd to denote the area of interest and T for a compact subset of R+

to denote the time dimension, and we denote by C(S × T ) the space of continuous functions on S × T ,
equipped with the supremum norm. The restriction of C(S × T ) to non-negative functions is written
C+(S × T ). Similarly, we define the space of non-negative continuous functions in S as C+(S).

In multivariate EVT, a GP limit was introduced in Rootzén and Tajvidi (2006) by conditioning
on an exceedance event in at least one component. The aforementioned idea was extended to infinite-
dimensional spaces by the definition of GP process in Ferreira and de Haan (2014) where the condition is
based on exceedances of the supremum over space. To gain flexibility in the definition of the conditioning
extreme events, Dombry and Ribatet (2015) provided the notion of `-Pareto processes by considering
more general exceedances defined in terms of a homogeneous cost functional denoted `. Our focus here
is on the spatial and temporal dimensions for the extent of extreme events. Since we aim to model
phenomena that exceed a certain extreme threshold, we start by defining and characterizing space-time
generalized `-Pareto processes. The following constructive definition generalizes Dombry and Ribatet
(2015).

2.1 Construction of space-time GP processes

We define a cost functional ` : C+(S × T ) → [0,+∞) as a continuous nonnegative function that is
homogeneous, i.e. `(tf) = t`(f) for t ≥ 0. Examples of such ` are the functions of maximum, minimum,
average, or the value at a specific point (s0, t0) ∈ S × T .

Definition 2.1 (Standard space-time `-Pareto process). Let W ∗ = {W ∗(s, t)}s∈S,t∈T be a stochastic
process in C+(S × T ). We call W ∗ a standard space-time `-Pareto process if it can be represented as

W ∗(s, t)
d
= RY (s, t) (1)

where

1. Y is a stochastic process in C+(S × T ) satisfying `(Y ) = 1;

2. R has Pareto distribution with scale 1 and shape γR, i.e., P(R > r) = r−γR , r > 1;

3. Y and R are stochastically independent.
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The above definition is equivalent to the definition through the POT stability property: for any
u ≥ 1, the distribution of the renormalized threshold-exceeding process {u−1W ∗|`(W ∗) ≥ u} is equal

to the distribution of W ∗; see Theorem 2 of Dombry and Ribatet (2015). By construction, we get Y
d
=

W ∗/`(W ∗) and R
d
= `(W ∗). A generalized version of such Pareto processes is given in Definition 2.2 by

allowing for flexibility in the marginal distributions according to the location-scale-shape parametrization
commonly used in univariate EVT.

Definition 2.2 (Generalized space-time `-Pareto process). Given an `-Pareto process W ∗(s, t) con-
structed according to Definition 2.1 and continuous real functions σ(s, t) > 0, µ(s, t) and γ(s, t) in
C(S × T ), a generalized space-time `-Pareto process is any process constructed as

W (s, t)
d
=

{
µ(s, t) + σ(s, t){W ∗(s, t)γ(s,t) − 1}/γ(s, t), γ(s, t) 6= 0,
µ(s, t) + σ(s, t) logW ∗(s, t), γ(s, t) = 0.

(2)

2.2 Asymptotic results for space-time GP processes

We shortly recall the two main asymptotic results for characterizing extremes of stochastic processes :
max-stable processes and Pareto processes. We refer the reader to the literature for technical details
(Lin and de Haan, 2001; de Haan and Ferreira, 2006; Ferreira and de Haan, 2014; Thibaud and Opitz,
2015; Dombry and Ribatet, 2015). We use the symbol “⇒” to represent variants of weak convergence of
random elements from the univariate, multivariate or functional domain.

Consider independent copies X1, . . . , Xn of a stochastic space-time process X = {X(s, t)}s∈S,t∈T with
continuous trajectories. We say that the process X is in the functional maximum domain of attraction of a
max-stable process Z = {Z(s, t)}s∈S,t∈T with continuous trajectories if there exists continuous functions
an > 0 and bn such that{

max
1≤i≤n

Xi(s, t)− bn(s, t)

an(s, t)

}
s∈S,t∈T

⇒ {Z(s, t)}s∈S,t∈T . (3)

Further details about space-time max-stable processes can be found in Davis et al. (2013a,b).

The convergence of the dependence structure and of marginal distributions in (3) can be studied
separately; see de Haan and Ferreira (2006, Section 9.2). A standardised process X∗ = {X∗(s, t)} can
be defined by X∗(s, t) = H−1(F(s,t)(X(s, t))), s ∈ S, t ∈ T , where H−1 denotes the inverse function
of the standard Pareto distribution function H, and F(s,t) denotes the distribution of X(s, t). If X
has continuous marginal distributions F(s,t), then X∗ has marginal standard Pareto distributions. For
an ≡ n, bn ≡ 0, the max-stable limit forX∗ in (3) is a standard max-stable process Z∗ = {Z∗(s, t)}s∈S,t∈T
with unit Fréchet marginal distributions; see de Haan and Ferreira (2006, Definition 9.2.4).

If X∗ is in the maximum domain of attraction of a max-stable process Z∗ and the cost functional `
is continuous at 0, we get the convergence of `-exceedances on the standard scale:{

u−1X∗(s, t)|`(X∗(s, t)) > u
}
⇒ {W ∗(s, t)} , u→∞, (4)

where W ∗(s, t) is a standard space-time `-Pareto process as in Definition 2.1 (Dombry and Ribatet,
2015, Theorem 3). Conversely, if the convergence in (4) holds for ` chosen as the maximum norm, then
convergence in (3) of the max-stable process X∗ to Z∗ follows. An example of Pareto processes with
log-Gaussian profile process is given in Appendix A.
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3 Practice of space-time GP processes

In practice, we use the asymptotic theory exposed in Section 2 for conducting statistical analyses on
extreme events based on finite-sample data, which poses a number of practical challenges. In this section,
we propose solutions for three issues: the standardisation of marginal distributions (Section 3.1), the
definition of extreme space-time episodes (Section 3.2), the analysis and verification of asymptotic stability
properties (so-called threshold-stability, see Section 3.3).

3.1 Marginal transformations

We first discuss suitable marginal transformations of X such that X∗ satisfies convergence with respect
to `-exceedances in (4). In theory, values of X∗(s, t) close to 0 are pushed to 0 when u→∞ in (4), but
in practice the use of a high but finite threshold u leads to non-zero values in u−1X∗(s, t). Therefore,
a certain ambiguity persists in practice to define the standardisation for relatively small, non extreme
values of X(s, t). In particular, if the minimum value of the data process X arises with positive and
non negligible probability, such as the value 0 for the absence of precipitation in our application study,
then this minimum value should be mapped to 0 in the standardised process X∗. Here, we develop
the general idea of such transformations and a more specific transformation for precipitation data is
proposed in Section 5. We choose a distribution function G : R → [0, 1] whose survival function Ḡ
verifies: x Ḡ(x)→ 1, x→∞, and Ḡ(0) = 1; we write G← for the (generalized) inverse function of G. We
then define the transformation T = T(s,t) : R→ [0,∞) towards the standardised process X∗ as follows:

X∗(s, t) = T (X(s, t)) = G←(F(s,t)(X(s, t))) (5)

where F(s,t) : R→ [0, 1] denotes the distribution of X(s, t). The (generalized) inverse transformation of T
can be defined as T←(f) = F←(s,t)(G(f)) for f ∈ C+(S ×T ), with F←(s,t) the (generalized) inverse function
of F(s,t).

Regarding marginal modeling, it is natural to use a tail representation motivated by univariate EVT,
whose parametrization corresponds directly to the GP process in Definition 2.2. For a fixed high threshold
function u(s, t), we assume that

P(X(s, t) > x) = 1− F(s,t)(x) =

[
1 + γ(s, t)

x− µ(s, t)

σ(s, t)

]−1/γ(s,t)

+

(6)

for x > u(s, t), with parameter functions for position µ(s, t) < u(s, t), for scale σ(s, t) > 0 and for shape
γ(s, t), such that the right-hand side of (6) is less than 1 (Thibaud and Opitz, 2015). For data values
X(s, t) below u(s, t), we may use appropriately chosen empirical distribution functions or any other useful
model, where the probability mass below u(s, t) should amount to F(s,t)(u(s, t)) with F(s,t) defined in (6).

The standardisation in (5) leads to P(T (X(s, t)) > T (x)) ∼ 1
T (x) for large x, and therefore to

P(T (X ′(s, t)) > T (X(s, t)) | X(s, t) = x(s, t)) ∼ 1
T (x(s,t)) for an independent copy X ′ of X. For the

observed X(s, t), the value of T (X(s, t)) can be interpreted as the (marginal) return period of the obser-
vation X(s, t), and at high quantiles we can interpret X∗ as the space-time process of marginal return
periods. The cost functional ` (approximately) aggregates marginal return periods X∗(s, t) into return
periods `(X∗) for space-time episodes. For details about the definition of return periods, see Section 5.7.
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3.2 Defining extreme episodes

For the purpose of simulating realistic spatio-temporal extreme scenarios, we have to define what “ex-
treme” means. With environmental data, we often have only a single observation of the space-time
process X, and very high values typically tend to cluster temporally within relatively short sub-periods.
We consider such sub-periods as extreme space-time events. If it is realistic to assume that temporal
dependence of extremes becomes negligible for relatively large time lags, theoretical results based on
independent processes as in Section 2 can be used. In the space-time GP process framework, the value of
`(X) quantifies the magnitude of events. In practice, we apply ` to a large collection of candidate episodes
to extract the most extreme ones. Our extraction algorithm is designed to avoid temporal intersection of
the selected extreme episodes.

There is no unique definition of an extreme event, i.e. of the cost functional `, rather it depends on
the nature of the considered phenomenon, on the data set, on the objective of the study, and also on
the structure of the model (McPhillips et al., 2018). Expert knowledge may suggest how to measure the
extreme nature of an event, where the question of how to combine criteria related to duration, spatial
extent and magnitude is recurrent. For instance, French et al. (2018) develop new visualizations of
extreme heat waves by composing a temporal and spatial cost functional. Chailan et al. (2017) extract
extreme wave heights based on spatio-temporal maxima in sliding time windows.

In the following, we use the idea of sliding space-time windows and specify the support of the cost
functional ` introduced in Section 2.1 as a neighborhood N (s, t) at location s ∈ S and at time t ∈ T .
In practice, the window size defines the maximal time duration and spatial extent of extreme events.
The space index s may be missing if we consider the full study area for extracting extreme events. This
neighborhood could be defined through an event duration δ in time, and the spatial support could be the
full study area or a sub-region such as a catchment or a certain distance buffer around a specific site s0.
To indicate the local support of the cost functional defined as a neighborhood around (s, t), we use the
notation `s,t(X

∗) = `({X∗(s′, t′), (s′, t′) ∈ N (s, t)}).
We propose to define N (s, t) as the product of a spatial neighborhood N (s) (e.g., {s′ ∈ S | ‖s− s′‖ ≤

15 km}) and a temporal neighborhood N (t) (e.g., {t′ ∈ T | |t− t′| ≤ 12 hours}), N (s, t) = N (s)×N (t).
The above choice of the spatial extension of the neighborhood and the time duration takes into account
the spatial and temporal dependence of extreme episodes in our dataset, and can be seen as a local
smoothing of the data. Useful cost functionals ` for space-time episodes are obtained by composing a
spatial functional `S with a temporal functional `T , the latter applied to the values of `S observed over
a number of consecutive time steps :

`s,t(X
∗) = `T (`Ss,t−(δ−1)(X

∗), . . . , `Ss,t(X
∗)), (7)

with `Ss,t(X
∗) = `S({X∗(s′, t) | s′ ∈ N (s)}) and δ the duration of the episode. Moreover, based on

`Ss,t(X
∗) we can define cost functionals that combine the values obtained for all spatial neighborhoods

N (s) by taking their maximum value (or again, any other spatial aggregation value). In this case, we
define:

`t(X
∗) = `T

(
max
s∈S

`Ss,t−(δ−1)(X
∗), . . . ,max

s∈S
`Ss,t(X

∗)

)
. (8)

If X satisfies the functional domain of attraction condition (3), then

P(`(X∗) > u) ∼ θ`/u, u→∞, (9)
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where θ` is the `-extremal coefficient (for details, see Engelke et al., 2018). When `s,t corresponds to the
maximum function over N (s, t) (i.e., `T = max and `Ss,t = max), the `-extremal coefficient θ`s,t defines
the classical extremal coefficient of the domain N (s, t) (see Example 4 of Engelke et al., 2018).

Using (9), we can calculate approximate return levels for extreme episodes characterized as `-exceedances
above a large threshold u. The simplest case arises for θ` = 1, i.e., when θ` is known beforehand and we
do not have to estimate it from data. For instance, if (s0, t0) ∈ S × T is a fixed space-time point, we can
define the cost functional value `(X∗) as X∗(s0, t0), and θ` = 1. Moreover, θ` = 1 if ` is the average,
i.e. `s,t(x) = 1

|N (s,t)|
∫
N (s,t)

x(s′, t′) d(s′, t′); see Ferreira et al. (2012, Proposition 2.2). When θ` 6= 1, an

estimator of θ` can be plugged into (9), such as a weighted least square estimator (Engelke et al., 2018).
Finally, since P(`((X ′)∗) > `(X∗) | X∗ = x∗) ∼ θ`/`(x

∗) at high quantiles of `(X∗) for an independent
copy X ′ of X, we can interpret `(x∗)/θ` as the return period of an extreme event x∗.

3.3 Techniques to analyze asymptotic dependence

The functional domain of attraction condition in (3) is the theoretical basis for using GP processes. It
requires that a relatively strong type of extremal dependence, known as asymptotic dependence, prevails
in the data-generating process X, at least for small distances in space and time. With asymptotic
dependence between two points (s, t) and (s′, t′) = (s+ ∆s, t+ ∆t), we observe a strictly positive limit of
the probability P

(
F(s′,t′)(X(s′, t′)) > u | F(s,t)(X(s, t)) > u

)
as u → 1. In this case, so-called threshold

stability holds when moving towards higher quantiles, such that the typical spatial and temporal extent
of clusters of extreme values does not depend on event magnitude. In practice, we should verify that
data exhibit such asymptotic dependence. We shortly discuss two approaches : the study of empirical
extremal coefficients and, the assessment of the independence of observed scale variable `(X∗) and profile
process X∗/`(X∗).

3.3.1 Spatial and temporal extremal coefficient functions

Pairwise extremal coefficients provide a summary of extremal dependence with respect to distance in space
and time and are calculated from bivariate data; see Appendix B for details on empirical estimation. We
consider first the spatial extremal coefficient function θspa(h) to measure extremal dependence between
sites separated by spatial distance h at a given time, and second the temporal extremal coefficient
function θtim(k) to measure extremal dependence for a time lag k at a given site. We estimate θspa(h)
using observation pairs with structure (X(s, ti), X(s + ∆s, ti)) where ∆s = h, and we estimate θtim(k)
from observation pairs (maxs∈S X(s, ti),maxs∈S X(s, ti + k)).

3.3.2 Independence of scale and profile

The POT stability manifests itself through the (approximate) independence between the profile process
Y = X∗/`(X∗) and the random scale R = `(X∗) for `(X∗) > u. In practice, the threshold u should be
high enough for this property to hold approximately, such that the limit process in (4) becomes a useful
approximation to data. Due to the very high dimension of the profile process in the space-time setting, it
is difficult to check this independence directly based on observed scales and profiles. Instead, we propose
to check for the absence of strong trends in summary statistics of Y with respect to the event magnitude
R, which would indicate dependence between Y and R.
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In our application, we will focus on checking the scale-profile independence in space by considering the
set of extreme spatial episodes W ∗t satisfying `St (W ∗t ) > u, and we use two summary statistics calculated
from the profile processes Yt = W ∗t /`t(W

∗
t ) in C+(S). First, we consider fu′(Yt) defined as the proportion

of sites s where Yt(s) ≤ u′: useful values of u′ are relatively small or large quantiles of Yt, to check for
trends in the magnitude of Yt with respect to `t(W

∗
t ). Second, we consider the empirical standard

deviation sd(Y ′t ) of Y ′t (s) =
√
Yt(s): if there are trends with respect to event magnitude, we usually find

trends of sd(Y ′t ). The square root transformation ensures finite standard deviation values.

Several empirical studies on climatic data show that extremal dependence may weaken when the event
magnitude increases (Opitz et al., 2015; Huser and Wadsworth, 2018; Le et al., 2018; Tawn et al., 2018).
Then, asymptotic independence may ultimately arise, or the dependence strength may stabilize at very
high but unobserved magnitudes. We cannot check this stability behavior with absolute certainty in finite
samples. If the extremal dependence strength continues to weaken in data above the selected threshold
u, we acknowledge that the GP process framework leads to rather conservative probability estimates for
observing concomitant high values.

4 Methodology for uplifting observed extreme episodes

We now describe the general procedure for the extraction of extreme space-time episodes (Section 4.1)
and the algorithm to resample new space-time scenarios (Section 4.2). A probabilistic interpretation of
such resampling scheme is given in Section 4.3. Throughout and without loss of generality, we here use
the same notation for the single observation of the space-time process X(s, t) and the stochastic process
itself.

4.1 Selection of extreme episodes

Algorithm 1 describes the extraction of extreme episodes from standardised data X∗. To start, we define
the space-time neighborhoods N (s, t) whose intensities are assessed by applying the cost functional `. If
the neighborhood is the full study region, we may drop the index s and simply write N (t). We choose
a threshold u for the cost functional for which the asymptotic stability properties underpinning our
approach are (approximately) satisfied. There must be at least one exceedance of the cost functional
above the threshold in the data set. The first step of the algorithm is to compute the values of ` for
each neighborhood N (s, t). We select as the first extreme episode the neighborhood N (s1, t1) where `s,t
reaches its maximum value `1. We aim at extracting a collection of extreme episodes that are at most
weakly dependent; therefore, the algorithm needs a mechanism to “decluster” extreme episodes. The
second extracted extreme episode corresponds to the maximum value of `s,t(X

∗) arising in the data set
X∗(s, t) with t in the set of reduced time steps after removal of time steps that intersect with N (s1, t1)
or, more generally, with a larger temporal buffer zone Nbuffer(t1) around t1 involving a buffer parameter
β ≥ 0 to remove more time steps. We then iterate this procedure of episode extraction and data set
reduction. The stopping criterion for the extraction of extreme episodes is two-fold: either a fixed target
number m′ of extreme episodes is reached, or the extreme condition `s,t(X

∗) > u for a fixed high threshold
u cannot be fulfilled any longer in the reduced data set.

If the maximum of `s,t(X
∗) is not unique and is realized at several coordinates (s, t), we must define a

rule to extract a single (s, t) that identifies the corresponding extreme space-time episode. In particular,
if we find several consecutive time steps t where `t(X

∗) in Equation (8) is equal to the maximum, we fix
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the anchor time step t of the extreme episode as follows. Usually, δ consecutive values are equal, and we
then set t to the closest value below or equal to the median of these time steps. This rule will tend to
center the extreme space-time episode on the strongest values in X∗. That is, if the maximum arises at
time steps t0, . . . , t0 +δ−1, we fix t = t0 +b δ2c as the anchor time step of the extreme space-time episode.

Algorithm 1: Algorithm for selecting extreme episodes defined over space-time neighborhoods
N (s, t). In Step 8, instead of extracting only the extreme neighborhood N (si, ti), we may
sometimes want to extract the full study domain N (ti)× S.

Input:

• {X∗(s, t), s ∈ S, t ∈ T }, space-time observations on a standardised scale;

• S ′ ⊆ S sites of interest and T ′ ⊆ T time steps of interest.

• m′ the maximum number of extreme episodes to select;

• u threshold on `s,t(X
∗) for the selection of extreme episodes;

• δ > 0 the duration of extreme episodes defining temporal neighborhoods N (t) = [t− (δ − 1), t];

• β ≥ 0 buffer time step to ensure independent extreme episodes defining extended temporal
neighborhoods Nbuffer(t) = [t− (δ − 1)− β, t+ (δ − 1) + β];

• N (s) spatial neighborhood for s ∈ S ′, such that N (s, t) = N (s)×N (t).

Output:

• m: the number of selected extreme episodes (m ≤ m′);

•
{
X∗[1], X

∗
[2], . . . , X

∗
[m]

}
, {s1, s2, . . . , sm}, {t1, t2, . . . , tm}, {`1, `2, . . . , `m}: collection of extreme

episodes; observation sites and times; aggregation values related to extreme episodes.

1 begin
2 Set I = T ′.
3 Calculate `s,t(X

∗) for all t ∈ T ′, s ∈ S ′ with N (s, t) ⊂ S × T .
4 i← 1.
5 while i ≤ m′ and maxs∈S′,t∈I `s,t(X

∗) > u do
6 (si, ti)← arg maxt∈I,s∈S′ `s,t(X

∗)
7 `i ← `si,ti(X

∗)
8 X∗[i] ← {X

∗(s′, t′), (s′, t′) ∈ N (si, ti)}
9 I ← I \ Nbuffer(ti)

10 i = i+ 1

11 return m,
{
X∗[1], X

∗
[2], . . . , X

∗
[m]

}
, {s1, s2, . . . , sm}, { t1, t2, . . . , tm}, {`1, `2, . . . , `m}

4.2 Semi-parametric simulation method

To sample new extreme space-time scenarios, we proceed as follows:
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1. Standardisation: Estimate marginal tail parameter functions γ(s, t), σ(s, t) and µ(s, t) in (6), and
denote by X∗ = {T (X(s, t))}s∈S,t∈T the resulting standardised process (5).

2. Selection of extreme episodes: Fix the maximum number of extreme episodes m′. Use Algo-
rithm 1 to extract the collection of m ≤ m′ extreme episodes X∗[i], i = 1, . . . ,m.

3. Lifting: Sample Ri, i = 1, . . . ,m according to a Pareto distribution with shape 1 and scale α > 0,
i.e. P(Ri > x) = α/x, x ∈ [α,∞), and generate lifted extreme episodes as

Vi(s, t) = Ri
X∗[i](s, t)

`i
= RiYi(s, t), (s, t) ∈ N (si, ti). (10)

4. Back-transformation to original scale: Lifted extreme episodes are transformed back to the
original marginal scale by Wi(s, t) = T←(Vi(s, t)), (s, t) ∈ N (si, ti).

When fixing the value m′ of the number of extreme episodes to extract, we aim for a representative
sample of spatio-temporal extremal patterns in the data, but have to keep in mind that for a large value
of m′ the POT stability property may not be satisfied.

4.3 Interpretation of our proposed model

According to Definition 2.2, the lifting procedure in Section 4.2 samples new realizations Vi of a space-
time Pareto process with support N (si, ti) for each extreme episode i. Since P(`(X∗) > x) ∼ θ`/x for
large x and since resampled scale variables Ri are larger than α, we obtain α/θ` as the minimum return
period for resampled extreme episodes. Moreover, choosing a larger α will generate resampled extreme
episodes with longer return period. By the construction of the simulation method and the POT property,
uplifted scenarios have the same spatial patterns of variability as observed values, but they correspond
to longer return periods.

We can further establish a link between our resampling procedure and the linear normalization con-
stants in (3) leading to a max-stable limit at the original marginal scale. A valid choice for bn, as suggested
by EVT, is the (1 − 1/n)-quantile of F(s,t). With resampled scaling variable Ri = ri and the originally
observed one `i (see Sections 4.1-4.2), and with appropriately chosen events A, we can follow arguments
similar to Chailan et al. (2017, Appendix) and show that

P

(
Wi(s, t)− bnc

anc
∈ A

∣∣∣∣Ri = ri, `s,t(X
∗) = `i

)
≈ P

(
X[i](s, t)− bn

an
∈ A

∣∣∣∣Ri = ri, `s,t(X
∗) = `i

)
,

as n → ∞, where c = ri/(`iθ`). Therefore, the resampled and backtransformed episode Wi(s, t) has
approximately the same probability distribution as the observed extreme episodes in X(s, t), except for
bn and an replaced by bnc and anc. If α > θ``i, then bnc > bn, and our procedure generates a threshold-
stable stochastic process at a higher level than the observed one.

5 Application to precipitation in Mediterranean France

We use our resampling algorithm to produce large numbers of realistic spatio-temporal extreme precip-
itation scenarios in a region in Mediterranean France where flash floods are frequent. Furthermore, we
show how to calculate two risk measures for the most extreme observed space-time episodes before and
after uplifting them to longer return periods.

10



Figure 1: Empirical return levels at 98% level (left panel) and maxima (right panel) of hourly precipitation
intensities for each grid cell in our study area from 1997 to 2007. Grey and black contour lines indicate
altitude (400 and 800 m respectively).

5.1 Description of the data set

Our semi-parametric approach does not provide a mechanism to spatially interpolate observations. There-
fore, precipitation measurements should be available over a sufficiently dense network of sites. We use
hourly precipitation reanalysis data over a 1 km2 grid, constructed by merging radar signals and observed
hourly precipitation totals (Tabary et al., 2012). The grid has 10, 914 cells covering a 133.2 km × 104.3
km area in Mediterranean France, see Figure 1, with 87, 642 hourly time steps covering the 10-year period
from 1997 to 2007. The unit of measurement is mm/h. This data set was provided by Météo-France
(http://www.meteofrance.com). The large dimension of the data set allows us to disregard restrictive
parametric assumptions in favour of a nonparametric approach for the extremal dependence model.

Empirical return levels of rainfall intensities at the 98% level (i.e., of strictly positive observations)
and the maximum precipitation values observed over the complete study period are reported for each
grid cell in Figure 1.

5.2 Standardisation of marginal distributions

The first step of our lifting procedure is the definition of a marginal transformation T , appropriate for
extreme hourly precipitation data, to obtain the standardised process X∗ in (5). We first discuss our
choice of the target distribution G. Due to the hourly temporal resolution, zero values occur with very
high frequency in the data. Therefore, we include a discrete mass p0 at 0 to represent the absence of
precipitation. Following Opitz (2016), we construct G to have a mass p0 ≥ 0 at 0, a uniform density on
(0, x0), and a standard Pareto distribution for x > x0 where x0 > 1. The junction point x0 is chosen to
ensure the continuity of the density of G for x > 0:

G(x) =


0, x < 0,
p0, x = 0,

p0 + (1−p0)2

4 x, 0 < x ≤ 2/(1− p0),
1− 1/x, x > 2/(1− p0).

(11)
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Figure 2: Distribution function G for p0 = 0.7.

An illustration of G for p0 = 0.7 is provided in Figure 2. Next, we choose the distribution function
F(s,t) of X(s, t) as the empirical distribution function F(s) (i.e., at each grid cell s) when X(s, t) ≤ u(s, t),
and according to (6) when X(s, t) > u(s, t). We use spatial models for the marginal tail parameters,
whose estimators µ̂(s), σ̂(s) and γ̂(s) in F(s) are obtained by composite marginal likelihood inference
(Varin et al., 2011) using a threshold u(s) chosen as a high empirical quantile for fixed s; here, we choose
the 0.95-quantile of hourly rainfall intensities. Thanks to the consistency of these estimators and the
continuity of T , we can apply the continuous mapping theorem such that the transformation T̂ (with
estimators plugged in) provides a consistent estimate of T .

5.3 Choice of spatio-temporal cost functionals

Our first cost functional `
(1)
s,t is a spatio-temporal average, i.e., the average value of X∗(s, t) over the

spatio-temporal neighborhoods N (s, t), for all feasible space-time points (s, t). In space, we specify
this neighborhood through a 15 km disc centered at s; in time, it extends backward from t such that
N (t) = {t− (δ − 1), . . . , t} with duration δ = 12 hours. With this choice, θ

`
(1)
s,t

= 1, see Sections 3.2 and

4.3. The second cost functional `
(2)
s,t is in line with classical EVT and is called spatio-temporal maximum;

the value `
(2)
s,t (X

∗) corresponds to the maximum over the whole study area and observation windows, i.e.,

N (s) = S, and `Ss,t = max, `T = max. For this choice, we need an estimate of the extremal coefficient
θ
`
(2)
s,t

to obtain return levels for lifted events. Therefore, we implement maximum censored likelihood for

estimating the scale parameter θ
`
(2)
s,t

of a Pareto distribution with fixed shape 1, using observed magnitudes

`
(2)
s,t (X

∗) censored below a high threshold u.

5.4 Analysis of extremal dependence properties

Using techniques proposed in Section 3.3, we first illustrate pairwise empirical extremal coefficients with
respect to spatial distance and temporal lags, and we then check if threshold stability is a valid assumption
for the data set when considering high quantiles.

Figure 8 shows the estimations of the empirical spatial and temporal extremal coefficient functions.
The pairwise estimator is based on a threshold for each of the two components, see Appendix B for
details. The empirical spatial extremal coefficient function is plotted in Figure 8 (left panel). For θspa, the
threshold u(s) is set to the empirical 0.98-quantile of X∗(s, ·) where s represents the site with maximum
empirical 0.98-quantile between the two sites involved the pairwise estimator. The empirical temporal
extremal coefficient function is plotted in Figure 8 (right panel). In this case, a uniform threshold u

is chosen as the empirical 0.98-quantiles of the sample of spatio-temporal maxima `
(2)
s,t (X

∗). Pointwise
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Figure 3: Extremal coefficient functions. Left: θ̂spa(h), based on a subsample of 1500 pairs of grid cells,

with a local polynomial regression (turquoise line). Right: θ̂tim(k), based on pairs of spatial maxima
separated by a time lag k (turquoise line). Dashed lines show bootstrap confidence intervals at 95%.

block bootstrap confidence intervals at 95% for both extremal coefficient function are constructed using
variable size blocks with block length following a geometric distribution with mean 300 hours (Politis

and Romano, 1994; Davis et al., 2011). Figure 8 shows that θ̂spa(h) and θ̂tim(k) always remain below
2 for all spatial distances h and for time lags k lower than 12 hours, hinting at substantial extremal
dependence at finite, observed quantile levels. Therefore, we see that the maximum duration of extreme
episodes is approximately 12 hours. We point out that there is a certain sensitivity of the estimated
curves with respect to the probability p used for fixing empirical thresholds u, with a slight tendency
towards decreasing dependence strength at higher levels; see Figure 8 in Appendix B.

Next, we complement these findings by checking spatial threshold stability based on the independence
of scales and profiles for high event magnitudes observed at a given time. First, we point out that certain
calculations for extreme episodes were quite sensitive to the high proportion of 0 values (i.e., absence
of precipitation) in the data set, which amount to around 92 %. Therefore, we add a preprocessing
step where we remove hourly time steps ti from the data set if the precipitation totals in a sliding
24hour-window centered at ti, cumulated over all grid cells, are smaller than 550 mm, corresponding to
a spatially averaged precipitation total of 0.05 mm over 24 hours. The resulting data subset retained
contains only around 23 % of 0 values. Now, we check the scale-profile independence for the case of the

spatio-temporal average `
(1)
s,t , and for simplicity we here consider the full study area S as spatial support,

and we write `
(1)
t for the resulting cost functional. The empirical 0.95-quantile of `

(1)
t (X∗) is used as

threshold u. Denote by Yi = {Yi(s, t)} the observed profile process Yt corresponding to each extracted
extreme episode i, with i = 1, . . . ,m. In the two displays on the left of Figure 4, the proportion of profile
process values Yi(s, t) below or equal to a threshold u′ ≥ 0, denoted by fu′(Yi), is plotted for u′ = 0
and for u′ fixed to the empirical 0.95-quantile of all episodes Yi taken together. The empirical standard
deviation sd(Y ′i ) of the square root Y ′i (s, t) of profile process values Yi(s, t) is depicted in the third display
of Figure 4. For easier visual interpretation, both summary statistics are plotted against 1− u/`∗i , where

`∗i = `
(1)
ti (X∗[i]). Under the functional domain-of-attraction assumption, the distribution of 1 − u/`∗i is

approximately uniform on [0, 1]. A QQ-plot of 1 − u/`∗i is shown in the fourth display of Figure 4 with
pointwise confidence bounds, and no striking deviation from uniformity appears. Moreover, it is difficult
to detect strong systematic trends in profile values with respect to event magnitude. Judging from the
shape of the local regression curves in this plot, e.g. for sd(Y ′i ), this may be a border case between
asymptotic dependence and asymptotic independence, but it is difficult to decide with certainty. If data
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Figure 4: Analysis of scale-profile independence for the spatio-temporal average. The threshold u is

chosen as the 0.95-quantile of observed magnitudes `
(1)
t (X∗). From left to right: fu′(Yi) for u′ = 0; same

for u′ = 0.95-quantile; sd(Y ′i ); QQ-plot of observed 1 − u/`∗i against uniform theoretical quantiles with
pointwise confidence interval at 95% (dashed lines).

do not satisfy asymptotic dependence, we acknowledge that our resampling procedure may lead to rather
conservative estimates of aggregated extreme risks. In the following, we assume that domain-of-attraction

properties are satisfied for our data set if we fix the 0.95-quantile as threshold for `
(1)
s,t (X

∗) given as the

spatio-temporal average function. Similar conclusions are valid for the spatio-temporal maximum `
(2)
s,t

with u given as the 0.98-quantile.

5.5 Parameter choice for extreme episode extraction and lifting

As before with `
(1)
s,t , we fix the duration of extreme episodes to 12 hours (i.e., δ = 12 in Algorithm 1).

The spatial neighborhoods S ′ are chosen differently for the two ` functions. In order to calculate `
(1)
s,t , we

consider a spatial neighborhood of 15 km around each reference point s, such that S ′ is composed of sites

s with minimum distance of 15 km to the boundary of the study region. However, for `
(2)
s,t , we always

take S ′ = S. We set β = 1 to separate extreme episodes by at least 1 hour. In order to illustrate a strong
uplifting effect in resampled extreme episodes, we select a high lower threshold for newly sampled scale
variables Ri, i.e. a large scale parameter α for Pareto distribution with shape 1, here given by twice the

maximum value of observed magnitudes `
(1)
i (X∗) and `

(2)
i (X∗). In general, the parameter choice in our

method provides high flexibility with respect to the modeling context.

5.6 Spatio-temporal extreme precipitation scenarios

We report the ending time ti for the 6 most extreme precipitation episodes with respect to the spatio-

temporal average `
(1)
s,t in the second column of Table 1. Analogously, for the spatio-temporal maximum

functional `
(2)
s,t the ending times ti are presented in the third column Table 1.

In general, we remark that both cost functionals extract similar extreme episodes in terms of temporal
neighborhoods, but the order with respect to event magnitudes is different. Some extreme episodes arise
only for one of the two cost functionals. In addition, we notice that extreme precipitation scenarios are
more frequent during the months of September and October.

Figure 5 shows the original precipitation data X(s, t) and the final uplifted scenarios W (s, t) for
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Table 1: Ending times of the most extreme, temporally declustered space-time episodes extracted by
considering two different cost functionals.

Episode Spatio-temporal average `
(1)
s,t Spatio-temporal maximum `

(2)
s,t

1st 2005-09-06 23:00:00 2005-09-07 01:00:00
2nd 1999-09-03 18:00:00 1999-09-14 10:00:00
3rd 2006-10-12 00:00:00 1999-08-28 22:00:00
4th 2002-09-08 22:00:00 1999-09-03 15:00:00
5th 1999-10-18 07:00:00 2001-07-06 05:00:00
6th 2001-07-06 02:00:00 2006-10-12 02:00:00

several time steps from the extracted temporal neighborhoods for the spatio-temporal average `
(1)
s,t . We

see a clear increase in intensity in the uplifted precipitation fields in Figure 5. Analog plots for `
(2)
s,t are

presented in Figure 6.

5.7 Risk analysis

Risk is a complex notion and can take on a variety of forms with diverse applications. The conventional
risk measure in hydrology is that of the univariate return level at probability level q ∈ [0, 1], denoted
as Qq. A return level is a quantile, defined as the magnitude of the event that is exceeded with a
probability 1 − q; then, 1/(1 − q) is the associated return period. However, the return level fails to
give any information about the thickness of the tail of the distribution function. In order to prevent
the above shortcoming, an alternative risk measure was proposed in actuarial sciences, the so-called
Conditional Tail Expectation (CTE) (Denuit et al., 2005). Information about the thickness of the tail
of the distribution is included in the CTE, defined for a given level q ∈ [0, 1] and for a random variable
X by CTEq(X) = E(X|X > Qq(X)). In contrast to the return level, the CTE measure verifies the
subadditivity property for continuous risks.

We perform a risk analysis that aims at exploring differences in uplifted extreme episodes that can be
imputed to the choice of cost functionals and of the fixed lower threshold (i.e., the Pareto scale parameter)
used for sampling new scale variables Ri. We consider the 3 largest episodes extracted for each of the two

cost functionals `
(1)
s,t and `

(2)
s,t , see Table 1. We uplift these episodes using Ri as the 0.25-, 0.5- and 0.75-

quantiles of the Pareto random distribution with shape 1 and scale αi, i = 1, . . . , 4 with α1 corresponding
to the value of the cost functional for the most extreme episode centered at t1, and then α2 = 2α1,
α3 = 3α1 and α4 = 4α1.

Two univariate risk measures – the quantile for a fixed probability (return level), and the Conditional
Tail Expectation (CTE) – are computed for the original episode Xi and for each uplifted episode Wi,
where we first aggregate values of X(s, t) and W (s, t) respectively for each spatial grid cell by taking its
temporal average over the 12 time steps.

Figure 7 presents the calculated spatial return levels and CTE, respectively, at the levels 0.98 and 0.99
according to the two cost functionals, and with the four lower bounds of the support αi for the Pareto-
distributed scaling variable. Along the y-axes, we also report the quantiles for each of the three original
episodes. We first study the return level measures. Clearly, Figure 7 (first and second columns) shows
the higher α leads to higher risk. Furthermore, for both cost functionals we see that the highest risk is
attributed to the episode with highest magnitude, the first extreme episode (see first and second columns
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Figure 5: Original precipitation data X(s, t) (left column) and uplifted episodes W (s, t) (right column)

based on the spatio-temporal average `
(1)
s,t . First row: extreme episode associated to the most extreme

episode, here shown for t =2005-09-06, 14:00:00; second row: same for the fourth most extreme episode
and t =2002-09-08, 15:00:00; third row: same for the sixth most extreme episode and t =2001-07-06,

00:00:00. The red dots indicate the site si where the maximum value `
(1)
si,ti has been observed during the

episode. Grey and black contour indicate altitude. 16



Figure 6: Original precipitation data X(s, t) (left column) and uplifted episodes W (s, t) (right column)

based on the spatio-temporal maximum `
(2)
s,t . First row: extreme episode associated to the most extreme

episode, here shown for t =2005-09-06, 15:00:00; second row: same for the third most extreme episode
and t =1999-08-28, 16:00:00; third row: same for the sixth most extreme episode and t =2006-10-11,
20:00:00. Grey and black contour indicate altitude.
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in Figure 7). However, the third-highest magnitude event yields higher risk than the second-highest one,
as can be seen for the spatio-temporal maximum cost functional (see second row of Figure 7). Indeed, the
spatio-temporal maximum ` may tend to select episodes with highly localized peaks, i.e. there may be a
large majority of zeros or small values with a few spatially confined clusters of very large precipitation
intensities. On the other hand, risk measures based on spatio-temporal averages better account for the
persistence of moderate to high precipitation intensities. These contrasted results highlight that many
ways exist to order elements (here: space-time episodes) defined over high-dimensional spaces (here:
space-time neighborhoods N (s, t)); we underline that the mechanism of cost functionals allows the user

to make a flexible choice that is appropriate in the modeling context. In addition, in the case of `
(1)
s,t ,

we expect uplifted episodes with the same return periods since θ` = 1 and we use the same realization
R (see Section 4.3). Therefore, we obtain greater return levels when the extremeness increases. Similar
conclusions are obtained for the CTE risk measure, see third and fourth columns in Figure 7.

6 Conclusion and outlook

In this work, we set up a general framework for space-time generalized Pareto process. It allowed us
to develop a semi-parametric method to simulate extreme space-time scenarios of phenomenona such
as precipitation. The extremal dependence structure is fully data-driven, and we require parametric
assumptions only for the univariate tails, based on EVT. A crucial component is the cost functional defined
over a sliding space-time window. It characterizes extreme episodes as episodes whose “cost” exceeds
a high threshold. The application of our method to a gridded precipitation data set in Mediterranean
France was used for a relatively simple risk analysis. It illustrates how cost functionals can be defined,
how these affect the selection of extreme episodes, and how the magnitude of the newly sampled scale
variables impacts the magnitude of the lifted extreme episodes on the original marginal scale.

In practice, it is difficult to find extreme value data with long observation periods to empirically study
extreme value properties for long return periods without strong modeling assumptions. For practitioners,
we provide a methodology that allows them to create extreme scenarios where they can control return lev-
els or periods for aggregated data without any need to explicitly model dependence at extreme quantiles.
The proposed methodology requires densely gauged networks or gridded data as spatial interpolation is
currently not enabled. Besides precipitation reanalyses, other types of interesting applications include
simulations from regional or global climate models.

In future work, space-time distance metrics other than the Euclidean distance could be used to define
the space-time neighborhoods N (s, t). To account for orographic structures, the crossing distance could
be used, which includes a vertical component related to the crossing of crests and valleys (Gottardi et al.,
2012). Instead of fitting the marginal tail parameters separately for each grid cell, a generalized additive
regression approach could be implemented to borrow information from nearby sites (Gardes and Girard,
2010; Carreau et al., 2017). In addition, more sophisticated validation methods for POT stability in
large dimensions could be studied. Finally, we note that there are events such as karstic aquifer floods
where not only the extreme rainfall but also dry and moderate rainfall periods have to be considered. By
extending ideas in Cantet et al. (2011) and in Yiou (2014), we plan to implement our method as part of a
spatial precipitation generator that simulates complete rainfall series. Rain-flow models will then be fed
by simulated series from a precipitation generator, and we will be able to study the impact of the flood
by applying risk measures to the outputs of rain-flow models.
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Figure 7: Return level and Conditional-Tail-Expectation at 98% and at 99%. First row: spatio-temporal
average cost function. Second row: spatio-temporal maximum cost functional. The legend indicates the
extreme episode (ee). For each episode, the lines correspond to different uplifting levels using the 0.25-,
0.5- and 0.75- quantile (from bottom to top) of the Pareto distribution of the scaling variable with shape
1 and scale αi, i = 1, . . . , 4.
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Appendix

A Example: Pareto processes with log-Gaussian profile process

If Gaussian process models are not well adapted to modeling extremes, they can nevertheless be used to
construct flexible spatial or spatio-temporal limit models (Kabluchko et al. (2009); Engelke et al. (2015)).
For instance, De Fondeville and Davison (2018) analyse the extreme rainfall in the east of Florida by
fitting a spatial generalized Pareto process based on log-Gaussian processes. Sample-continuous max-
stable process {Z(s, t)}s∈S,t∈T with unit Fréchet margins can be characterized constructively as (de Haan
(1984); Schlather (2002))

Z(s, t) = max
i≥1

ξiψi(s, t), s ∈ S, t ∈ T , (A.1)

where {ξi, i = 1, 2, . . .} is a point process on [0,∞) with intensity ξ−2dξ, and ψi(s, t) are independent
copies of a nonnegative random function with Eψi(s, t) = 1, and independent of {ξi}. Specifically, one
may choose ψi(s, t) = exp{X(s, t) − σ2(s, t)/2} with a centered Gaussian process {X(s, t)} possessing
variance function σ2(s, t). Regarding the `-Pareto processes equivalent to such max-stable processes,
the choice of `(x) = x(s0, t0) for a fixed space-time point (s0, t0) is particularly interesting. In this
case, the profile process Y (s, t) in the generalized Pareto process is a log-Gaussian process given by

Y (s, t)
d
= exp{X(s, t)−X(s0, t0)− 1

2var(X(s, t)−X(s0, t0))} where var denotes the variance. The idea
of conditioning on a fixed component of a process is more widely known as the conditional extremes
approach (Heffernan and Tawn (2004); Wadsworth and Tawn (2018)), and it arises as a special case of
the cost functional `.

B Estimator of extremal coefficient

Let X(1), . . . , X(M) be identically distributed random variables with unit Fréchet distribution, that is,
P(X(k) ≤ x) = e−1/x, x > 0, k = 1, . . . ,M . When the joint distribution of the random vector
(X(1), . . . , X(M))T follows a multivariate extreme value distribution, then the distribution function of
maxMk=1X

(k) is e−θ/x, x > 0, where θ = θ(X(1), . . . , X(M)), 1 ≤ θ ≤ M , is called the extremal coeffi-
cient (Smith, 1990; Schlather and de Tawn, 2003). In practice, the coefficient θ can be interpreted as
the equivalent number of asymptotically independent random variables (i.e., the effective sample size of
extremes) in a random vector (X(1), . . . , X(M)); it quantifies the dependence for extreme values. The
case θ = 1 represents full dependence, whereas θ = M represents full independence.

When considering threshold exceedances, extreme realizations are those that exceed a high threshold.

Suppose that (X
(1)
i , . . . , X

(M)
i )T , i = 1, . . . , n are independent and identically distributed (iid) copies of

the random vector (X(1), . . . , X(M))T , where a threshold exceedance is observed for X
(k)
i , 1 ≤ k ≤ M

if X
(k)
i > u

(k)
i for some fixed threshold u

(k)
i ; otherwise, the observation X

(k)
i is considered as being

left-censored at u
(k)
i . Caires et al. (2011) propose an estimator of the extremal coefficient constructed as

θ̂ = m

/
n∑
i=1

1

max (Xi, ui)
(B.1)

where Xi = max (X
(1)
i , . . . , X

(M)
i ), ui = max (u

(1)
i , . . . , u

(M)
i ), and m is the number of excesses Xi > ui.
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Figure 8: Empirical extremal coefficient functions. Left: θ̂spa(h), based on a subsample of 1500 pairs of

grid cells, with a local polynomial regression (turquoise line). Right: θ̂tim(k), based on pairs of spatial
maxima separated by a time lag k (turquoise line). Bootstrap confidence intervals at 95% (dashed lines).
Threshold values ui in (B.1) are defined as the empirical q-quantile with 0.99 (first row) and 0.995 (second
row).

For a summary of extremal dependence with respect to distance in space and time, we follow common

practice and focus on pairwise extremal coefficients calculated from bivariate data Xi = max (X
(1)
i , X

(2)
i )

with M = 2 in (B.1). We work with two extremal coefficient functions. The spatial extremal coefficient
θspa(h) measures the extremal dependence between pairs of sites separated by a spatial distance h at a
given time. The time extremal coefficient θtim(k) measures the dependence between pairs of observations
separated by a time lag k at a given site (see Section 2.2 in Chailan et al. (2017) for more details). We
estimate empirical spatial extremal coefficient functions from data by considering pairs with structure
(X(s, ti), X(s+ ∆s, ti)) where ∆s = h, while we use (maxs∈S X(s, ti),maxs∈S X(s, ti + k)) for empirical
temporal extremal coefficient functions where S is the study area.

Figure 8 (left panel) presents the spatial extremal coefficient estimates. We set ui in (B.1) as the
maximum of the empirical q-quantiles of X(s, ti) and X(s+h, ti), where the latter two variables represent
a pair of sites separated by a given spatial distance h at a given hour ti. The temporal extremal coefficient
estimates are plotted in Figure 8 (right panel). In this case, the threshold values ui are chosen as an
empirical q-quantiles of the spatial maximum. The following values for q are used : 0.99 and 0.995
(rows from top to bottom in Figure 8, respectively). Block bootstrap confidence intervals at 95% for
both extreme coefficients are constructed by resampling blocks of hours with variable size following a
geometric distribution with a mean of 300 hours (i.e. approximatively 12 days) (Politis and Romano,
1994; Davis et al., 2011).

21
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