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1. Example: Pareto processes with log-Gaussian profile process

If Gaussian process models are not well adapted to modeling extremes, they can nevertheless

be used to construct flexible spatial or spatio-temporal limit models (Kabluchko et al. (2009);

Engelke et al. (2015)). For instance, De Fondeville and Davison (2018) analyse the extreme

rainfall in the east of Florida by fitting a spatial generalized Pareto process based on log-

Gaussian processes. Sample-continuous max-stable process {Z(s, t)}s∈S,t∈T with unit Fréchet

margins can be characterized constructively as (de Haan (1984); Schlather (2002))

Z(s, t) = max
i≥1

ξiψi(s, t), s ∈ S, t ∈ T , (1)

where {ξi, i = 1, 2, . . .} is a point process on [0,∞) with intensity ξ−2dξ, and ψi(s, t) are inde-

pendent copies of a nonnegative random function with Eψi(s, t) = 1, and independent of {ξi}.

Specifically, one may choose ψi(s, t) = exp{X(s, t)−σ2(s, t)/2} with a centered Gaussian process

{X(s, t)} possessing variance function σ2(s, t). Regarding the `-Pareto processes equivalent to

such max-stable processes, the choice of `(x) = x(s0, t0) for a fixed space-time point (s0, t0) is

particularly interesting. In this case, the profile process Y (s, t) in the generalized Pareto process

is a log-Gaussian process given by Y (s, t)
d
= exp{X(s, t)−X(s0, t0)− 1

2var(X(s, t)−X(s0, t0))}

where var denotes the variance. The idea of conditioning on a fixed component of a pro-

cess is more widely known as the conditional extremes approach (Heffernan and Tawn (2004);

Wadsworth and Tawn (2018)), and it arises as a special case of the cost functional `.

2. Risk measures

Risk is a complex notion and can take on a variety of forms with diverse applications. Risk

could be defined as the effect that lack of certainty produces on objectives (ISO (2009)). The

conventional risk measure in hydrology is that of the univariate return level at level q ∈ [0, 1]

denoted as Qq. A return level is a quantile, defined as the magnitude of the event that is

exceeded with a probability 1 − q; then, 1/(1 − q) is the associated return period. However,
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the return level fails to give any information about the thickness of the tail of the distribution

function. That is, a regulator can know only the frequency of default but not the severity of

default (Denuit et al., 2005). In order to prevent the above shortcoming, another interesting

risk measure was proposed in actuarial sciences, the so-called Conditional Tail Expectation

(CTE) (Denuit et al., 2005). Information about the thickness of the tail of the distribution is

included in the CTE defined for a given level q ∈ [0, 1] and for an univariate random variable

X by CTEq(X) = E(X|X > Qq(X)). In contrast to the return level, the CTE measure verifies

the subadditivity property for continuous risks.

3. Estimator of extremal coefficient

Let X(1), . . . , X(M) be identically distributed random variables with unit Fréchet distribution,

that is, P(X(k) ≤ x) = e−1/x, x > 0, k = 1, . . . ,M . When the joint distribution of the random

vector (X(1), . . . , X(M))T follows a multivariate extreme value distribution, then the distribution

function of maxMk=1X
(k) is e−θ/x, x > 0, where θ = θ(X(1), . . . , X(M)), 1 ≤ θ ≤ M , is called

the extremal coefficient (Smith, 1990; Schlather and de Tawn, 2003). In practice, the coefficient

θ can be interpreted as the equivalent number of asymptotically independent random variables

(i.e., the effective sample size of extremes) in a random vector (X(1), . . . , X(M)); it quantifies

the dependence for extreme values. The case θ = 1 represents full dependence, whereas θ = M

represents full independence.

When considering threshold exceedances, extreme realizations are those that exceed a high

threshold. Suppose that (X
(1)
i , . . . , X

(M)
i )T , i = 1, . . . , n are independent and identically dis-

tributed (iid) copies of the random vector (X(1), . . . , X(M))T , where a threshold exceedance is

observed for X
(k)
i , 1 ≤ k ≤ M if X

(k)
i > u

(k)
i for some fixed threshold u

(k)
i ; otherwise, the

observation X
(k)
i is considered as being left-censored at u

(k)
i . Caires et al. (2011) propose an

estimator of the extremal coefficient constructed as

θ̂ = m

/
n∑
i=1

1

max (Xi, ui)
(2)

where Xi = max (X
(1)
i , . . . , X

(M)
i ), ui = max (u

(1)
i , . . . , u

(M)
i ), and m is the number of excesses

Xi > ui.

For a summary of extremal dependence with respect to distance in space and time, we follow

common practice and focus on pairwise extremal coefficients calculated from bivariate data

Xi = max (X
(1)
i , X

(2)
i ) with M = 2 in (2). We work with two extremal coefficient functions.

The spatial extremal coefficient θspa(h) measures the extremal dependence between pairs of sites
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Fig. 1. Empirical extremal coefficient functions. Left: θ̂spa(h), based on a subsample of 1500 pairs of

grid cells, with a local polynomial regression (turquoise line). Right: θ̂tim(k), based on pairs of spatial

maxima separated by a time lag k (turquoise line). Bootstrap confidence intervals at 95% (dashed lines).

Threshold values ui in (2) are defined as the empirical q-quantile with q = 0.98, 0.99, 0.995 (from top to

bottom).

separated by a spatial distance h at a given time. The time extremal coefficient θtim(k) measures

the dependence between pairs of observations separated by a time lag k at a given site (see Section

2.2 in Chailan et al. (2017) for more details). We estimate empirical spatial extremal coefficient

functions from data by considering pairs with structure (X(s, ti), X(s+ ∆s, ti)) where ∆s = h,

while we use (maxs∈S X(s, ti),maxs∈S X(s, ti + k)) for empirical temporal extremal coefficient

functions where S is the study area.

Figure 1 (left panel) presents the spatial extremal coefficient estimates. We set ui in (2)

as the maximum of the empirical q-quantiles of X(s, ti) and X(s + h, ti), where the latter two

variables represent a pair of sites separated by a given spatial distance h at a given hour ti.
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Fig. 2. Distribution function G for p0 = 0.7.

The temporal extremal coefficient estimates are plotted in Figure 1 (right panel). In this case,

the threshold valuees ui are chosen as an empirical q-quantiles of the spatial maximum. The

following values for q are used : 0.98, 0.99 and 0.995 (rows from top to bottom in Figure 1,

respectively). Block bootstrap confidence intervals at 95% for both extreme coefficients are

constructed by resampling blocks of hours with variable size following a geometric distribution

with a mean of 300 hours (i.e. approximatively 12 days) (Politis and Romano, 1994; Davis et al.,

2011).

4. Application to precipitation in Southern France

4.1. Example of the normalized marginal distribution G

We choose a distribution G whose survival function Ḡ verifies: xḠ(x)→ 1, x→∞, and Ḡ(0) =

1; we write G← for the (generalized) inverse function of G. We then define the transformation

T = Ts,t towards the standardized process X∗ as follows:

X∗(s, t) = T (X(s, t)) = G←(F(s,t)(X(s, t)))

where F(s,t) denotes the distribution function of X(s, t). Following ideas in Opitz (2016), we

construct G to have mass p0 ≥ 0 at 0, a uniform density on (0, x0), and a standard Pareto

distribution for x > x0 where x0 > 1. The junction point x0 is chosen to ensure continuity of

the density of G for x > 0. Figure 2 provides an illustration of G function when p0 = 0.7.

G(x) =



0, x < 0,

p0, x = 0,

p0 + (1−p0)2
4 x, 0 < x ≤ 2/(1− p0),

1− 1/x, x > 2/(1− p0).

(3)



Supporting materials for Generalized Pareto processes for simulating space-time extreme events 5

4.2. Spatio-temporal extremes episodes for spatial maximum

By considering the spatial maximum cost functional, Figure 3 shows the original rainfall data

process X(s, t) and the final uplifted process W (s, t) for a subset of the selected extreme episodes

from Table 1 in main document.

4.3. Risk analysis

Figure 4 presents the calculated CTE at the two levels 0.98 and 0.99 for the selected extreme

episodes with two choices of ` cost functionals (spatio-temporal mean, and spatial maximum) and

with the four scale parameter values for the Pareto random variable. Here, we uplift the extreme

episodes by defining the value of the scale variable R as the 0.25-, 0.5- and 0.75-quantile of the

Pareto distribution with shape 1 and scale αi, i = 1, . . . , 4 with α1 corresponding to the value

of the cost functional for the most extreme episode associated to t1, and α2 = 2α1, α3 = 3α1

and α4 = 4α1. Along the y-axis, the values of the CTE of each of the three original episodes are

indicated.
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Fig. 3. Original precipitation dataX(s, t) (left column) and uplifted episodesW (s, t) (right column) based

on the spatial maximum `
(2)
t . First row: extreme episode associated to t1, here shown for t =2005-09-06,

15:00:00; second row: same for t3 and t =1999-08-28, 16:00:00; third row: same for t6 and t =2006-

10-11, 20:00:00.
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Fig. 4. Conditional-Tail-Expectation at 98% (first row) and at 99% (second row). Left: spatio-temporal

average cost functional. Right: spatial maximum cost functional. The legend indicates the extreme

episode (ee). For each episode, the lines correspond to different uplifting levels using the 0.25-, 0.5- and

0.75-quantile (from bottom to top) of the Pareto distribution of the scaling variable with shape 1 and scale

αi, i = 1, . . . , 4



8

Heffernan, J. E. and Tawn, J. A. (2004) A conditional approach for multivariate extreme values.

J. R. Statist. Soc. B, 66(3), 497–546.

ISO (2009) ISO 31000- Risk Management: Principles and Guidelines. Int. Organ. for Stand.

Kabluchko, Z., Schlather, M. and de Haan, L. (2009) Stationary max-stable fields associated to

negative definite functions. Ann. Probab, 37(5), 2042–2065.

Opitz, T. (2016) Modeling asymptotically independent spatial extremes based on laplace random

fields. Spatial Statistics, 16, 1–18.

Politis, D. N. and Romano, J. P. (1994) The stationary bootstrap. J. Am. Statist. Ass., 89,

1303–1313.

Schlather, M. (2002) Models for Stationary Max-Stable Random Fields. Extremes, 5(1), 33–44.

Schlather, M. and de Tawn, J. A. (2003) A Dependence Measure for Multivariate and Spatial

Extreme Values: Properties and Inference. Biometrika, 90(1), 139–156.

Smith, R. L. (1990) Max-stable processes and spatial extremes. Preprint. University of Surrey.

Wadsworth, J. L. and Tawn, J. A. (2018) Spatial conditional extremes.

https://www.lancaster.ac.uk/ wadswojl/CSE-paper.pdf.


