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Summary. To better manage the risks of destructive natural disasters, impact models can be fed

with simulations of extreme scenarios to study sensitivity to temporal and spatial variability. We

propose semi-parametric stochastic simulation of realistic spatio-temporal extreme fields using a

moderate number of observed extreme space-time episodes to generate an unlimited number of

extreme scenarios of any magnitude. Our framework draws sound theoretical justification from

extreme value theory, building on generalized Pareto limit processes. For illustration on hourly

gridded precipitation data in Mediterranean France, we calculate risk measures using extreme

event simulations for yet unobserved magnitudes.
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1. Introduction

Extreme events of geophysical processes such as precipitation extend over space and time, and

they can entail devastating consequences for human societies and ecosystems. Flash floods in

southern France constitute highly destructive natural phenomena causing material damage and

threatening the human lives (Vinet et al., 2016). Since damage and costs of floods have been

increasing over the last decades, the understanding of temporal and spatial variability of rainfall
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patterns generating such floods receives considerable attention from the authorities (European

Environment Agency, 2007). To help with this understanding, we here develop a stochastic

simulation method of realistic spatio-temporal extreme scenarios, which can be fed to impact

models.

Extreme-value theory (EVT) for spatial data proposes data-based stochastic modeling of such

extreme events for predicting probabilities, risks and uncertainty behavior (Coles, 2001; de Haan

and Ferreira, 2006; Ferreira and de Haan, 2014). Due to very complex deterministic and proba-

bilistic patterns in such processes and the high dimension of data sets, realistic spatio-temporal

modeling is challenging. In this work, we instead develop a data-driven non-parametric ap-

proach to handle extremal space-time dependence by transforming observed marginal quantiles

in a spatially and temporally coherent way. We illustrate our method on a high-dimensional data

set of gridded hourly reanalysis data. Our procedure draws sound justification from asymptotic

theory for threshold exceedances with a strong probabilistic interpretation. We will explain how

it allows us to flexibly define extreme episodes in space-time data based on different ways of

aggregating marginal return periods over space and time.

Block-maxima and peaks-over-threshold (POT) methods are two widely known strategies in

univariate EVT to identify extreme events in a data set. While the block-maxima method is

based on the division of the observation period into non-overlapping periods of equal size (for

instance months or years) to extract the maximum observation in each period (Ferreira and

de Haan, 2015), the POT method consists in the study of positive exceedances above a given

high threshold (Pickands III, 1975; Embrechts et al., 1997; Beirlant et al., 2004). Max-stable

processes, introduced by de Haan (1984), are the natural infinite-dimensional generalization of

the univariate generalized extreme value (GEV) distribution, which constitutes the only limiting

distribution in block-maxima approach. Ferreira and de Haan (2014) and Dombry and Ribatet

(2015) showed that generalized Pareto (GP) processes are the only possible asymptotic limits

for threshold exceedances. Both approaches are closely linked through theoretical tail stability

properties.

Several approaches were developed for stochastic simulation of spatial max-stable fields (Dom-

bry et al. (2013, 2016); Oesting et al. (2018b,a)). Since max-stable processes are linked to the

block-maxima approach, their realizations aggregate information of several of the underlying

original events which may limit the physical interpretations of the simulated processes. Conse-

quently, these simulations appear to be more appropriate for studying long-term events such as

the erosion of the coastline (Chailan et al., 2017).
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On the other hand, GP processes represent the original events that fulfill a threshold ex-

ceedance condition. They can be represented constructively by multiplying a random scaling

variable with a so-called spectral process, the latter characterizing the spatial variation in the

extreme events (Ferreira and de Haan (2014); Dombry and Ribatet (2015); Thibaud and Opitz

(2015)). In practice, one usually first fits a parametric model for the spectral processes, and

the estimators are then plugged in for simulation. In contrast, we here develop an algorithm

for extracting observed spectral processes from data, and we then combine them with newly

sampled scaling variables to generate new realizations of the extreme events.

Since extreme events are frequently spatio-temporal in nature, their duration has to be ac-

counted for. A semi-parametric method to simulate extreme spatio-temporal fields of wave

heights in the Gulf of Lion (France) was proposed in Chailan et al. (2017) based on methods

for the spatial setting developed by Caires et al. (2011) and Ferreira and de Haan (2014). The

approach proposed in our work is motivated by Chailan et al. (2017) and provides three major

novelties. Firstly, our procedure allows for an infinite number of simulations. Secondly, we

embed our semiparametric resampling idea in the framework of GP processes, which allows for

a clear probabilistic interpretation of extreme events. Thirdly, a flexible general procedure is

presented to identify extreme events and quantify their magnitude by accounting for space-time

aggregation through homogeneous cost functionals that encapsulate operations such as averaging

or taking maxima.

The paper is structured as follows. Section 2 presents theory for space-time GP processes.

Techniques to practically implement and validate the spatio-temporal GP framework are pro-

posed in Section 3. Our algorithm to generate extreme space-time scenarios is developed in

Section 4. We illustrate our approach on hourly rainfall reanalysis data available on a 1 km2

grid in Southern France over a 10-year period from 1997 to 2007 in Section 5. In this case study,

we perform a comparative analysis based on two conventional risk measures using simulated

extreme scenarios. Conclusions and future research are given in Section 6.

2. Theory of space-time GP processes

We write S for a compact subset of Rd to denote the area of interest and T for a compact subset

of R+ to denote the time dimension, and we denote by C(S×T ) the space of continuous functions

on S × T , equipped with the supremum norm. The restriction of C(S × T ) to non-negative

functions is written C+(S × T ).

In multivariate EVT, a GP limit was introduced in Rootzén and Tajvidi (2006) by condition-
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ing on an exceedance event in at least one component. The aforementioned idea was extended to

infinite-dimensional spaces by the definition of GP process in Ferreira and de Haan (2014) where

the condition is based on exceedances of the supremum over space. To gain flexibility in the

definition of the conditioning extreme events, Dombry and Ribatet (2015) provided the notion of

`-Pareto processes by considering more general exceedances defined in terms of a homogeneous

cost functional denoted `. Our focus here is on the spatial and temporal dimensions for the

extent of extreme events. Since we aim to model phenomena that exceed a certain extreme

threshold, we start by defining and characterizing space-time generalized `-Pareto processes.

The following constructive definition generalizes Dombry and Ribatet (2015).

2.1. Construction of space-time GP processes

We define a cost functional ` : C+(S ×T )→ [0,+∞) as a continuous nonnegative function that

is homogeneous, i.e. `(tf) = t`(f) for t ≥ 0. Examples of such ` are the functions of maximum,

minimum, average, or the value at a specific point (s0, t0) ∈ S × T .

Definition 1 (Standard space-time `-Pareto process). Let W ∗ = {W ∗(s, t)}s∈S,t∈T
be a stochactic process in C+(S × T ). We call W ∗ a standard space-time `-Pareto process if it

can be represented as

W ∗(s, t)
d
= RY (s, t) (1)

where

(a) Y is a stochastic process in C+(S × T ) satisfying `(Y ) = 1;

(b) R has Pareto distribution with scale 1 and shape γ, i.e., P(R > r) = r−γ, r > 1;

(c) Y and R are stochastically independent.

The above definition is equivalent to the POT stability: for any u ≥ 1, the distribution of the

renormalized threshold-exceeding process {u−1W ∗|`(W ∗) ≥ u} is equal to the distribution of

W ∗; see Theorem 2 of Dombry and Ribatet (2015). By construction, we get Y
d
= W ∗/`(W ∗) and

R
d
= `(W ∗). A generalized version of such Pareto processes is given in the following Definition 2

by allowing for flexibility in the marginal distributions according to the location-scale-shape

parametrization commonly used in univariate EVT.

Definition 2 (Generalized space-time `-Pareto process). Given an `-Pareto process

W ∗(s, t) constructed according to Definition 1 and continuous real functions σ(s, t) > 0, µ(s, t)
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and γ(s, t) in C(S ×T ), a generalized space-time `-Pareto process is any process constructed as

W (s, t)
d
=

 µ(s, t) + σ(s, t){W ∗(s, t)γ(s,t) − 1}/γ(s, t), γ(s, t) 6= 0,

µ(s, t) + σ(s, t) logW ∗(s, t), γ(s, t) = 0.
(2)

2.2. Limits for space-time GP processes

We shortly recall the two main limits for characterizing extremes of stochastic processes: max-

stable processes and Pareto processes; we refer the reader to the literature for technical details

(Lin and de Haan, 2001; de Haan and Ferreira, 2006; Ferreira and de Haan, 2014; Thibaud and

Opitz, 2015; Dombry and Ribatet, 2015). We use the symbol “⇒” to represent variants of weak

convergence of random elements from the univariate, multivariate or functional domain.

Consider independent copiesX1, . . . , Xn of a stochastic space-time processX = {X(s, t)}s∈S,t∈T
with continuous trajectories. We say that the process X is in the functional maximum domain

of attraction of a max-stable process Z = {Z(s, t)}s∈S,t∈T with continuous trajectories if there

exist continuous functions an > 0 and bn such that{
max

1≤i≤n

Xi(s, t)− bn(s, t)

an(s, t)

}
s∈S,t∈T

⇒ {Z(s, t)}s∈S,t∈T . (3)

Further details about space-time max-stable processes can be found in Davis et al. (2013a,b).

The convergence of the dependence structure and of marginal distributions in (3) can be

studied separately; see de Haan and Ferreira (2006, Section 9.2). A standardised process X∗ =

X∗(s, t) can be defined as X∗(s, t) = 1/(1 − F(s,t)(X(s, t))), s ∈ S, t ∈ T , where F(s,t) denotes

the distribution of X(s, t). Equivalently, if H denotes the distribution function of a standard

Pareto distribution, we apply the transformation X∗(s, t) = H−1(F(s,t)(X(s, t))). If X has

continuous marginal distributions F(s,t), then X∗ has marginal standard Pareto distributions.

For an ≡ n, bn ≡ 0, the max-stable limit for X∗ in (3) is a standard max-stable process

Z∗ = {Z∗(s, t)}s∈S,t∈T with unit Fréchet marginal distributions; see de Haan and Ferreira

(2006, Definition 9.2.4).

If X∗ is in the maximum domain of attraction of a max-stable process Z∗ and the cost

functional ` is continuous at 0, we get the convergence of `-exceedances on the standard scale:

{
u−1X∗(s, t)|`(X∗(s, t)) > u

}
⇒ {W ∗(s, t)} , u→∞, (4)

where W ∗(s, t) is a standard space-time `-Pareto process as in Definition 1 (Dombry and Ribatet,

2015, Theorem 3). Conversely, if the convergence in (4) holds for ` chosen as the maximum

norm, then convergence in (3) of the max-stable process X∗ to Z∗ follows. An example of
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Pareto processes with log-Gaussian profile process is given in Section 1 in the supplementary

material.

3. Practice of space-time GP processes

In practice, we use the limit theory exposed in Section 2 for conducting statistical analyses on

extreme events based on finite-sample data, which poses a number of practical challenges. In

this section, we propose solutions for three issues : the standardization of marginal distribu-

tions (Section 3.1), the definition of extreme space-time episodes (Section 3.2), the analysis and

verification of asymptotic stability properties (so-called threshold-stability, see Section 3.3).

3.1. Marginal transformations

We first discuss suitable marginal transformations of X such that X∗ satisfies convergence with

respect to `-exceedances in (4). In theory, values of X∗(s, t) close to 0 are pushed to 0 when

u → ∞ in (4), but in practice the use of a high but finite threshold u leads to non-zero values

in u−1X∗(s, t). Therefore, a certain ambiguity persists in practice to define the standardization

for relatively small, non extreme values of X(s, t). In particular, if the minimum value of the

data process X arises with positive and non negligible probability, such as the value 0 for the

absence of precipitation in our application study, then this minimum value should be mapped

to 0 in the standardized process X∗. Here, we develop the general idea of such transformations

and a more specific transformation for precipitation data is proposed in Section 5. We choose a

distribution G whose survival function Ḡ verifies: x Ḡ(x)→ 1, x→∞, and Ḡ(0) = 1; we write

G← for the (generalized) inverse function of G. We then define the transformation T = Ts,t

towards the standardized process X∗ as follows:

X∗(s, t) = T (X(s, t)) = G←(F(s,t)(X(s, t))) (5)

where F(s,t) denotes the distribution of X(s, t). The (generalized) inverse transformation of T

can be defined as T←(f) = F←(s,t)(G(f)) for f ∈ C+(S × T ), with F←(s,t) the (generalized) inverse

function of F(s,t).

Regarding marginal modeling, it is natural to use a tail representation motivated by univariate

EVT, whose parametrization corresponds directly to the GP process in Definition 2. For a fixed

high threshold function u(s, t), we assume that

P(X(s, t) > x) = 1− F(s,t)(x) =

[
1 + γ(s, t)

x− µ(s, t)

σ(s, t)

]−1/γ(s,t)

+

(6)
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for x > u(s, t), with parameter functions for position µ(s, t) < u(s, t), for scale σ(s, t) > 0 and

for shape γ(s, t), such that the right-hand side of (6) is less than 1 (Thibaud and Opitz, 2015).

For data values X(s, t) below u(s, t), we may use appropriately chosen empirical distribution

functions or any other useful model, where the probability mass below u(s, t) should amount to

F(s,t)(u(s, t)) with F(s,t) defined in (6).

The standardization in (5) leads to P(T (X(s, t)) > T (x)) ∼ 1
T (x) for large x, and therefore to

P(T (X ′(s, t)) > T (X(s, t)) | X(s, t) = x(s, t)) ∼ 1
T (x(s,t)) for an independent copy X ′ of X. The

observed value of T (X(s, t)) can be interpreted as the (marginal) return period of the observation

X(s, t), and at high quantiles we can interpret X∗ as the space-time process of marginal return

periods. The cost functional ` (approximately) aggregates marginal return periods X∗(s, t) into

return periods `(X∗) for space-time episodes. For details about the definition of return periods,

see Section 2 in the supplementary material.

3.2. Defining extreme episodes

For the purpose of simulating realistic spatio-temporal extreme scenarios, we have to define

what “extreme” means. With environmental data, we often have only a single observation of

the space-time process X, and very high values typically tend cluster temporally within relatively

short sub-periods. We consider such sub-periods as extreme space-time events. If it is realistic to

assume that temporal dependence of extremes becomes negligible for relatively large time lags,

theoretical results based on independent processes as in Section 2 can be used. In the space-time

GP process framework, the value of ` quantifies the magnitude of events. In practice, we apply

` to a large collection of candidate episodes to extract the most extreme ones. Our extraction

algorithm is designed to avoid temporal intersection of the selected extreme episodes.

There is no unique definition of an extreme event, i.e. of the cost functional `, rather it

depends on the nature of the considered phenomenon, on the data set, on the objective of the

study, and also on the structure of the model (McPhillips et al., 2018). Expert knowledge may

suggest how to measure the extreme nature of an event, where the question of how to combine

criteria related to duration, spatial extent and magnitude is recurrent. For instance, French et al.

(2018) develop new visualizations of extreme heat waves by composing a temporal and spatial

cost functional. Chailan et al. (2017) extract extreme wave heights based on spatio-temporal

maxima in sliding time windows.

In the following, we use the idea of sliding space-time windows and specify the support of the

cost functional ` introduced in Section 2.1 as a neighborhood N (s, t) indexed by s ∈ S and t ∈ T .
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In practice, the window size defines the maximal time duration and spatial extent of extreme

events. The space index s may be missing if we consider the full study area for extracting extreme

events. This neighborhood could be defined through an event duration δ in time, and the spatial

support could be the full study area or a sub-region such as a catchment or a certain distance

buffer around a specific site s0. To indicate the local support of the cost functional defined as a

neighborhood around (s, t), we use the notation `s,t(X
∗) = `({X∗(s′, t′), (s′, t′) ∈ N (s, t)}).

We propose to define N (s, t) as the product of a spatial neighborhood N (s) (e.g., {s′ ∈ S |

‖s − s′‖ ≤ 15km}) and a temporal neighborhood N (t) (e.g.m, {t′ ∈ T | |t − t′| ≤ 6hours}),

N (s, t) = N (s) × N (t). Useful cost functionals ` for space-time episodes are obtained by

composing spatial functional `S with a temporal functional `T , the latter applied to the values

of `S observed over a number of consecutive time steps:

`s,t(X
∗) = `T (`Ss,t−δ1(X

∗), . . . , `Ss,t+δ2(X
∗)), (7)

with `Ss,t(X
∗) = `S({X∗(s′, t) | s′ ∈ N (s)}) and δ = δ1 + δ2 + 1. Moreover, based taking on

`Ss,t(X
∗) we can define cost functionals that combine the values obtained for all spatial neigh-

borhoods N (s) by taking their maximum value (or again, any other spatial aggregation value.

In this case, we define:

`t(X
∗) = max

s∈S
`Ss,t(X

∗). (8)

If X satisfies the functional domain of attraction condition (3), then

P(`(X∗) > u) ∼ θ`/u, u→∞, (9)

where θ` is the `-extremal coefficient (see Engelke et al., 2018, for details). When `s,t is the

maximum function, the `-extremal coefficient θ`s,t defines the classical extremal coefficient of

the domain N (s, t) (see example 4 of Engelke et al., 2018).

Using (9), we can calculate approximate return levels for extreme episodes characterized as

`-exceedances above a large threshold u. The simplest case arises for θ` = 1, i.e., when θ` is

known beforehand and we do not have to estimate it from data. For instance, if (s0, t0) ∈ S ×T

is a fixed space-time point, we can define the cost functional value `(X∗) as X∗(s0, t0), and

θ` = 1. Moreover, θ` = 1 if ` is the average, i.e. `s,t(x) = 1
|N (s,t)|

∫
N (s,t) x(s′, t′) d(s′, t′); see

Ferreira et al. (2012, Proposition 2.2). When θ` 6= 1, an estimator of θ` can be plugged into

(9), such as a weighted least square estimator (Engelke et al., 2018). Finally, since P(`((X ′)∗) >

`(X∗) | X∗ = x∗) ∼ θ`/`(x
∗) at high quantiles of `(X∗) for an independent copy X ′ of X, we

can interpret `(x∗)/θ` as the return period of an extreme event x∗.
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3.3. Techniques to analyze asymptotic dependence

The functional domain of attraction condition in (3) is the theoretical basis for using GP pro-

cesses. It requires that a relatively strong type of extremal dependence, known as asymptotic

dependence, prevails in the data-generating process X, at least for small distances in space and

time. With asymptotic dependence between two points (s, t) and (s′, t′) = (s+ ∆s, t+ ∆t), we

observe a positive limit of the probability F(s′,t′)(X(s′, t′)) > u | F(s,t)(X(s, t)) > u as u→ 1. In

this case, so-called threshold stability holds when moving towards higher quantiles, such that

the typical spatial and temporal extent of clusters of extreme values does not depend on event

magnitude. In practice, we should verify that data exhibit such asymptotic dependence. We

shortly discuss two approaches: studying empirical extremal coefficients; and techniques for

checking the independence of observed scale variable `(X∗) and profile process X∗/`(X∗).

3.3.1. Spatial and temporal extremal coefficient functions

Pairwise extremal coefficients provide a summary of extremal dependence with respect to dis-

tance in space and time and are calculated from bivariate data; see Section 3 in the supple-

mentary material for details on empirical estimation. We consider first the spatial extremal

coefficient function θspa(h) to measure extremal dependence between sites separated by spatial

distance h at a given time, and second the temporal extremal coefficient function θtim(k) to

measure extremal dependence for a time lag k at a given site. We estimate θspa(h) using ob-

servation pairs with structure (X(s, ti), X(s + ∆s, ti)) where ∆s = h, and we estimate θtim(k)

from observation pairs (maxs∈S X(s, ti),maxs∈S X(s, ti + k)).

3.3.2. Independence of scale and profile

The POT stability manifests itself through the (approximate) independence between the profile

process Y = X∗/`(X∗) and the random scale R = `(X∗) for `(X∗) > u. In practice, the

threshold u should be high enough for this property to hold approximately, such that the limit

process in (4) becomes a useful approximation to data. Due to the very high dimension of

the profile process in the space-time setting, it is difficult to check this independence directly

based on observed scales and profiles. Instead, we propose to check for the absence of strong

trends in summary statistics of Y with respect to the event magnitude R, which would indicate

dependence between Y and R.

In our application, we will focus on checking the scale-profile independence in space by

considering the set of extreme spatial episodes W ∗t satisfying `St (W ∗t ) > u, and we use two
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summary statistics calculated from the profile processes Yt = W ∗t /`t(W
∗
t ). First, consider fu′(Yt)

defined as the proportion of sites s where Yt(s) ≤ u′: useful values of u′ are relatively small

or large quantiles of Yt, to check for trends in the amplitude of Yt with respect to `t(W
∗
t ).

Second, consider the empirical standard deviation sd(Y ′t ) of Y ′t (s) =
√
Yt(s): amplitude trends

with respect event magnitude typically lead to trends in this summary value; the square root

transformation ensures finite standard deviation values.

Several empirical studies on climate data show that extremal dependence may weaken when

the event magnitude increases (Opitz et al., 2015; Huser and Wadsworth, 2018; Le et al., 2018;

Tawn et al., 2018). Then, asymptotic independence may ultimately arise, or the dependence

strength may stabilize at very high but unobserved magnitudes. We cannot check this stability

behavior with absolute certainty in finite samples. If the extremal dependence strength continues

to weaken in data above the selected threshold u, we acknowledge that our GP process framework

leads to rather conservative probability estimates for observing concomitant high values.

4. Methodology for uplifting observed extreme episodes

We now describe the general procedure for the extraction of extreme space-time episodes (Sec-

tion 4.1) and the algorithm to resample new space-time scenarios (Section 4.2). A probabilistic

interpretation of such resampling is given in Section 4.3. Throughout and without loss of gener-

ality, we here use the same notation for the single observation of the space-time process X(s, t)

and the stochastic process itself.

4.1. Selection of extreme episodes

Algorithm 1 describes the extraction of extreme episodes from standardized data X∗. To start,

we define the space-time neighborhoods N (s, t) scanned for extreme episodes by applying the

cost functional `, whose values represent the event magnitude. If ` is applied to the full study

region, we may drop the index s and simply write N (t). We choose a threshold u for the

cost functional above which the asymptotic stability properties underpinning our approach are

(approximately) satisfied. There must be at least one exceedance of the cost functional above

the threshold in the data set. The first step of the algorithm is to compute the values of ` for

each neighborhood N (s, t). We select as the first extreme episode the neighborhood N (s1, t1)

where `s,t reaches its maximum value `1. We aim at extracting a collection of extreme episodes

that are at most weakly dependent; therefore, the algorithm needs a mechanism to “decluster”

extreme episodes. The second extracted extreme episode corresponds to the maximum value of
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`s,t(X
∗) arising in the data set X∗(s, t) with t in the set of reduced time steps after removal

of time steps that intersect with N (s1, t1) or, more generally, with a larger temporal buffer

zone Nbuffer(t1) around t1. We then iterate this procedure of episode extraction and data set

reduction. The stopping criterion for the extraction of extreme episodes is two-fold: either a

fixed target number m′ of extreme episodes is reached, or the extreme condition `s,t(X
∗) > u

for a fixed high threshold u cannot be fulfilled any longer in the reduced data set.

4.2. Semi-parametric simulation method

To sample new extreme space-time scenarios, we proceed as follows:

(a) Standardization: Estimate marginal tail parameter functions γ(s, t), σ(s, t) and µ(s, t)

in (6), and denote by X∗ = {T (X(s, t))}s∈S,t∈T the resulting standardized process (5).

(b) Selection of extreme episodes: Fix the maximum number of extreme episodes m′. Use

Algorithm 1 to extract the collection of m ≤ m′ extreme episodes X∗[i], i = 1, . . . ,m.

(c) Lifting: Sample Ri, i = 1, . . . ,m′ according to a Pareto distribution with shape 1 and

scale α > 0, i.e. P(Ri > x) = α/x, x ∈ [α,∞), and generate lifted extreme episodes as

Vi(s, t) = Ri
X∗[i](s, t)

`i
= RiYi(s, t), (s, t) ∈ N (si, ti). (10)

(d) Back-transformation to original scale: Lifted extreme episodes are transformed back

to the original marginal scale by Wi(s, t) = T←(Vi(s, t)), (s, t) ∈ N (si, ti).

4.3. Interpretation of our proposed model

According to Definition 2, the lifting procedure in Section 4.2 samples new realizations Vi of a

space-time Pareto process with support N (si, ti) for each extreme episode i. Since P(`(X∗) >

x) ∼ θ`/x for large x and since resampled scale variables Ri are larger than α, we obtain α/θ`

as the minimum return period for resampled extreme episodes. Moreover, choosing a larger α

will generate resampled extreme episodes with longer return period.

We can further establish a link between our resampling procedure and the linear normaliza-

tion constants in (3) leading to a max-stable limit at the original marginal scale. A valid choice

for bn, as suggested by EVT, is the (1− 1/n)-quantile of F(s,t). With resampled scaling variable

Ri = ri and the originally observed one `i (see Sections 4.1-4.2), and with appropriately chosen

events A, we can follow arguments similar to Chailan et al. (2017, Appendix) and show that

P

(
Wi(s, t)− bnc

anc
∈ A

∣∣∣∣Ri = ri, `s,t(X
∗) = `i

)
≈ P

(
X[i](s, t)− bn

an
∈ A

∣∣∣∣Ri = ri, `s,t(X
∗) = `i

)
,
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Algorithm 1: Algorithm for selecting extreme episodes defined over space-time neighbor-

hoods N (s, t). In Step 8, instead of extracting only the extreme neighborhood N (si, ti), we

may sometimes want to extract the full study domain N (ti)× S.

Input:

• {X∗(s, t), s ∈ S, t ∈ T }, space-time observations on a standardized scale;

• S ′ ⊆ S sites of interest and T ′ ⊆ T time steps of interest.

• m′ the maximum number of extreme episodes to select;

• u threshold on `s,t(X
∗) for the selection of extreme episodes;

• δ = δ1 + δ2 + 1 with δ1, δ2 ≥ 0 the duration of extreme episodes defining temporal

neighborhoods N (t) = [t− δ1, t+ δ2];

• β1, β2 ≥ 0 buffer time steps to ensure independent extreme episodes defining extended

temporal neighborhoods Nbuffer(t) = [t− δ1 − β1, t+ δ2 + β2];

• N (s) spatial neighborhood for s ∈ S ′, such that N (s, t) = N (s)×N (t).

Output:

• m: the number of selected extreme episodes (m ≤ m′);

•
{
X∗[1], X

∗
[2], . . . , X

∗
[m]

}
, {s1, t2, . . . , sm}, {t1, t2, . . . , tm}, {`1, `2, . . . , `m}: collection of

extreme episodes; observation sites and times; aggregation values related to extreme

episodes.

1 begin

2 Set I = T ′.

3 Calculate `s,t(X
∗) for all t ∈ T ′, s ∈ S ′ with N (s, t) ⊂ S × T .

4 i← 1.

5 while i ≤ m′ and maxs∈S′,t∈I `s,t(X
∗) > u do

6 (si, ti)← arg maxt∈I,s∈S′ `s,t(X
∗)

7 `i ← `si,ti(X
∗)

8 X∗[i] ← {X
∗(s′, t′), (s′, t′) ∈ N (si, ti)}

9 I ← I \ Nbuffer(ti)

10 i = i+ 1

11 return m,
{
X∗[1], X

∗
[2], . . . , X

∗
[m]

}
, {s1, s2, . . . , sm}, { t1, t2, . . . , tm}, {`1, `2, . . . , `m}
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as n→∞, where c = ri/(`iθ`). Therefore, the resampled and backtransformed episode Wi(s, t)

has approximately the same probability distribution as the observed extreme episodes in X(s, t),

except for bn and an replaced by bnc and anc. If α > θ``i, then bnc > bn, and our procedure

generates a threshold-stable stochastic process at a higher level than the observed one.

5. Application to precipitation in Mediterranean France

We use our resampling algorithm to produce large numbers of realistic spatio-temporal extreme

precipitation scenarios in a region in Mediterranean France where flash floods are frequent, and

we show how to calculate two risk measures for the most extreme observed space-time episodes

before and after uplifting them to longer return periods.

5.1. Description of the data set

Our semi-parametric approach does not provide for a mechanism to spatially interpolate ob-

servations; therefore, precipitation measurements should be available over a sufficiently dense

network of sites. We here use hourly precipitation reanalysis data over a 1 km2 grid, constructed

by merging radar signals and observed hourly precipitation totals (Tabary et al., 2012). The grid

has 10, 914 cells covering a 133.2 km × 104.3 km area in Mediterranean France, see Figure 1, with

87, 642 hourly time steps covering the 10-year period from 1997 to 2007. The unit of measure-

ment is mm/h. This data set was provided by Météo-France (http://www.meteofrance.com).

The large dimension of the data set allows us to disregard restrictive parametric assumptions in

favour of a nonparametric approach for the extremal dependence model.

Empirical return levels of rainfall intensities at the 98% level (i.e., of strictly positive ob-

servations) and the maximum precipitation values observed over the complete study period are

reported for each grid cell in Figure 1.

5.2. Standardisation of marginal distributions

The first step of our lifting procedure is the definition of a marginal transformation T , appropri-

ate for extreme hourly precipitation data, to obtain the standardized process X∗ in (5). We first

discuss our choice of the target distribution G. Due to the hourly temporal resolution, values

0 occur with very high frequency in the data. Therefore, we include a discrete mass p0 at 0 to

represent absence of precipitation. Following Opitz (2016), we construct G to have mass p0 ≥ 0

at 0, a uniform density on (0, x0), and a standard Pareto distribution for x > x0 where x0 > 1.
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Fig. 1. Empirical return levels at 98% level (left panel) and maxima (right panel) of hourly precipitation

intensities for each grid cell in our study area from 1997 to 2007.

The junction point x0 is chosen to ensure continuity of the density of G for x > 0:

G(x) =



0, x < 0,

p0, x = 0,

p0 + (1−p0)2

4 x, 0 < x ≤ 2/(1− p0),

1− 1/x, x > 2/(1− p0).

(11)

An illustration of G for p0 = 0.7 is provided in Figure 2 in the supplementary material. Next,

we choose the distribution function F(s,t) of X(s, t) as the empirical distribution function F(s)

(i.e., at each grid cell s) when X(s, t) ≤ u(s, t), and according to (6) when X(s, t) > u(s, t). We

use spatial models for the marginal tail parameters, whose estimators µ̂(s), σ̂(s) and γ̂(s) in F(s)

are obtained by composite marginal likelihood inference (Varin et al., 2011) using a threshold

u(s) chosen as a high empirical quantile for fixed s; here, we choose the 0.95-quantile of hourly

rainfall intensities. Thanks to the consistency of these estimators and the continuity of T , we

can apply the continuous mapping theorem such that the transformation T̂ (with estimators

plugged in) is a consistent estimate of T .

5.3. Choice of spatio-temporal cost functionals

Our first cost functional `
(1)
s,t is a spatio-temporal average, i.e., the average value of X∗(s, t) over

the spatio-temporal neighborhoods N (s, t), for all feasible space-time points (s, t). In space, we

specify this neighborhood through a 15 km disc centered at s; in time, it extends backward from

t such that N (t) = {t − δ + 1, . . . , t} with duration δ = 12 hours. With this choice, θ`(1)s,t
= 1,

see Sections 3.2 and 4.3. The second cost functional `
(2)
t is in line with classical spatial EVT

and is called spatial maximum; the value `
(2)
t (X∗) corresponds to the maximum over the whole
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Fig. 2. Extremal coefficient functions. Left: θ̂spa(h), based on a subsample of 1500 pairs of grid cells,

with a local polynomial regression (turquoise line). Right: θ̂tim(k), based on pairs of spatial maxima

separated by a time lag k (turquoise line). Dashed lines show bootstrap confidence intervals at 95%.

study area at hour t. For this choice, we need an estimate of the extremal coefficient θ`(2)t
to

obtain return levels for lifted events. Therefore, we implement maximum censored likelihood for

estimating the scale parameter θ`(2)t
of a Pareto distribution with fixed shape 1, using observed

magnitudes `
(2)
t (X∗) censored below a high threshold u.

5.4. Analysis of extremal dependence properties

Using techniques proposed in Section 3.3, we first illustrate pairwise empirical extremal coeffi-

cients with respect to spatial distance and temporal lags, and we then check if threshold stability

is a valid assumption for the data set when considering high quantiles.

Figure 2 shows the estimations of the empirical spatial and temporal extremal coefficient

functions. The pairwise estimator is based on a threshold for each of the two components, see

Section 3 of the supplementary material for details. The empirical spatial extremal coefficient

function is plotted in Figure 2 (left panel). For θspa, the threshold u(s) is set to the empirical

0.98-quantile of X∗(s, ·) where s represents the site with maximum empirical 0.98-quantile be-

tween the two sites involved the pairwise estimator. The empirical temporal extremal coefficient

function is plotted in Figure 2 (right panel). In this case, a uniform threshold u is chosen as the

empirical 0.98-quantiles of the sample of spatial maxima `
(2)
t (X∗). Pointwise block bootstrap

confidence intervals at 95% for both extremal coefficient function are constructed using variable

size blocks with block length following a geometric distribution with mean 300 hours (Politis

and Romano, 1994; Davis et al., 2011). Figure 2 shows that θ̂spa(h) and θ̂tim(k) are always

below 2, hinting at substantial extremal dependence at finite, observed quantile levels. We see

that the maximum duration of extreme episodes is approximately 12 hours. We point out that

there is a certain sensitivity of the estimated curves with respect to the probability p used for

fixing empirical thresholds u, with a slight tendency towards decreasing dependence strength at
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Fig. 3. Analysis of scale-profile independence for the spatio-temporal average. The threshold u is

chosen as the 0.95-quantile of observed magnitudes `(1)t (X∗). From left to right: fu′(Yi) for u′ = 0; same

for u′ = 0.95-quantile; sd(Y ′i ); histogram of 1− u/`∗i .

higher levels; see Figure 1 in the supplementary material.

Next, we complement these findings by checking spatial threshold stability based on the

independence of scales and profiles for high event magnitudes observed at a given time. First,

we point out that certain calculations for extreme episodes were quite sensitive to the high

proportion of 0 values (i.e., absence of precipitation) in the data set, which amount to around

92 %. Therefore, we add a preprocessing step where we remove hourly time steps ti from the

data set if the precipitation totals in a sliding 24hour-window centered at ti, cumulated over

all grid cells, are smaller than 550 mm, corresponding to a spatially averaged precipitation

total of 0.05 mm over 24 hours. The resulting data subset retained contains only around 23 %

of 0 values. Now, we check the scale-profile independence for the case of the spatio-temporal

average `
(1)
s,t , and for simplicity we here consider the full study area S as spatial support, and

we write `
(1)
t for the resulting cost functional. The empirical 0.95-quantile of `

(1)
t (X∗) is used

as threshold u. Denote by Yi = {Yi(s, t)} the observed profile process Yt corresponding to each

extracted extreme episode i, with i = 1, . . . ,m. In the two displays on the left of Figure 3, the

proportion of profile process values Yi(s, t) below or equal to a threshold u′ ≥ 0, denoted by

fu′(Yi), is plotted for u′ = 0 and for u′ fixed to the empirical 0.95-quantile of all episodes Yi taken

together. The empirical standard deviation sd(Y ′i ) of the square root Y ′i (s, t) of profile process

values Yi(s, t) is depicted in the third display of Figure 3. For easier visual interpretation, both

summary statistics are plotted against 1 − u/`∗i , where `∗i = `
(1)
ti (X∗[i]). Under the functional

domain-of-attraction assumption, the distribution of 1−u/`∗i is approximately uniform on [0, 1].

Histograms of 1 − u/`∗i are shown in the fourth display of Figure 3, and no striking deviation

from uniformity appears. Moreover, it is difficult to detect strong systematic trends in profile

values with respect to event magnitude. Judging from the shape of the local regression curves
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in this plot, e.g. for sd(Y ′i ), we may be in a border case between asymptotic dependence and

asymptotic independence, but it is difficult to decide with certitude. If date do not satisfy

asymptotic dependence, we acknowledge that our resampling procedure may lead to rather

conservative estimates aggregated extreme risks. In the following, we assume that domain-of-

attraction properties are satisfied for our data set if we fix the 0.95-quantile as threshold for

`
(1)
s,t (X

∗) given as the spatio-temporal average function. Similar conclusions are valid for the

spatial maximum `
(2)
t with u given as the 0.98-quantile.

5.5. Parameter choice for extreme episode extraction and lifting

As before with `
(1)
s,t , we fix the duration of extreme episodes to 12 hours (i.e., δ = 12 in Algo-

rithm 1). The sliding temporal neighborhood N (t) of extreme episodes is defined differently for

`
(1)
s,t and `

(2)
t . While the time step ti (where the maximum of the cost functional occurs for the ith

extreme episode) is placed at the end of the time window for the spatio-temporal average (i.e.,

δ1 = 11 and δ2 = 0 in Algorithm 1), ti is set in the middle of the time window for the spatial

maximum (i.e., δ1 = 5 and δ2 = 6 in Algorithm 1). Furthermore, the spatial neighborhoods S ′

are chosen differently for the two ` functions. In order to calculate `
(1)
s,t , we consider a spatial

neighborhood of 15 kms around each reference point s, such that S ′ is composed of sites s with

minimum distance of 15 km to the boundary of the study region. However, for `
(1)
s,t , in Step 8

in Algorithm 1, we extract the full study domain. For `
(2)
t , we always take S ′ = S. To generate

independent extreme episodes, we remove δ1 time steps before ti (i.e., β1 = 0) and β2 = 12

after ti for the spatio-temporal average; and, we take β1 = β2 = 6 for the spatial maximum. In

order to illustrate a strong uplifting effect in resampled extreme episodes, we select a high lower

threshold for newly sampled scale variables Ri, i.e. a large scale parameter α for Pareto distribu-

tion with shape 1, here given by twice the maximum value of observed magnitudes `
(1)
i (X∗) and

`
(2)
i (X∗). In general, the parameter choice in our method provides high flexibility with respect

to the modeling context.

5.6. Spatio-temporal extreme precipitation scenarios

We report the starting time ti−11 for the 6 most extreme precipitation episodes with respect to

the spatio-temporal average `
(1)
s,t in the second column of Table 1. Analogously, for the spatial

maximum functional `
(2)
t the starting times ti − 5 are presented in the third column Table 1.

In general, we remark that both cost functionals extract similar extreme episodes in terms

of temporal neighborhoods, but the order with respect to event magnitudes is different. Some
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Table 1. Starting times of the most extreme, temporally declustered space-time

episodes extracted by considering two different cost functionals.

Episode Spatio-temporal average `
(1)
s,t Spatial maximum `

(2)
t

1st 2005-09-06 12:00:00 2005-09-06 14:00:00

2nd 1999-09-03 07:00:00 1999-09-13 23:00:00

3rd 2006-10-11 13:00:00 1999-08-28 11:00:00

4th 2002-09-08 11:00:00 1999-09-03 04:00:00

5th 1999-10-17 20:00:00 2001-07-05 18:00:00

6th 2001-07-05 15:00:00 2006-10-11 15:00:00

extreme episodes arise only for one of the two cost functionals.

Figure 4 shows the original precipitation data X(s, t) and the final uplifted scenarios W (s, t)

for several time steps from the extracted temporal neighborhoods for the spatio-temporal average

`
(1)
s,t . We see a clear increase in intensity in the uplifted precipitation fields in Figure 4. Analog

plots for `
(2)
t are presented in in the supplementary material (Figure 3).

5.7. Risk analysis

The two risk measures applied in the following are detailed in Section 2 of the supplementary

material. We perform a risk analysis that aims at exploring differences in uplifted extreme

episodes that can be imputed to the choice of cost functionals and of the fixed lower threshold

(i.e., the Pareto scale parameter) used for sampling new scale variables Ri. We consider the 3

largest episodes extracted for each of the two cost functionals `
(1)
s,t and `

(2)
t , see Table 1. We uplift

these episodes using Ri as the 0.25-, 0.5- and 0.75- quantiles of the Pareto random distribution

with shape 1 and scale αi, i = 1, . . . , 4 with α1 corresponding to the value of the cost functional

for the most extreme episode centered at t1, and then α2 = 2α1, α3 = 3α1 and α4 = 4α1.

Two univariate risk measures – the quantile for a fixed probability (return level), and the

Conditional Tail Expectation (CTE) – are computed for the original episode and for each uplifted

episode Wi, where we first aggregate values of X(s, t) and W (s, t) respectively for each spatial

grid cell by taking its temporal average over the 12 time steps. Figure 5 presents quantiles

at the two levels 0.98 and 0.99 according to the two cost functionals and with the four lower

thresholds αi for the Pareto-distributed scaling variable. Along the ordinate axes, we also

report the quantiles for each of the three original episodes. Clearly, Figure 5 shows the higher

α leads to higher risk. Furthermore, for both cost functionals we see that the highest risk

is attributed to the episode with highest magnitude, the first extreme episode (see Figure 5).
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Fig. 4. Original precipitation data X(s, t) (left column) and uplifted episodes W (s, t) (right column)

based on the spatio-temporal average `(1)s,t . First row: extreme episode associated to t1, here shown for

t =2005-09-06, 14:00:00; second row: same for t4 and t =2002-09-08, 15:00:00; third row: same for t6

and t =2001-07-06, 00:00:00. The red dots indicate the site si where the maximum value `(1)si,ti as been

observed during the episode.
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However, the third-highest magnitude event yields higher risk than the second-highest one, as

can be seen for the spatial maximum cost functional (see right column of Figure 5). Indeed,

the spatial maximum ` may tend to select episodes with highly localized peaks, i.e. there may

be a large majority of zeros or small values with a few spatially confined clusters of very large

precipitation intensities. On the other hand, risk measures based on spatio-temporal averages

better account for the persistence of moderate to high precipitation intensities. These contrasted

results highlight that many ways exist to order elements (here: space-time episodes) defined

over high-dimensional spaces (here: space-time neighborhoods N (s, t)); we underline that the

mechanism of cost functionals allows the user to make a flexible choice that is appropriate in

the modeling context. In addition, in the case of `
(1)
s,t , we expect uplifted episodes with the same

return periods since θ` = 1 and we use the same realization R (see Section 4.3). Therefore, we

obtain greater return levels when the extremeness increases. Similar conclusions are obtained

for the CTE risk measure, see Figure 4 in the supplementary material.

6. Conclusion and outlook

In this work, we set up a general framework for space-time generalized Pareto process. It

allowed us to develop a semi-parametric method to simulate extreme space-time scenarios of

phenomenona such as precipitation. The extremal dependence structure is fully data-driven,

and we require parametric assumptions only for the univariate tails, based on EVT. A crucial

component is the cost functional defined over a sliding space-time window. It characterizes

extreme episodes as episodes whose “cost” exceeds a high threshold. The application of our

method to a gridded precipitation data set in Mediterranean France was used for a relatively

simple risk analysis. It illustrates how cost functionals can be defined, how these affect the

selection of extreme episodes, and how the magnitude of the newly sampled scale variables

impacts the magnitude of the lifted extreme episodes on the original marginal scale.

In future work, space-time distance metrics other than the Euclidean distance could be used to

define the space-time neighborhoods N (s, t). To account for orographic structures, the crossing

distance could be used, which includes a vertical component related to the crossing of crests and

valleys (Gottardi et al., 2012). Instead of fitting the marginal tail parameters separately for each

grid cell, a generalized additive regression approach could be implemented to borrow information

from nearby sites (Gardes and Girard, 2010; Carreau et al., 2017). Finally, by extending ideas

in Yiou (2014), we plan to implement our method as part of a spatial precipitation generator

that simulates complete rainfall series including dry, ordinary and extreme events. Precipitation
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Fig. 5. Return level at 98% (first row) and at 99% (second row). Left: spatio-temporal average cost

function. Right: spatial maximum cost functional. The legend indicates the extreme episode (ee). For

each episode, the lines correspond to different uplifting levels using the 0.25-, 0.5- and 0.75- quantile

(from bottom to top) of the Pareto distribution of the scaling variable with shape 1 and scale αi, i =

1, . . . , 4.
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generator output will then by fed to rain-flow models to conduct impact studies.
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