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Key Points:8

• We present an efficient (O(N) and implicit) method to solve a river erosion model9

taking into account sediment deposition.10

• We show how the foreland stratigraphy is controlled by the efficiency of river ero-11

sion and the efficiency of sediment transport by rivers.12

• We observe autogenic aggradation and incision cycles in the foreland once the sys-13

tem reaches a dynamic steady state.14
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Abstract15

The stream power law model has been widely used to represent erosion by rivers, but16

does not take into account the role played by sediment in modulating erosion and de-17

position rates. Davy and Lague (2009) provide an approach to address this issue, but18

it is computationally demanding because the local balance between erosion and depo-19

sition depends on sediment flux resulting from net upstream erosion. Here, we propose20

an efficient (i.e., O(N) and implicit) method to solve their equation. This means that,21

unlike other methods used to study the complete dynamics of fluvial systems (includ-22

ing the transition from detachment-limited to transport-limited behavior, for example),23

our method is unconditionally stable even when large time steps are used. We demon-24

strate its applicability by performing a range of simulations based on a simple setup com-25

posed of an uplifting region adjacent to a stable foreland basin. As uplift and erosion26

progress, the mean elevations of the uplifting relief and the foreland increase, together27

with the average slope in the foreland. Sediments aggrade in the foreland and prograde28

to reach the base level where sediments are allowed to leave the system. We show how29

the topography of the uplifting relief and the stratigraphy of the foreland basin are con-30

trolled by the efficiency of river erosion and the efficiency of sediment transport by rivers.31

We observe the formation of a steady-state geometry in the uplifting region, and a dy-32

namic steady state (i.e., autocyclic aggradation and incision) in the foreland, with aggra-33

dation and incision thicknesses up to tens of metres.34

1 Introduction35
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Figure 1. (a) The concept of source to sink with sediment transport and deposition, modified

from Allen and Heller (2011). (b) Setup for our simulation with uplifting region and foreland

basin. (c) Illustration of a simple catchment with normal FastScape stack order (Braun and Wil-

lett , 2013). In (b), the red lines indicate the closed boundary where sediment flux cannot leave

the system, whereas base level (green line) is fixed as an open boundary.
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Quantifying the dynamics of river erosion, sediment transport and deposition (Fig-36

ure 1a) is a fundamental problem in geomorphology that has great relevance for our un-37

derstanding of landscape evolution in tectonically active areas. Many parameterizations38

of these processes have been proposed and implemented in numerical landscape evolu-39

tion models (Braun and Sambridge, 1997; Chase, 1992; Crave and Davy , 2001; Kooi and40

Beaumont , 1994; Tucker and Slingerland , 1994).41

The Stream Power Law (SPL) model has been widely used to represent erosion by
rivers (Howard and Kerby , 1983; Whipple and Tucker , 1999). In its simplest form, it as-
sumes that erosion rate is proportional to the shear stress exerted by the river on its bed
which, in turn, is proportional to net precipitation rate, p, drainage area, A, and local
slope, S, according to:

∂h

∂t
= U −Kf p

mAmSn , (1)

where h is topographic elevation, t is time, U is uplift rate, Kf is the fluvial erosion co-42

efficient, and m and n are the SPL exponents. An important assumption of the SPL model43

is that sediments are efficiently transported by rivers and not deposited in the simulated44

domain. The SPL model has been shown to describe a number of fluvial landscapes and45

processes. It is for example commonly used to infer uplift pattern from river profiles or46

to model topographic evolution at the scale of a catchment (Braun and Willett , 2013;47

Campforts et al., 2017; Lavé and Avouac, 2001). Yet, it is well known that this model48

might be oversimplified as it does not consider several important processes acting in river49

channels (Lague, 2014). In particular, it is necessary to take into account the role played50

by sediment in modulating erosion rate and/or deposition (Whipple and Tucker , 2002),51

such as a dependence on bedload transport (Davy and Lague, 2009; Kooi and Beaumont ,52

1994) or a bed-cover effect (Cowie et al., 2008; Johnson et al., 2009; Sklar and Dietrich,53

2001). In fact, transported sediments provide the tools for abrasion and fracturing of rock54

but also, if overly abundant, they can protect the bedrock from erosion (Sklar and Di-55

etrich, 1998).56

Several parameterizations have been proposed to adapt the SPL model to incor-57

porate the effects of transported sediments, including the erosion-deposition formulation58

proposed by Davy and Lague (2009), which differs from models based on the divergence59

of sediment flux (e.g., Paola and Voller , 2005) in that it conserves mass on the bed and60

in the water column to treat simultaneous erosion and deposition of a single substrate61

(Shobe et al., 2017). Based on previous erosion-deposition models (e.g., Beaumont et al.,62

1992; Kooi and Beaumont , 1994), Davy and Lague’s (2009) formulation has a limited63

number of parameters, while attempting to relate these parameters to physical processes64

and quantities (e.g., saltation length). In addition, their erosion-deposition framework65

allows the exploration of both detachment-limited and transport-limited models with sim-66

ple parameter changes, and displays a smooth transition between the two types of model67

behavior.68

Davy and Lague’s (2009) formulation has been used or adapted to obtain simple69

models (e.g., Carretier et al., 2016; Ganti et al., 2014; Langston and Tucker , 2018; Mouchené70

et al., 2017; Shobe et al., 2017), which assume that the net rate of topographic change71

is the sum of the erosion rate (controlled by the SPL model) and of the deposition rate,72

which is proportional to local suspended sediment flux and to a dimensionless deposi-73

tion coefficient, and inversely proportional to drainage area, a proxy for water discharge.74

This parameterization is also receiving growing acceptance due to its ability to repro-75

duce many depositional features of fluvial systems (Carretier et al., 2016; Mouchené et al.,76

2017; Shobe et al., 2017). However, because the local balance between erosion and de-77

position depends on sediment flux resulting from net upstream erosion, this parameter-78

ization is computationally demanding.79

Braun and Willett (2013) have proposed an efficient algorithm for solving the SPL80

model, which is ideally suited for a large number of model simulations as required for81
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inverting observational constraints in a Bayesian approach. Here we present an equally82

efficient (i.e., O(N) and implicit) method to solve the equation proposed by Davy and83

Lague (2009) that takes into account sediment deposition. O(N) means that the com-84

putational time increases linearly with the number of points used to discretize the land-85

scape. An implicit scheme guarantees unconditionally stable time integration of the land-86

scape evolution equation, which means that large time steps can be used without affect-87

ing numerical stability. This is potentially an important step as it allows one to use sed-88

imentological observations, such as the stratigraphy of foreland basins or the position89

and thickness of river terraces, to further constrain landscape evolution models.90

Nonetheless, the novelty of our study is not limited to the description of the com-91

putational efficiency. Based on this algorithm, our model can simulate erosion and de-92

position in fluvial landscapes, at large spatial (up to thousands of kilometers) and tem-93

poral (up to tens of millions of years) scales. Because these two processes are considered94

in one single equation, deposition can occur anywhere in the domain (i.e., not only in95

depressed areas but also along channels or in stable continental areas). We therefore use96

our new algorithm to explore the impact of coupling erosion and deposition in a fluvial97

landscape, and show that this erosion-deposition relationship, which is often ignored, has98

a strong impact on relief in the uplifted domain, the concavity of the channels and their99

steepness index. We also demonstrate that this relatively simple model leads to the cyclic100

formation and destruction of river banks as the stream continuously migrates and some-101

times erodes into the sediment it has previously deposited. Such autogenic aggradation102

and incision cycles are currently difficult to simulate in landscape evolution models. The103

simulations using the new model can thus improve our understanding of the links be-104

tween external forcings, internal processes, and depositional features.105

In the next section, we first present our implementation of Davy and Lague’s (2009)106

model and the O(N) and implicit numerical scheme. Model implications of our new for-107

mulation are shown in Section 3. We then explore the model behavior in Section 4 by108

performing a range of simulations based on a simple setup composed of an uplifting re-109

gion adjacent to a stable continental area on which a foreland basin develops. In Sec-110

tion 5, using our model, we observe the formation of autocyclic aggradation and inci-111

sion in the foreland once the system reaches a dynamic steady state.112

2 Model implementation113

2.1 SPL model taking into account sediment deposition114

The effect of upstream sediment flux was first incorporated into the SPL model by
Kooi and Beaumont (1994), by assuming that the rate of topographic change results from
the imbalance between a sediment “carrying capacity”, qeqbf , and the upstream sediment
yield, qs, according to:

∂h

∂t
= U − 1

Lf

(
qeqbf − qs

)
with qeqbf = K qw S , (2)

where Lf is a transport length, K is a dimensionless erosion coefficient, qw = Qw/W
is water discharge per unit width (Qw, water discharge, and W , river width), and qs is
the sediment flux per unit width obtained by integrating the net upstream erosion rate:

qs =
1

W

∫
A

(
U − ∂h

∂t

)
dA . (3)

This sediment flux therefore accounts for the whole solid load (bed, suspended, and wash115

load). The transport length Lf in (2) can be regarded as the length scale over which the116

imbalance between the upstream sediment yield and the river carrying capacity is resolved117

either by deposition (in cases where the river is over-capacity) or by erosion (in cases where118

the river is under-capacity). Physically, Lf represents the average transport distance of119
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sediment grains within the flow from the location where they are eroded to the location120

where they are deposited (Beaumont et al., 1992). Lf thus characterizes the proportion121

of incoming sediment flux which is deposited (the larger the value of Lf , the lower the122

rate of deposition).123

Combining equations (2) and (3) leads to:

∂h

∂t
= U − 1

Lf

[KQwS

W
− 1

W

∫
A

(
U − ∂h

∂t

)
dA
]
. (4)

To derive the SPL model, two major assumptions are commonly made. Firstly, it is as-
sumed that river width W varies as the square root of the water discharge (Lacey , 1930;
Leopold and Miller , 1956):

W = cQ0.5
w , (5)

where c is an empirical constant, typically of the order of (0.1−1)×10−2 (Montgomery
and Gran, 2001, and references therein). Secondly, water discharge can be expressed as
the product of net precipitation rate p and drainage area A:

Qw = pA = p0 p̃A , (6)

where p0 is mean net precipitation rate, and p̃ = p/p0 represents any spatial or tem-
poral variation in precipitation p relative to the mean precipitation p0. Combining equa-
tions (5) and (6) with equation (4) leads to

∂h

∂t
= U − 1

Lf

[K p0.5
0

c
p̃0.5A0.5S − 1

c p0.5
0 p̃0.5A0.5

∫
A

(
U − ∂h

∂t

)
dA
]
. (7)

The contribution of Davy and Lague (2009) can be regarded as an improvement
on Kooi and Beaumont ’s (1994) method in an attempt to relate the transport length Lf

to physical parameters (e.g., water discharge and settling velocity of grains within the
flow). According to Davy and Lague’s (2009) formulation, the rate of change of topo-
graphic elevation is given by:

∂h

∂t
= U −K ′qm

′

w Sn′ +
qs
Lf

= U −K ′qm
′

w Sn′ +
d∗ vs
qw

qs , (8)

where K ′ is an erosion efficiency coefficient, m′ and n′ are two exponents, vs is the net124

settling velocity of sediment grains, and d∗ is the ratio between the sediment concentra-125

tion near the riverbed interface and the average concentration over the water column.126

The value of d∗(≥ 1) varies as a function of the Rouse number which defines the rela-127

tive contribution of bed, suspended, and wash loads (Davy and Lague’s (2009) Figure128

4). Davy and Lague (2009) discuss how d∗ can be calculated for suspended load and bed129

load rivers. For small rivers (or large particles), most of the entrainment mechanisms lie130

in the bed load, d∗ is much larger than 1 and the transport length Lf is small. Conversely,131

for large rivers (or small particles) the Rouse number is small, d∗ is close to 1 and Lf132

is large. Davy and Lague (2009) present such a model based on the relative contribu-133

tions of (i) erosion from the bed into the water column (suspended load) and (ii) depo-134

sition from the water column onto the bed. Thus, the transport length Lf takes into ac-135

count the deposition of the bed load and the suspended load. With this approach, the136

deposition term is proportional to the ratio between the sediment flux qs and the wa-137

ter flux qw. If qs � qw, deposition is high. On the contrary, if qs � qw, the deposi-138

tion term tends toward 0. Note that both terms are proportional to the drainage area139

of the catchment.140

The equivalent of Kooi and Beaumont ’s (1994) transport length Lf in the Davy
and Lague’s (2009) approach is therefore:

Lf =
qw
d∗ vs

=
Qw

Wd∗ vs
=

pA

Wd∗ vs
=

p0 p̃A

Wd∗ vs
=

p̃A

WG
, with G =

d∗ vs
p0

, (9)
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where G is a dimensionless deposition coefficient, which is a function of the sediment con-141

centration ratio in transport, the settling velocity of sediment, and the mean precipita-142

tion rate. G/p̃ is identical to Θ as defined in Davy and Lague (2009). They showed that,143

for typical values of the various parameters (p = 10−7 m/s, vs ∈
[
10−6 − 10−1

]
m/s),144

G/p̃ is of order 1 or greater, in good agreement with estimates from natural sedimen-145

tary systems (Guerit et al. (2018), pers. comm.).146

Equations (3), (5), (6) and (9) can be combined with equation (8) to yield:

∂h

∂t
= U −K ′

(Qw

W

)m′
Sn′ +

1

WLf

∫
A

(
U − ∂h

∂t

)
dA

= U − K ′ p0.5m′

0

cm′
p̃0.5m′A0.5m′Sn′ +

G

p̃A

∫
A

(
U − ∂h

∂t

)
dA .

(10)

In the parametric study of Davy and Lague (2009), m′ = n′ = 1 and their erosion term147

K′ p0.5
0

c p̃0.5A0.5S is thus similar to that of Kooi and Beaumont (1994). The main differ-148

ences between their models are: (i) the depositional term is inversely proportional to ei-149

ther the drainage area (Davy and Lague, 2009) or the square root of drainage area (Kooi150

and Beaumont , 1994); and (ii) Lf is applied only to qs (Davy and Lague, 2009), or is ap-151

plied to both qeqbf and qs (Kooi and Beaumont , 1994).152

Replacing K ′ p0.5
0 /cm

′
, 0.5m′ and n′ in (10) by Kf , m and n, respectively, we can

make a more direct connection to the SPL model and write that the rate of topographic
change ∂h/∂t in response to tectonic uplift, river erosion and sediment deposition is given
by:

∂h

∂t
= U −Kf p̃

mAmSn +
G

p̃A

∫
A

(
U − ∂h

∂t

)
dA . (11)

The modified SPL formulation has only one additional parameter (i.e., the dimension-153

less deposition coefficient G) compared to the classic SPL model. The dimensionless con-154

stant G multiplying the deposition rate in (11) depends on an assumed mean precipi-155

tation rate; any spatial or temporal variation in precipitation rate is introduced through156

the variable p̃. At steady state, the catchment area A in the deposition term vanishes,157

and the deposition term is equal to GU/p̃. Note that this modified SPL formulation is158

constructed by considering fluxes and, therefore, it does not specifically consider the ef-159

fect of grain size. However, the mathematical definition of G in (9) makes it related to160

the size of the sediments in transport through the settling velocity vs. In this work, we161

consider different values of G = d∗ vs/p0 as a whole, rather than studying individually162

different values of d∗, vs, and p0.163

Fluvial erosion leads to the formation of hillslopes along river channels. Fluvial ero-
sion and hillslope processes are interdependent, therefore hillslope processes need to be
included in our model, which are commonly represented by a linear diffusion term (Ah-
nert , 1967):

∂h

∂t
= Kd∇2h , (12)

where Kd is a hillslope sediment transport coefficient. In our model, the diffusion equa-164

tion (12) is calculated separately, after solving equation (11). Both equations are applied165

in every cell of the landscape.166

Easily detachable materials such as unconsolidated sediments should be character-167

ized by a larger erosion coefficient Kf than bedrock (Davy and Lague, 2009; Kooi and168

Beaumont , 1994). Therefore, Kf depends on whether topographic elevation h is higher169

than basement elevation hbase or not. In areas that are in net erosion (i.e., h ≤ hbase),170

we assume Kf = Kfb (subscript b represents bedrock), whereas in areas covered by sed-171

iments (i.e., h > hbase), we assume K = Kfs (subscript s represents sediments). In172

most of our simulations, we assume Kfb = Kfs for the sake of simplicity, and we use173

Kfb 6= Kfs for our sensitivity analysis in Section 4.2.2.174
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2.2 O(N) and implicit algorithm175

The most challenging part is to solve equation (11) in an efficient manner (i.e., in
O(N) operations) and using an implicit algorithm that allows for large time steps. For
this we first discretize equation (11) using a backward Euler implicit finite difference scheme
for each of the nx×ny nodes (nx and ny are the number of nodes to discretize the land-
scape in the x- and y-directions, respectively) as follows:

ht+∆t
i − hti

∆t
= U −Kf p̃

mAm
i

(ht+∆t
i − ht+∆t

rec(i)

∆li

)n
+

G

p̃Ãi

∑
j=ups(i)

(
U −

ht+∆t
j − htj

∆t

)
, 1 ≤ i ≤ nx × ny ,

(13)

in which, hti and ht+∆t
i are the elevations of the i-th node at time t and time t+∆t, re-

spectively, ht+∆t
rec(i) is the elevation of the i-th node’s receiver (the node in the steepest-

descent drainage direction of the i-th node) at time t+∆t, ∆li is the distance between
the i-th node and its receiver, and

∑
j=ups(i) represents the sum of the i-th node’s up-

stream catchment nodes. Ãi in equation (13) is a dimensionless catchment area defined
as:

Ãi = Ai/(∆x∆y) = Ni , (14)

where ∆x,∆y are the horizontal sizes of the cells, and Ni is simply the number of cells176

upstream of cell i. To compute the catchment areas Ai in O(N) operations, we use the177

reverse stack order as defined in the FastScape algorithm (Braun and Willett , 2013).178

To explain the remaining parts of our proposed numerical scheme, we assume that
n = 1. The general case (n 6= 1) is dealt with later. When n = 1, equation (13) can
be expressed as

− Fi h
t+∆t
rec(i) + (1 + Fi)h

t+∆t
i +

G

p̃Ãi

∑
j=ups(i)

ht+∆t
j = bti ,

with Fi =
Kf p̃

mAm
i ∆t

∆li
, and bti = hti + U∆t+

G

p̃Ãi

∑
j=ups(i)

(htj + U∆t) .

(15)

The term bti on the right-hand side of the equation is known from the solution at time179

t, while elevations on the left-hand side are unknown at time t+ ∆t.180

For the nodes at base level (open boundary, Figure 1b), we assume that the ele-
vation is constant through time:

ht+∆t
base level = htbase level . (16)

We also assume that sediment can leave the system from these base level nodes.181

The above finite difference equations can be expressed in the following matrix form:

B · ht+∆t = bt . (17)

As shown in Appendix A, if we use the FastScape stack order in Figure 1c to solve equa-
tion (17), every row i of B has a single non-zero element before the diagonal element that
corresponds to the receiver of node i, and many non-zero elements after the diagonal el-
ement that correspond to all upstream nodes of i. Solving (17) by factorizing the ma-
trix B (e.g., by Gauss-Jordan elimination) is a problem of complexity of O(n3). To ob-

tain a greater efficiency, we use a Gauss-Seidel iteration scheme to compute ht+∆t in equa-
tion (17). This iterative algorithm requires to split the matrix B into its lower F and
strictly upper triangular matrix E as follows:

B · ht+∆t = (F + E) · ht+∆t = bt , (18)

–7–
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varying the value of G.

where the matrices F and E are shown in Appendix A.182

The Gauss-Seidel iterative process starts with an initial guess ht+∆t, 0 = ht and
uses the following recurrence to obtain an improved estimate ht+∆t, k+1:

F · ht+∆t, k+1 = bt − E · ht+∆t, k , (19)

from the value ht+∆t, k obtained at the previous iteration. Interestingly, equation (19)
can be written in a different form for each node i:

ht+∆t, k+1
i =

bti −G/(p̃Ãi)
∑

j=ups(i) h
t+∆t,k
j + Fi h

t+∆t, k+1
rec(i)

1 + Fi
, (20)

if the nodes are processed in the FastScape stack order.183

The procedure is continued until the maximum difference in node elevation between
two successive iterations is below a given tolerance ε (expressed in meters) as

max|ht+∆t,k+1
i − ht+∆t,k

i | < ε for all i such that 1 ≤ i ≤ nx × ny . (21)

The tolerance is taken as a small fraction (10−3) of the increment in topography, U∆t.184

The above procedure based on a Gauss-Seidel iterative scheme is known to con-185

verge if the matrix B is strictly diagonally dominant: | −Fi|+ |
∑

j=ups(i)G/(p̃Ãi)| <186

|1+Fi|, thus G/p̃ < Ni/(Ni−1) after some derivations. Therefore, the iterative method187

is proven to converge unconditionally at least when G/p̃ ≤ 1, but we show experimen-188

tally in section 4 that this method can also converge even if this condition is not satis-189

fied.190

As shown in Figure 2, our new implicit method to solve equation (13) is O(N) as191

the number of iterations required in the Gauss-Siedel scheme depends on the value of192

G but not on the resolution of the model (nx × ny).193

We note that the left-hand side of equation (19) is the same as in the FastScape194

algorithm (Braun and Willett , 2013) while the right-hand side only differs by a single195

–8–
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term given by: E · ht+∆t, k at time t+ ∆t. The implementation of our new algorithm196

is therefore a very simple addition to the FastScape algorithm. Note also that, if the value197

of the deposition coefficient G is null, the right-hand side term simplifies to bt, and the198

new algorithm is identical to the basic FastScape algorithm which does not require the199

Gauss-Seidel iteration to obtain the elevation at time t+ ∆t.200

The above Gauss-Seidel iteration algorithm can be extended to consider different
values of Kf and G to differentiate between bedrock and previously deposited sediments
during the iteration process. Basement elevation ht+∆t

base at each step is obtained using:

ht+∆t
base = min(ht+∆t, htbase + U∆t) , (22)

where htbase+U∆t is the basement elevation resulting from uplift without surface pro-201

cesses.202

When the value of n is not equal to 1, equation (13) becomes:

ht+∆t, k+1
i +Kf p̃

mAm
i ∆t

(ht+∆t, k+1
i − ht+∆t, k+1

rec(i)

∆li

)n
= hti + U∆t+

G

p̃Ãi

∑
j=ups(i)

(htj + U∆t− ht+∆t, k
j ) .

(23)

This non-linear equation can be solved by combining the Gauss-Seidel iterations with203

a local Newton scheme. We solve the diffusion equation (12) using an alternating direc-204

tion implicit and O(N) scheme (Peaceman and Rachford , 1955).205

3 Model implications on geomorphological relationships206

Before studying the behaviour of the numerical scheme presented above, we first207

wish to derive several basic geomorphological relationships from the evolution equation208

(11). These include the steady-state slope-area relationship, the shape of steady-state209

river profile, and the expression for the response time (i.e., the time necessary to reach210

steady state). In this section, all relationships are for the uplifting region only, and we211

neglect the hillslope processes.212

3.1 Steady-state slope-area (S − A) relationship213

At steady state (i.e., when uplift is balanced by channel incision assumed to be gov-
erned by the SPL model), the slope and intercept of the relationship between slope and
drainage area provide constraints on the concavity (the ratio m/n) and the steepness in-
dex (ks = (U/Kf )1/np̃−m/n), respectively (e.g., Wobus et al., 2006, and references therein).
When taking deposition into account, the SPL model must be replaced by equation (11),
which, under the assumption of steady state (i.e., ∂h

∂t = 0) leads to the following slope-
area (S −A) relationship:

S =
[ (1 +G/p̃)U

Kf

]1/n
A−m/np̃−m/n = (1 +G/p̃)1/n(U/Kf )1/nA−m/np̃−m/n . (24)

From this equation, a new steepness index can be defined:

k′s = (1 +G/p̃)1/n(U/Kf )1/np̃−m/n , (25)

that only differs by a factor (1 + G/p̃)1/n. For typical values of G/p̃ = 1 (Davy and214

Lague, 2009) and n = 1 (Whipple and Tucker , 1999), the effect of sediment deposition215

is to increase the steepness index by a factor of 2.216

3.2 Steady-state river profile217

At steady state, a power-law relationship is generally observed between the length
of a stream, x, and its upstream drainage area (Hack , 1957; Lague et al., 2003; Mont-
gomery and Dietrich, 1992; Morisawa, 1962; Walcott and Summerfield , 2009) that can
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be expressed as:
A = k xb , (26)

where k and b, usually close to 0.5 and 2, respectively, are called Hack’s law coefficients.
Combining equation (26) with equation (24) leads to:

S =
dh

dx
= (1 +G/p̃)1/nU1/nK

−1/n
f p̃−m/nk−m/nx−

bm
n . (27)

By integrating the above equation over the length of the stream, we obtain the steady-
state river profile:

h(x) = (1 +G/p̃)1/nU1/nK
−1/n
f p̃−m/nk−m/n(1− bm

n
)−1x1− bm

n + C , for bm 6= n , (28)

where C = 0 if the elevation at base level is zero (i.e., h(0) = 0). We see that the steady-218

state elevation of every point along the river profile is (1+G/p̃)1/n times higher than219

what is expected from the classic SPL model (i.e., without sediment deposition).220

3.3 Response time221

The response time of a fluvial landscape can be defined as the time needed for river
profiles to reach steady state. In our model, the response time is

τ ′ = h(L)/U = (1 +G/p̃)1/nU1/n−1K
−1/n
f p̃−m/nk−m/n(1− bm

n
)−1L1− bm

n , (29)

where L is the length of the uplifting region. In the classic SPL form (without the term
of deposition), the response time of a fluvial landscape is (Whipple, 2001)

τ = U1/n−1K
−1/n
f p̃−m/nk−m/n(1− bm

n
)−1L1− bm

n . (30)

The ratio between these two response times is once again given by:

τ ′

τ
= (1 +G/p̃)1/n . (31)

The impact of continental deposition on the evolution of a fluvial landscape is highlighted
by the three geomorphological relationships above: steady-state slope is higher, average
topography in the uplifting region is higher, and response time is longer than with the
classic SPL model (i.e., without deposition). However, neither the shape of the river pro-
file, nor the dependency of the response time or the steepness index to other parame-
ters (such as Kf , m and n, or the length of the channel, precipitation rate or the uplift
rate) are affected by sediment deposition. The dimensionless deposition coefficient G alone
controls the difference with respect to the classic SPL model and appears only inside a
multiplying factor, (1 + G/p̃)1/n. In all three relationships we derived above, the fac-

tor (1 + G/p̃)1/n multiplies the other poorly constrain factor K
−1/n
f ; this means that

the effect of sediment deposition (on most morphometric measures and scales) can be
included in the SPL erosion coefficient Kf by simply redefining this constant in the fol-
lowing way:

K ′f = Kf/(1 +G/p̃) . (32)

This also means that the value of the constant G cannot be easily derived from the con-222

cavity of rivers, the total relief of river channels or the response time of fluvial erosion.223

4 Model behavior224

We now demonstrate the behavior and applicability of our numerical implemen-225

tation of the modified SPL model by performing a range of simulations. These simula-226

tions are based on a simple setup composed of an uplifting region adjacent to a stable227
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Table 1. Parameters for the simulations.

Notation Definition Values/Range Unit

h elevation of topography m

hbase elevation of basement m

t time 10 Myr

∆t incremental time 1000 yr

x horizontal dimension 105 to 400 km

y horizontal dimension 100 km

∆x,∆y cell size 1 km

U uplift rate 0.2, 0.5, 1 mm/yr

p net precipitation rate 0.5, 1, 2 m/yr

p0 mean net precipitation rate 1 m/yr

p̃ = p/p0 variation ratio of precipitation rate 0.5, 1, 2 -

A drainage area m2

S surface slope in drainage direction -

m SPL exponent 0.4a -

n SPL exponent 1b -

Kfb SPL erosion coefficient of bedrock 2 × 10−5 c m1−2m/yr

Kfs SPL erosion coefficient of sediments (2, 4, 8) × 10−5 m1−2m/yr

G deposition coefficient (0, 0.1, 1, 10)d -

Kd hillslope diffusion coefficient 0.01e m2/yr

aParameters from Stock and Montgomery (1999) and Perron et al. (2009); bparameters from Braun and

Willett (2013); Stock and Montgomery (1999); Whipple and Tucker (1999) and Braun and Willett (2013);
cparameters from Whipple and Tucker (1999); dparameters from Davy and Lague (2009); eparameters

from Densmore et al. (2007) and Armitage et al. (2013).

continental area on which a foreland basin is allowed to develop. Setup for the simula-228

tions is a rectangular area of (105 to 400)×100 km2 (Table 1, Figure 1b). The initial to-229

pography has random noise elevation of up to 1 m. This domain is discretized into a num-230

ber of cells with a cell size of ∆x = ∆y = 1 km. The left-hand side of the domain (100×231

100 km2) is uplifted at a constant rate U while the foreland is fixed, and the foreland232

edge (base level) through which the sediments can leave the system is also fixed. We use233

a constant diffusion coefficient of Kd = 0.01 m2/yr in all simulations. The net mean234

precipitation rate p0 is set to 1 m/yr. We perform a series of model runs for a total time235

of 10 Myr (10 000 time steps of duration 1000 yr) (Table 1).236

4.1 Simulations without foreland237

We first performed a series of simulations without the foreland to better illustrate238

the effect of sediment deposition. We run a simulation with U = 0.2 mm/yr, Kf = 2×239

10−5 m0.2/yr, p = 1 m/yr and G = 0 to test the classic SPL model without sediment240

deposition. During the experiment, topography rises, and after 4 Myr, reaches steady241

state. The final simulated landscape is shown in Figure 3a and the evolution of the mean242

elevation is presented in Figure 3b. As observed from the black curve (G = 0, Figure243

3b), the mean elevation in the uplifting region increases progressively before decreasing,244

and then reaches a constant value at steady state. The same behavior is observed in Davy245

and Lague’s (2009) detachment-limited simulations (their Figure 1). Note that this non-246

monotonous evolution of the mean elevation is probably related to the presence of lo-247

cal minima which are important at the beginning because we start with an initial topog-248

raphy that has random noise. Local minima are known to artificially reduce the erosional249
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Figure 3. (a) Simulated, plan view topography of the uplifting region for four values of

G = 0, 0.1, 1, and 10, at 10 Myr. G = 0 corresponds with the classic SPL model without taking

into account sediment deposition. (b) Mean elevation of uplifting region as a function of time for

the four G values. (c) log10(S) as a function of log10(A) in steady-state uplifting region for G = 0

(SPL model) and 1. We observe that the concavity is m/n = 0.4, and the difference in steepness

index ks is by a factor of 2.
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efficiency of landscape evolution models by preventing some river discharge to reach down-250

stream locations.251

On the contrary, a peak in elevation is not observed in experimental models such252

as in Babault et al. (2005) where they study the development of relief by submitting a253

thick layer of silica powder to uplift and runoff-driven erosion. In their experiments, the254

mean elevation increases monotonously before stabilizing around a constant value (their255

Figure 2A). We suggest that the difference between the two behaviors is due to sediment256

deposition. To prove this point, we run simulations with G = 0.1, 1, and 10. Physically,257

the larger G, the more deposition in the river channels. The final landscape for the cases258

of G = 0.1, 1, and 10 are compared in Figure 3a. The two simulations with G = 0 and259

G = 0.1 are very similar to each other (Figure 3a), but the topography changes signif-260

icantly if the value of G is ≥ 1. As demonstrated by Davy and Lague (2009), the value261

of G/p̃ = 1 corresponds to the transition from detachment-limited to transported-limited262

behavior.263

In terms of average topography, the larger G, the higher the mean elevation (Fig-264

ure 3b). For G = 0.1, only slight differences in mean elevation can be observed with265

respect to the G = 0 simulation (Figure 3b) and steady-state elevation is reached af-266

ter ∼ 4 Myr. On the contrary, the mean elevation for G = 1 increases continuously267

for ∼ 6−7 Myr before reaching a constant elevation of ∼ 400 m, which is almost twice268

higher than the classic SPL model simulation (G = 0) (Figure 3b). This results agrees269

with our estimate of the response time for fluvial systems including the effect of sedi-270

ment deposition. When G ≥ 1, the evolution of the mean elevation is consistent with271

the one observed in the experiments by Babault et al. (2005). As expected from equa-272

tions (28) and (31), the average elevation at steady state and the response time of the273

landscape are (1 +G/p̃) times larger when sediment deposition is considered with re-274

spect to the classic SPL model. For the case of G = 10 (Figure 3b), the mean eleva-275

tion increases substantially but it does not reach steady state over 10 Myr of simulation.276

If the model run is allowed to last for a longer period, it should reach steady state af-277

ter approximately 40 Myr, based on equation (31).278

The similarities between laboratory experimental landscapes and our simulations279

with G > 0 confirm that a term for the effect of sediment is required to accurately de-280

scribe the evolution of a fluvial landscape: although bedrock erosion is the dominant pro-281

cess in the uplifted region (i.e., no net deposition takes place anywhere), the reduction282

in erosion rate due to sediment deposition, the so-called “cover effect”, is key to capture283

landscape evolution (Sklar and Dietrich, 1998; Whipple and Tucker , 2002).284

4.2 Simulations with foreland sedimentation285

4.2.1 Reference simulation286

We run a “reference simulation” that includes the presence of a foreland (i.e., a re-287

gion where U = 0). In this reference experiment, the erosion coefficients for bedrock288

and sediments are first set to the same value for the sake of simplicity (i.e., Kfb = Kfs =289

Kf ). The value of Kf is set to 2×10−5 m0.2/yr, identical to the one used in the pre-290

vious set of experiments without a foreland, and G is set to 1. The uplift rate is set to291

U = 0.2 mm/yr, the precipitation rate to p = 1 m/yr, and the foreland length to 50292

km. The landscape evolution through time and the axial stratigraphy of the resulting293

foreland basin, with a synthetic stratigraphic layer generated each Myr, are presented294

in Figure 4a. The associated animations Movie S1 and Movie S2 are presented in the295

Supporting Information.296

At the outlets of the catchments that drain the uplifting region, we observe the for-297

mation of small sedimentary fans that progressively coalesce into larger ones. This fan-298

like deposition is the result of using the SPL model with sediment deposition. As up-299
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lift and erosion progress, the fans prograde to reach the base level at the far edge of the300

foreland where the sediments are allowed to leave the system.301

The mean elevation of the uplifting region, the maximum thickness of sediments,302

and the mean surface slope of the foreland basin as function of time are shown by solid303

curves in Figures 5a-c. Compared to the equivalent simulation without foreland (red curve304

in Figure 5a), the mean elevation of the uplifting region with a 50-km-long foreland (solid305

curve in Figure 5a) is about ∼ 70 m higher as it reaches a steady-state elevation of ∼306

470 m.307

Sediment deposition in the foreland basin results in a progressive increase of its slope308

up to a threshold, over which the sediment flux coming from the uplifting region bypasses309

the foreland. This steady-state slope varies over the foreland, and the mean slope of the310

foreland is ∼ 0.0032 (
∑Nf

i=1 Si/Nf , where Nf is the number of foreland nodes, solid curve311

in Figure 5c), typical of fans built by shallow to deep braided channelized flows (Stanistreet312

and McCarthy , 1993). Many studies of sedimentary fans (Guerit et al., 2014; Reitz and313

Jerolmack , 2012; Van Dijk et al., 2009) have shown that the surface slope stabilizes af-314

ter some time, which is considered as the steady-state morphology of the fan. In many315

experimental studies, the fan slope stabilizes quickly because its apex is fixed. Stabiliza-316

tion also occurs if the apex is uplifted through time as the mountain front eventually reaches317

a steady-state elevation (Densmore et al., 2007). In our simulations, the slope tends to318

stabilize after several Myr when the mean elevation of the uplifting region has reached319

steady state.320

4.2.2 Sensitivity analysis321

In the following, we explore the impact of several parameters such as different fore-322

land lengths, uplift rates, precipitation rates, and different erosion coefficients for bedrock323

and sediments. The values used for the sensitivity analysis are summarized in Table 1.324

In Figure 5, we first assess the effect of foreland length by running four simulations325

with foreland length of 50 km (the reference simulation, solid curve), 100 km (dashed326

curve), 200 km (dotted curve), and 300 km (dash-dotted curve), respectively. U is set327

to 0.2 mm/yr, p to 1 m/yr, G to 1, and Kf to 2×10−5 m0.2/yr. The maximum thick-328

ness of foreland sediments for larger foreland length is higher than the reference simu-329

lation (Figure 5b). The sediment thickness in foreland imposes the local base level of the330

mountain range. Thus, the mean elevation of the uplifting region for larger foreland length331

is higher than the reference simulation (Figure 5a). However, in the foreland, the mean332

slopes are significantly lower than the reference simulation (Figure 5c), as they are re-333

lated to the length of the foreland basin. In fact, sediments are allowed to deposit ev-334

erywhere until they reach the edge of the domain. Therefore, for a given amount of sed-335

iments, the larger the foreland basin, the lower the slope of the foreland basin. This be-336

havior is observed because in our model, rivers are always able to transport sediments337

even across a large foreland basin.338

In Figure 4a, the slope of the fan varies over the 50-km-long foreland, and the fan339

surface is concave up. We performed several simulations with smaller foreland lengths340

(5 km, 10 km, and 20 km) in Figure 6. The predicted foreland thickness scales directly341

with the foreland length (Figure 6). The simulations also show that the fan surface is342

relatively straight when the foreland length is small (e.g., 5 km). The reduction in fan343

slope could be due to the reduction in the ratio between the sediment flux qs and the344

water flux qw. The larger the foreland length, the larger the reduction in qs/qw down-345

stream, and the more curved the fan surface, as observed in km-scale fans (e.g., Bull ,346

1964; Densmore et al., 2007).347

We test for the impact of the uplift rate by running three simulations with U =348

0.2, 0.5 and 1 mm/yr, respectively. Basin length is set to 50 km, p to 1 m/yr, G to 1,349
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lengths. Fan surface is relatively straight when the foreland length is small (e.g., 5 km), and is
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and Kf to 2 × 10−5 m0.2/yr. The main impact of an increased uplift rate is a higher350

steady-state elevation in the uplifting region. In fact, according to equation (28), the steady-351

state elevation in the uplifting region is proportional to U1/n. The increase in sediment352

accumulation is also a direct result of the increase in sediment flux resulting from a higher353

uplift rate. In consequence, sediments can accumulate more in the foreland, and the out-354

lets of the drainage basins are significantly higher (up to 600 m for U = 1 mm/yr com-355

pared to ∼ 120 m for the reference simulation, Figure 7a).356

We then test for the impact of precipitation rate by running three simulations with357

p = 0.5, 1, and 2 m/yr, respectively. Basin length is set to 50 km, U to 0.2 mm/yr, G358

to 1, and Kf to 2×10−5 m0.2/yr. We observe that the higher the precipitation rate p,359

the lower the foreland deposition and the foreland slope (Figure 7b). This is due to the360

fact that the erosion rate is proportional to p̃m in equation (11), but the deposition term361

is inversely proportional to p̃, thus, the net deposition rate is proportional to 1/p̃1−m.362

This implies that at higher precipitation rates, the transit of sediments in the foreland363

is faster (i.e., bypass is more efficient).364

Finally, we test for the impact of the erosion coefficient, Kf . In these simulations,365

we consider different values for the bedrock (Kfb) and the sediment (Kfs) erosion co-366

efficients. We run three simulations with Kfb =2×10−5 m0.2/yr and Kfs = 2×10−5,367

4×10−5 and 8×10−5 m0.2/yr, respectively. Basin length is set to 50 km, p to 1 m/yr,368

and G to 1. As the erosion coefficient increases, sediments in the foreland are more and369

more remobilized by river erosion, resulting in lower slopes in the foreland basin (Fig-370

ure 7c). Almost no sediments are preserved in the simulation of Kfs = 8×10−5 m0.2/yr.371

This means that the reworking (by erosion) of sediments in the foreland is an efficient372

process that enhances the bypass of sediments from the uplifting region toward the base373

level.374

5 Discussion375

5.1 Slope-area (S − A) relationship from simulations376

By deriving equation (24), we have shown that the inclusion of depositional pro-377

cesses should increase the steepness index, ks, with respect to the classic SPL model (i.e.,378

with G = 0) while the concavity should remain unchanged. This is illustrated by the379

slope-area analysis of two experiments without foreland with G = 0 and G = 1 (Fig-380

ure 3c). With n = 1, the concavity and the steepness index can be derived from log-log381

plots, where the slope of the slope-area relationship is the concavity and the intercept382

with the origin is the log10 of the steepness index. The slope-area analysis of the sim-383

ulations G = 0 and G = 1 reveals a concavity of 0.4 in both experiments, as we ex-384

pect from our m and n values (0.4 and 1, respectively). On the contrary, despite sim-385

ilar U and Kf , the steepness index ks is increased by a factor 2 when G = 1 (Figure386

3c). Through these numerical experiments, we confirm that the steepness index, usually387

used to derive information about uplift and landscape properties, is also sensitive to the388

amount of deposition within the fluvial network.389

5.2 Autocyclic aggradation and incision in the foreland390

During a simulation, the landscape evolves until it reaches an equilibrium topog-391

raphy (when the elevation in the mountain range and the slope in the foreland become392

stable, Figure 5). In our simulations, river channels continuously migrate laterally in the393

foreland (Figure 4b, see the animation Movie S3 on water discharge in the Supporting394

Information), similar to observations made in laboratory experiments (Van Dijk et al.,395

2009) and other numerical simulations (Croissant et al., 2017; Pepin et al., 2010). By396

considering the axial topography (Figure 4a; the corresponding animation Movie S2 is397

presented in the Supporting Information), we can indeed observe that the foreland steady-398
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Figure 8. Foreland cross sections at 10 km, 20 km, 30 km, and 40 km from the mountain

front for the uplift rate (a) U = 0.2 mm/yr, (b) U = 0.5 mm/yr, and (c) U = 1 mm/yr. Ani-

mation of the simulation Movie S4 for aggradation and incision cycles in foreland (a) is presented

in the Supporting Information. Red ellipses show the general locations of autocyclic aggradation

and incision around a dynamic steady state.
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state configuration is a dynamic steady state with the continuous formation and destruc-399

tion of river banks. The formation and destruction of river banks can be observed from400

the foreland sections parallel to the mountain front (Figure 8a; the corresponding an-401

imation Movie S4 is presented in the Supporting Information). The successive cycles of402

aggradation and incision mainly occur in the lower foreland (30 km and 40 km in Fig-403

ure 8a) where the longitudinal slope is low. In the upper foreland, where the slope is higher404

(10 km and 20 km in Figure 8a), sediments mainly aggrade until reaching steady state.405

This can be seen, for example, in Figure 4a where sediments aggrade up to a maximum406

of ∼ 120 m at the fan apex (i.e., along the transition between the foreland and the up-407

lifting region). Yet, the amplitude of aggradation and incision is higher close to the moun-408

tain range than in the lower foreland, in good agreement with Bull (1964).409

The successive aggradation and incision cycles arises from the competition between410

the SPL erosion term Kf p̃
mAmSn and the deposition term G

p̃A

∫
A

(
U−∂h

∂t

)
dA in equa-411

tion (11) where the uplift rate U = 0 mm/yr in the foreland. When the foreland slope412

S is low, the erosion term Kf p̃
mAmSn is lower than the deposition term G

p̃A

∫
A

(
U −413

∂h
∂t

)
dA. Then, sediments accumulate in the foreland (because sediments are deposited414

more than eroded), resulting in an increase of the foreland slope. However, when the fore-415

land slope S is sufficiently large, the erosion term becomes greater than the deposition416

term, leading to a decrease in slope. The SPL erosion and deposition terms are never417

equal to each other in the foreland, and a dynamic steady state develops characterized418

by autocyclic and alternating phases of aggradation and incision.419

Note that the node spacing in the simulation is 1 × 1 km2 (Figure 8a). To cap-420

ture morphological features such as valleys and hillslopes that typically occur over shorter421

space scales, we ran two other simulations with a higher spatial resolution of 100 m and422

20 m (Figure S1 in the Supporting Information). The model is smaller (15× 10 km2)423

than the reference simulation, and has an uplifted domain of 10×10 km2. The processes424

that lead to the autocyclic aggradation and incision are replicated (Figure S1), and the425

spacing between valleys and the migration frequency of river channels are not affected426

by the spatial resolution of the model.427

Langston et al.’s (2015) simulations show that the repeated aggradation and aban-428

donment of high surfaces take place in the upper foreland due to modulation of sediment429

supply associated with climate change. Unlike their simulations, ours show that, with-430

out changing external forcings, streams migrate and sometimes erode into the sediment431

they have previously deposited, mainly in the lower foreland, around a dynamic steady432

state. Under a constant forcing, we observe that the upper foreland is quite stable. This433

could be related to the relatively limited numbers of outlets at the edges of the moun-434

tain range, which limits the possibility of major fluvial reworking close to the range.435

Riverbed aggradation and incision cycles are often interpreted to reflect changing436

external forcings including tectonics (Bull , 1991; Yanites et al., 2010), climate (Bridg-437

land and Westaway , 2008; Hancock and Anderson, 2002), and base-level change (Fisk438

et al., 1945). Yet, without varying tectonics (e.g., the value of U) or climate (e.g., the439

value of p), our numerical simulations continuously produce lateral migration of river chan-440

nels in the foreland, resulting in autocyclic aggradation and incision around a dynamic441

steady state. Using different uplift rates (e.g., U = 0.5 mm/yr and 1 mm/yr in Fig-442

ures 8b and 8c, respectively), we observe larger aggradation and incision thicknesses, be-443

cause sediments accumulate more in the foreland for higher uplift rates.444

5.3 Limitations of the model445

There are several limitations to this model and how it can be used to represent nat-446

ural processes. First of all, our model of course encompasses some limitations of the clas-447

sic SPL model from which it is derived and such limitations should be considered to de-448

sign future studies. For example, we can not account for river width variations or lat-449
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eral migration in bedrock channel, preventing the simulations of alluvial terraces within450

uplifted areas (Langston and Tucker , 2018). Channel narrowing and widening also in-451

fluence the stream power per unit width, and therefore the transport capacity (e.g., Finnegan452

et al., 2005; Whittaker et al., 2007).453

Second, the thickness and location of deposited sediments above bedrock elevation454

is not recorded, as erosion and deposition are calculated within the same equation and455

at the same time step. A valuable addition to this work would be to track sediment de-456

position within uplifting regions, either within channels or alongside channels in the form457

of terraces. The transient sediment storage in inter-montane basins or within uplifting458

regions could be a potential application to better understand landscape evolution. For459

this, the thickness of sediments above bedrock elevation should be tracked during land-460

scape evolution (e.g., Shobe et al., 2017).461

In addition, the model is built in fluxes and it does not account for grain-size dis-462

tribution (i.e., the eroded material behaves as a single grain-size material). Accordingly,463

we neither distinguish between bedload and suspended load, nor simulate processes such464

as sediment downstream fining. The size of the sediments is an important parameter that465

partly controls the shape and the geometry of sedimentary bodies such as alluvial fans466

(Armitage et al., 2011; Delorme et al., 2016; Paola et al., 1992). Multiple grain sizes can467

be incorporated into the model framework by splitting the flux into different loads as-468

sociated with different deposition coefficients. This would also require to track grain size,469

which is not trivial to perform in Davy and Lague’s (2009) flux-based formulation.470

Last, the model did not account for flexural isostasy either in the uplifted domain471

or in the foreland, mostly for the sake of simplicity, to explain the behavior of the sur-472

face process model, independent of any assumption regarding isostatic response. Flex-473

ural subsidence of foreland basins creates accommodation space and allows sediments474

supplied from the uplifted relief to be preserved through time. To simulate sediment stratig-475

raphy with the current model, a first-order approximation would be to impose a nega-476

tive uplift in the foreland basin to simulate subsidence and enhance sediment deposition477

and preservation.478

6 Conclusion479

We have developed a new efficient (i.e., O(N) and implicit) method to solve the480

equations arising from Davy and Lague’s (2009) formulation to investigate the role of481

sediment deposition on fluvial erosion of landscapes. In our implementation, the depo-482

sition rate is assumed to be inversely proportional to drainage area, and proportional483

to the local suspended sediment flux (estimated from the integrated upstream net ero-484

sion rate) and to a dimensionless deposition coefficient, which we term G. This depo-485

sition coefficient G is a function of the sediment concentration ratio in transport, the set-486

tling velocity of sediment, and the mean precipitation rate. From a macro point of view,487

G/p̃ in equation (11) is a direct measure of the local deposition rate relative to the mean488

net erosion rate of upstream drainage area.489

To study the behavior of this new scheme and its numerical implementation, we490

performed a series of simple experiments in which a region subject to uplift at a constant491

rate is adjacent to a stable area. Based on multiple simulations, we demonstrate that492

the relief in the uplifting area and the stratigraphy in the foreland basin are controlled493

by the river erosion coefficient Kf and by the value of G. The deposition coefficient G494

controls the average elevation in the uplifting region and the surface slope in the asso-495

ciated foreland basin, especially when the value of G is ≥ 1. At steady state, the slope,496

the average elevation along river profiles and the response time of the uplifted relief are497

a factor (1 +G/p̃)1/n higher than those derived from the SPL model without a depo-498

sition term.499
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In our simulations, as uplift and erosion progress, sediments aggrade in the fore-500

land basin and prograde toward the foreland edge (the base level). The foreland slope501

increases until it reaches a threshold over which sediments bypass the foreland. The fore-502

land then develops a dynamic steady state, in which the stream continuously migrates503

and sometimes cuts into the sediment it has previously deposited. This process leads to504

the continuous formation and destruction of river banks. This behavior mainly takes place505

in the lower foreland where the slope is low, whereas in the upper foreland where the slope506

is relatively high and rivers are less free to migrate, the sediments mainly aggrade un-507

til reaching steady state. This observed dynamic steady state suggests that aggradation508

and incision cycles can occur in the absence of variations in external forcings such as tec-509

tonics, climate or change of base level.510

As our method is optimally efficient (i.e., O(N) and implicit), it is therefore highly511

suitable for performing large numbers of simulations and it can thus be used in optimiza-512

tion procedures that require many simulations to infer the amplitude of variations in tec-513

tonic forcings, climatic events or base-level changes in natural examples. In the future,514

we plan on developing this model to better constrain the nature and timing of erosional515

events on continents, through an inversion of the stratigraphy of the adjacent foreland516

basins.517

A Matrix of finite difference equations in FastScape stack order518

To illustrate our algorithm, we now explicitly write the coefficients of matrix B and

vectors ht+∆t and bt in equation (17) for a single catchment made of 11 nodes (Figure
1c) using the FastScape stack order. This gives:

B =



1 0 0 0 0 0 0 0 0 0 0

−F2 1 + F2 G/(p̃Ã2) G/(p̃Ã2) G/(p̃Ã2) G/(p̃Ã2) 0 0 0 0 0

0 −F3 1 + F3 G/(p̃Ã3) G/(p̃Ã3) 0 0 0 0 0 0

0 0 −F4 1 + F4 0 0 0 0 0 0 0

0 0 −F5 0 1 + F5 0 0 0 0 0 0

0 −F6 0 0 0 1 + F6 0 0 0 0 0

−F7 0 0 0 0 0 1 + F7 G/(p̃Ã7) G/(p̃Ã7) G/(p̃Ã7) G/(p̃Ã7)

0 0 0 0 0 0 −F8 1 + F8 0 0 0

0 0 0 0 0 0 −F9 0 1 + F9 G/(p̃Ã9) G/(p̃Ã9)

0 0 0 0 0 0 0 0 −F10 1 + F10 0

0 0 0 0 0 0 0 0 −F11 0 1 + F11



,

(A.1)

ht+∆t =



ht+∆t
1

ht+∆t
2

ht+∆t
3

ht+∆t
4

ht+∆t
5

ht+∆t
6

ht+∆t
7

ht+∆t
8

ht+∆t
9

ht+∆t
10

ht+∆t
11



, and bt =



ht
1

ht
2 + U∆t + G(ht

3 + ht
4 + ht

5 + ht
6 + 4U∆t)/(p̃Ã2)

ht
3 + U∆t + G(ht

4 + ht
5 + 2U∆t)/(p̃Ã3)

ht
4 + U∆t

ht
5 + U∆t

ht
6 + U∆t

ht
7 + U∆t + G(ht

8 + ht
9 + ht

10 + ht
11 + 4U∆t)/(p̃Ã7)

ht
8 + U∆t

ht
9 + U∆t + G(ht

10 + ht
11 + 2U∆t)/(p̃Ã9)

ht
10 + U∆t

ht
11 + U∆t



. (A.2)

Let’s now take node 2 (the second row in equation A.1) as an example (Figure 1c). Its519

receiver is node 1 thus there is the term −F2 = −Kf p̃
mAm

2 ∆t/∆l2 in the second row520

of the first column of the matrix B. The node 2 has several upstream nodes (node 3, node521
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4, node 5, and node 6) which contribute the drainage water, thus, there are dimension-522

less terms G/(p̃Ã2) in the the second row of the third to the sixth column of the matrix523

B.524

The matrix B is split into its lower F and strictly upper triangular matrix E as:

F =



1 0 0 0 0 0 0 0 0 0 0

−F2 1 + F2 0 0 0 0 0 0 0 0 0

0 −F3 1 + F3 0 0 0 0 0 0 0 0

0 0 −F4 1 + F4 0 0 0 0 0 0 0

0 0 −F5 0 1 + F5 0 0 0 0 0 0

0 −F6 0 0 0 1 + F6 0 0 0 0 0

−F7 0 0 0 0 0 1 + F7 0 0 0 0

0 0 0 0 0 0 −F8 1 + F8 0 0 0

0 0 0 0 0 0 −F9 0 1 + F9 0 0

0 0 0 0 0 0 0 0 −F10 1 + F10 0

0 0 0 0 0 0 0 0 −F11 0 1 + F11



,

(A.3)

and

E =



0 0 0 0 0 0 0 0 0 0 0

0 0 G/(p̃Ã2) G/(p̃Ã2) G/(p̃Ã2) G/(p̃Ã2) 0 0 0 0 0

0 0 0 G/(p̃Ã3) G/(p̃Ã3) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 G/(p̃Ã7) G/(p̃Ã7) G/(p̃Ã7) G/(p̃Ã7)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 G/(p̃Ã9) G/(p̃Ã9)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0



.

(A.4)
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