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Abstract— Thanks to the message passing principle, turbo
decoding is able to provide strong error correction near the
theoretical (Shannon) limit. However, the minimum Hamming
distance (MHD) of a Turbo Code may not be sufficient to prevent
a detrimental change in the error rate vs. signal to noise ratio
curve, the so-called flattening. Increasing the MHD of a Turbo
Code may involve using component encoders with a large number
of states, devising more sophisticated internal permutations, or
increasing the dimension of the Turbo Code, i.e. the number of
component encoders. This paper addresses the latter option and
proposes a modified Turbo Code, in which some of the parity bits
stemming from the classical component encoders are encoded by
a rate-1, third encoder. The result is a significantly increased
MHD, which improves turbo decoder performance at low error
rates, at the expense of a very small increase in complexity. In
the paper, we compare the performance of the proposed Turbo
Code with that of the DVB-RCS Turbo Code and the DVB-S2
LDPC code.

I. INTRODUCTION

Turbo Codes (TCs) are today mainly used in Automatic
ReQuest (ARQ) systems, which do not usually require very
low error rates. Target Frame Error Rates (FER) from 1072 to
10~° are typical for this kind of communication systems. Most
of current commercial applications of TCs, such as Digital
Video Broadcasting standard [1], and the 802.16a WiMAX
standard for local and metropolitan area networks [2], are
based on 8-state component encoders. While such codes offer
performance close to the Shannon limit in the so-called wa-
terfall region, they suffer from a flattening around FER 1075,
due to a poor minimum Hamming distance (MHD). In future
system generations, lower error rates, down to 10~8, will be
required to open the way to real-time and more demanding
applications, such as TV broadcasting or videoconferencing.
Therefore, state-of-the-art 8-state TCs are not suitable for these
kind of applications, but more powerful coding schemes are
required. At the same time, a reasonable complexity should
be preserved.

Improving performance at very low error rates by raising
the MHD may involve using component encoders with a
larger number of states, devising more appropriate internal
permutations, or increasing the dimension of the TC, i.e. the
number of component encoders. More complex 16-state TCs
have already been adopted in some standards. A very powerful
TC based on 16-state components, achieving FERs down to
10~7 for a wide range of code rates has been recently proposed
in [3]. The price is paid in terms of complexity, which
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Fig. 1. The proposed 3D Turbo Code: two fractions A\ of the parity bits
stemming from both component encoders are grouped by a parallel to serial
(P/S) multiplexer, permuted by permutation II’ and re-encoded by a rate-1
post-encoder.

is doubled w.r.t. 8-state components TCs. Designing better
permutations is another alternative to improve the minimum
distance of TCs. Recently proposed DRP [4] and ARP [5]
permutations are very simple models which allow to achieve
very high distances. Devising better interleavers seems to be
a very difficult and time consuming task.

This paper addresses the third alternative to improve TCs
performance, and proposes a three-dimension Turbo Code
(3D-TC), simply derived from the classical TC by concatenat-
ing a post-encoder at its output. Thanks to the message passing
(turbo) principle, it has become simple today to imagine
various coding structures, by concatenating simple component
codes, provided that their corresponding decoders are of the
Soft-In/Soft-Out (SISO) type. Basically, there are two kinds
of concatenation: serial and parallel. Mixed structures are also
possible, like the ones proposed in [6] or [7]. The 3D-TC we
describe here is inspired by these contributions and calls for
both parallel and serial concatenation.

The proposed code is very versatile and provides very low
error rates for a wide range of block lengths and code rates.
It significantly improves performance in the error floor w.r.t.
the 8-state DB TC of the DVB-RCS standard, at the expense
of a very small increase in complexity (less than 10%). Also,
it compares favorably with respect to more complex 16-state
TCs, and the LDPC code of the DVB-S2 standard.

II. THE ENCODING STRUCTURE

A block diagram of the proposed 3D Turbo Code is de-
picted in Fig. 1. The information sequence u of length k is
grouped into couples of bits and encoded by the double-binary
turbo encoder of the DVB-RCS standard [8]. The DVB-RCS



Turbo Code is built from the parallel concatenation of two
8-state recursive systematic convolutional (RSC) codes, with
generator polynomials 15 (recursivity), 13 (redundancy), and
7 (second input). Note that the internal permutation IT deals
with messages of N = k/2 symbols. The overall code rate
(before puncturing) is 1/2. In Fig. 1 we denote C, the upper
encoder and C; the lower encoder. The corresponding parity
sequences are denoted y,, and y;, respectively.

A fraction A (0 < X\ < 1) of the parity bits stemming from
each component encoder are post-encoded by a rate-1, third
encoder. In the sequel, we shall refer to \ as the permeability
rate. The bits to be post-encoded are chosen in a regular basis.
For instance, if A = 0.25 the permeability pattern is 1000 for
both the upper and the lower encoders, i.e., every forth bit
in y, and y; is post-encoded. Finally, the input sequence of
the post-encoder is made of alternate y, and y; (surviving)
parity bits. The number of parity bits which are fed to the
post-encoder is given by:

P =2)\N = )k, (1)

The fraction 1 — A\ of parity bits which is not re-encoded is
sent directly to the channel or punctured to achieve the desired
code rate.

The material added to the classical turbo encoder, which we
call the patch because it is placed just behind a pre-existing
turbo encoder, is composed of:

o a parallel to serial (P/S) multiplexer which takes alter-
nately the parity bits y; and y2 to be re-encoded and
groups them into a single block of P bits,

o a permutation denoted II” which permutes the parity bits
before feeding them to the post encoder,

o a rate-1 post-encoder whose output is denoted w.

The value of A to be chosen is a matter of trade-off between
the convergence loss and the required MHD. Convergence
designates the zone of the error rate vs. signal to noise
ratio (SNR) curve where the error rate begins to decrease
noticeably. Choosing a large value of )\ penalizes the decoder
from the convergence point of view. This results from the
decoder associated with the post-encoder, which does not
benefit from any redundant information at the first iteration
and therefore multiplies the errors during the first processing.
Let us assume for instance that the post-encoder is the well-
known accumulator (i.e. convolutional code with memory 1),
depicted in Fig. 3(a). The associated decoder (the pre-decoder),
without any extra information, doubles the errors at its input.
From (1), the fraction 6 of the codeword bits that are post-
encoded bits is:

=" =)\R, )

n
where n is the codeword length and R is the coding rate of
the 3D turbo code. The fraction 6, of the data processed by
the component decoder of each code C4, (¢ = 1,2), that is
processed by the pre-decoder is:

0, = ——. 3)
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Fig. 2. Possible linear post-encoder candidates, with memory 1 or 2.

Then, if p is the probability of error at the channel output,
the average probability of error p’ at each decoder intrinsic
input is:

P =20gp+ (1= 0g)p = (14 6,)p. “)

Using (3) we get

, (1+(1+A)R)p 5)

b= 1+R
i.e. the probability of error at each decoder intrinsic input is
risen by a factor (W , inducing a loss in convergence.
On the other hand, a large value of A will translate into a higher
MHD.
The strategy for choosing the permeability rate A ensues
directly from (5):
1) for a given acceptable convergence loss and for the curve
p(EyNy) (for instance, erfc(x) for a Gaussian channel),
infer the value of p = w
2) For a given codmg rate, deduce the value of .
3) If the resulting MHD is not sufficient, increase p’ and
go to (1).
Note that the rate of the 3D Tubo Code is necessarily upper
bounded by 1-&-%

III. THE CHOICE OF THE POST-ENCODER

The choice of the post-encoder is crucial for code perfor-
mance. It has to meet the following requirements:

1) Its decoder must be simple, adding little complexity to
the classical turbo decoder, while being able to handle
soft-in and soft-out information,

2) in order to prevent the decoder suffering from any side
effects, because very low error rates are sought for, the
post-code has to be a homogeneous block code,

3) at the first iteration (so, without any redundant input
information), the pre-decoder associated with the rate-1
post-encoder must not exhibit too much error amplifica-
tion, to prevent from a high loss in convergence.

Possible candidates, low memory linear RSC codes which
satisfy condition (1), are given in Fig. 2.

Condition (2) is compatible with the use of Circular RSC
(CRSC) codes having memory 2. Circular convolutional codes
(also called tail-biting codes), are such that any state of the
encoder register is allowed as the initial state and that the
encoding always starts and ends in the same state. This makes
the convolutional code a perfect block code and prevents it
from any side effects. Moreover, no rate loss is induced by
terminating the code. Circular CCs have already been adopted



Fig. 3. Linear Feedback Register (LFR) with memory 2 and recursivity
polynomial 7 (octal).

in the DVB-RCS turbo code. Note that the code with memory
1 (the accumulate code, Fig. 2a) cannot be made circular by
applying state mapping described in eqs. (14-15), and has to
be discarded. Code (b) in Fig. 2 can easily be made circular,
provided that the number of bits to be encoded is not a multiple
of 3. On the other hand, at the first step of the iterative process,
its decoder will (roughly) triple the number of errors of its
input. Finally, code (c) has a corresponding decoder which
only doubles the number of errors at the first step. Therefore,
from the convergence point of view, it will be preferable to
code (b).

Code (b) cannot be made circular directly. However, a
simple trick will allow us to use this code as a CRSC code,
as explained below.

A. Generalities on CRSC Codes

Let s; and d; be the state of the encoder register, and the
encoder data input, respectively, at discrete time i. The encoder
state at time ¢ 4+ 1 is given by the following equation:

si+1 = Gs; +d;, 6)

where G is the state matrix of the linear feedback register
(LFR). For instance, considering the LFR in Fig. 3, whose
binary input is denoted d;, we have:

11

| S1,4 o d; _
=[] a[4] e-[1d] o

52,4
More generally, for a memory v register, vectors s; and d;
have v components and G is of size v x v. After the encoding
of the data sequence {d;}, of length P, the final state s, can
be expressed as a function of initial state sy and {d;}:

P
sp=Gso+ Y G d; ;. (8)
j=1
If it is possible to find a circulation state, denoted s, such
that s® = sy = sp, this is given by:

P
s =[1+G7 ' Y 6P, ©)
j=1

where I is the v X v identity matrix.

Note that s exists if and only if I4+ G is invertible. This
condition is never satisfied for some matrices G, whatever P.
This is the case of the encoders of Fig. 2(a) and Fig. 2(c),
which have G = [1] and G = { (1) (1)
other matrices, I + G is invertible if P is not a multiple of
the period L of the LFR, defined by G* = I. For instance,

, respectively. For

the LFR in Fig. 2(b) has L = 3. Therefore, I + G is not
invertible for P = 3m, being m and integer. In such cases,
the encoder cannot directly be made circular.

Before the encoding of {d;}, the knowledge of s. requires
a preliminary step. The encoder is first set up in the all-zero
state, and then fed by the data sequence {d;}. The final state
is denoted s(l)). From (8), we have

P
sp =Y G"d;_, (10)
=1
and, from (9), s¢ can be related to s‘}, by:
s*= [T+ G"] 7' s. (11)

Finally, the encoder being initialized to the circulation state,
the encoding process can really start to provide the redundancy
sequence.

B. The post-encoder with generator polynomial 5

The encoder of Fig. 2(c) can be made circular by introduc-
ing some modifications in the principle above. Let us transform
the final state given by (8) into:

s = Asp, (12)
where
1 1 .
A—[O 1} if P odd "
A 1 1 i p
=11 0 i even
We then have:
P .
sp=AG"sg+ A G"d,;_, (14)
j=1

Under these conditions, a circulation state (s® = sy = s'p)
always exists, and it is given by:

P
se=BY G'7d;_; = Bs),

j=1

15)

with
B=[1+AG"] A
0 1
1 0
values assigned to A, I+ AG” is always invertible.
The encoding procedure can now be described by the
following steps:
1) set up the encoder at the all-zero state. Feed it with {d,;}
and compute the final state S?;,
2) calculate s, through (15) and (16),
3) encode {d;} starting from s.. If needed, use (12) to
transform the final state, in order to verify that the result
is sc.

(16)

Note that, because of G = }, and thanks to the

The decoding process has to take transformation (12) into
account. This is done by an exchange of metrics after having
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Fig. 4. The non-linear encoder derived from the encoder of Fig. 2(c).

processed address ¢ = P, during the forward recursion, and
after having processed address ¢ = 1, during the backward
recursion, when the MAP algorithm, or a simplified version,
is employed. Table 1 provides the corresponding values of s,
and s}, obtained through (12) and the corresponding values of
sg and s, obtained through (15). We can observe that only 2
@if P is odd) or 3 (if P is even) metrics need to be swapped
during the decoding process, at the extremity of the block,
which represents a very small additional complexity for the
4-state decoder.

For short block sizes (k < 1000 bit) and for medium sizes
(1000 < k < 5000) with low rates, the linear post-encoder
of Fig. 2(c) was chosen. However, for large blocks (5000 >
k) and for medium sizes with high rates, the 3D-TC with
post-encoder (c) shows a flattening around FER=10"%, due
to a poor minimum distance. In these cases, the post-encoder
was turned into the non-linear encoder depicted in Fig. 4. In
Fig. 5 we report the EXIT curves for the linear post-encoder
of Fig. 2(c) and the non-linear encoder of Fig. 4. When no
a-priori information is available at the input of the pre-decoder
(i.e. first iteration) the Mutual Information (MI) at its output
is higher for the linear post-encoder. In fact, the linear post-
encoder doubles the the number of error at the first iteration,
while the non-linear post-encoder multiplies the the number of
error by a factor 3—4. Therefore, the properties of this code do
not seem very appropriate with respect to condition (3) in the
choice of the post-encoder. However, the two curves in Fig. 5
cross around input MI 0.3. For high input MI the behavior
of the non-linear code is better, indicating a better behavior in
the floor region. The non-linear encoder contributes to increase
the MHD of the 3D-TC, with favorable consequences in the
cases cited above.

IV. PERMUTATIONS II AND II’

The proposed 3D-TC is characterized by two permutations,
denoted IT and IT'. IT is the internal permutation of the DB-TC.
Here, we consider II to be of the Almost Regular Permutation
(ARP) type, as described in [?]. The ARP permutation is a
generalization of the permutation model used in the DVB-
RCS turbo code. A second permutation II’ is used to spread
the parity bits before post-encoding. We assume IT’ to be the
simplest one. Denote ¢ (1 < ¢ < P)andj (1 < j < P)
the address in the natural order and in the permuted order,
respectively. Then, IT’ is defined by the following congruence
relation:

i =1I'(j) = Poj + o

mod P, (17)
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Block diagram of the 3D turbo decoder.

where i is the starting index, and med(Py, P) = 1.

Note that the two permutations assumed in this paper
are based on very simple models, enabling large degrees of
parallelism.

V. DECODING THE 3D TURBO CODE

The decoding of the 3D TC calls for the classical turbo
procedure, as depicted in Fig. 6, in the logarithmic domain.
As for standard TCs, the two 8-state SISO decoders (DECI1
and DEC2) exchange extrinsic information on the systematic
bits (A, B in Fig. 1) of the received codeword. Also, they
must provide the 4-state SISO pre-decoder (PRE-DEC) with
extrinsic information on the post-encoded parity bits. In turn,
the pre-decoder feeds the 8-state decoders with extrinsic
information on these parity bits.

Because DEC1 and DEC2 are quaternary 8-state decoders
processing N = k/2 couples of bits and the pre-decoder is a
binary 4-state decoder processing P = Ak data, the relative
computational complexity added by the latter is very small.
For instance, with A = 1/4, the additional complexity is only
6%. To this, however, some extra-functions must be added to
the classical turbo decoder, the main one being the calculation
of the extrinsic information on parity bits to be fed to the pre-
decoder. Overall, the additional complexity, compared to the
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Fig. 8. Performance, in Frame Error Rate, of the 3D-TC with A = 1/4
for k = 188 bytes, R = 1/4, 1/2 (linear post-encoder) and 4/5 (non-linear
post-encoder) and comparison with the DVB-RCS TC. All simulations used
the Max-Log-MAP algorithm with 8 iterations. TL: theoretical limit (sphere
packing bound).

classical turbo decoder, is less than 10% for A = 1/4.

VI. SIMULATION RESULTS

The performance of the 3D-TC was assessed by means of
simulation. In Figs. 8 and 9 we report frame error rate results
for two typical block sizes, 188 and 57 bytes, respectively, and
coding rates 1/4, 1/2 and 4/5. In all simulations A = 1/4
and a maximum of § iterations are assumed. The component
decoding algorithm is the simple Max-Log-MAP algorithm
(also called the dual Viterbi algorithm). Note that for global
coding rate 1/4, the component double-binary encoder in
Fig. 1 has to output three parity bits. Fig. 7 depicts the block
diagram of the best 8-state encoder that was found to provide
three outputs.

The proposed code shows excellent performance for both
short and medium block sizes. In particular, for information
block size 188 bytes (see Fig. 8) only 0.8 dB loss is observed
with respect to the sphere packing bound at 10~7 for all rates.
For comparison purpose, the performance of the original DVB-
RCS TC is also reported for rates 1/2 and 4/5. As expected,
in most cases (except for R = 4/5) the 3D-TC shows a small
convergence loss at high error rates with respect to the DVB-
RCS TC. On the other hand, the error floor is significantly
improved. The largest gain is obtained for 188 bytes and R =
1/2 (about 1.4 dB at FER= 10~7). The performance of the

{—A— 3D-TC

—O— DVB-RCS TC
—m— 16-state DB TC [7]
—©— Theoretical Limit

1 1.5 2 25 3 3.5 4 4.5 5 5.5 6
Eb/No (dB)

Fig. 9. Performance, in Frame Error Rate, of the 3D-TC with A\ = 1/4 for

k = 57 bytes, R =1/4, 1/2 and 4/5 (linear post-encoder) and comparison

with the DVB-RCS TC. All simulations used the Max-Log-MAP algorithm

with 8 iterations. TL: theoretical limit (sphere packing bound).
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Fig. 10. Performance, in Bit Error Rate, of the 3D-TC with 1 = 1/8 for n =
8000 bytes, R = 1/2 and 8/9 (non-linear post-encoder) and comparison with
the DVB-S2 LDPC code performance. The number of iterations was 12 for the
3D-TC (using the Max-Log-MAP algorithm) and 50 for the LDPC. The LDPC
performance was obtained from an FPGA (courtesy of TurboConcept) while
the 3D-TC decoder operated on real channel values (i.e. no quantization).

3D 8-state TC is comparable to that of much more complex
16-state TCs, such as the one described in [3], also reported
in the Figs. 8 and 9 for rates 1/2 and 4/5. For a block length
of 188, the 3D-TC looses 0.1 dB in convergence w.r.t. the 16-
state double-binary Turbo Code in [3]. However, the proposed
code improves the 16-state TC in the error floor. A similar
behavior is observed in Fig. 9 for a block length of 57 bytes.

The proposed code also shows very good performance for
large block lengths. In Fig. 10 the bit error rate performance
(BER) of the proposed 3D-TC is compared with that of the
DVB-S2 standard LDPC code [9], for coding rates 1/2 and
8/9 and a coded block length of 8000 bytes. Here, A =
1/8 and 12 iterations are assumed for the 3D-TC. Similar
performance are observed for the two codes. To the best of
our knowledge, this is the first time that a (modified) turbo
code achieves such a performance for a long block and a 8/9
coding rate.
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Fig. 11. Performance, in Bit Error Rate, of the 3D-TC with 1 = 1/8 for n =
8000 bytes, R = 1/2 and 8/9 (non-linear post-encoder) and comparison with
the DVB-S2 LDPC code performance. The number of iterations was 12 for the
3D-TC (using the Max-Log-MAP algorithm) and 50 for the LDPC. The LDPC
performance was obtained from an FPGA (courtesy of TurboConcept) while
the 3D-TC decoder operated on real channel values (i.e. no quantization).

Finally, in Fig. 11 performance comparison is given w.r.t.
the 16-state TC adopted in the 3GPP2 standard. An informa-
tion block length of 12288 bits and 8 iterations are assumed
for the two codes. Very similar performance are observed in
the waterfall region. However, the proposed 3D-TC signifi-
cantly improves the 3GPP2 code in the floor. No flattening is
observed at FER 107°. Also note that the complexity of the
proposed code is noticeably lower.

VII. CONCLUSIONS

In this paper, we presented a modified turbo code combining
the features of parallel and serial concatenation in order to
obtain increased Hamming minimum distances compared to
those of classical turbo codes. The simulation results corrob-
orate the interest of this approach. Frame error rates down to
10~7 are obtained near the theoretical limits without the use of
any outer block code, such as BCH or Reed-Solomon codes.
This characteristic makes this new code, called 3D turbo code
(3D-TC), very versatile from the standpoint of block size and
coding rate. Furthermore, the component decoding algorithm
(Max-Log-MAP) is simple and does not require the knowledge
of the channel. Finally, the internal permutations of the 3D-
TC are based on very simple models enabling large degrees
of parallelism, if needed.
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