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Abstract— Consider observations where random signals are
randomly present or absent in independent and additive
white Gaussian noise (AWGN). By using a recently estab-
lished limit theorem, we introduce a new estimator for the
estimation of the noise standard deviation when the signals
are less present than absent and have unknown probability
distributions.

The bias, the consistency and the minimum attainable
mean square estimation error of the estimator we propose
are still unknown. However, the experimental results that are
presented are very promising. First, when the Minimum-
Probability-of-Error decision scheme for the non-coherent
detection of modulated sinusoidal carriers in independent
AWGN is tuned with the outcome of our estimator instead
of the true value of the noise standard deviation, the
Binary Error Rate tends to the optimal error probability
when the number of observations is large enough. Second,
given some speech signal corrupted by independent AWGN,
our estimator can be used to estimate the noise standard
deviation so as to adjust the standard Wiener filtering of
the noisy speech. The objective performance measurements
obtained by so proceeding are very close to those achieved
when the Wiener filtering is tuned with the true value of
the noise standard deviation.

Index Terms— Binary hypothesis testing, decision, estima-
tion, likelihood theory, multivariate normal distribution,
speech denoising.

I. INTRODUCTION

In many signal processing applications, observations
can be modelled by d-dimensional random vectors that
result from the random presence of signals in independent
and additive white Gaussian noise (AWGN).

Often, very little is known about the signals or about
most of their describing parameters. The probability dis-
tributions of the signals are sometimes partially or defi-
nitely unknown. This issue is typically met in Electronic
(Warfare) Support Measure (ESM) systems faced with
non-cooperant communications. This is also the case
with sonar systems that receive signals resulting from
noise generated by motors and hull vibrations transmitted
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through a fluctuating environment. Echoes received by a
radar system are not always easy to model because they
derive from a convolution between a known transmitted
pulse and an unknown environment.

In addition to our lack of prior knowledge about the
signals, the noise standard deviation may be unknown as
well. In order to process the observations, it can then be
necessary to estimate it.

For instance, Constant False Alarm Rate (CFAR) sys-
tems, standardly used in radar processing, perform an
estimate of the noise standard deviation in order to detect
radar targets with a false alarm rate close to some pre-
specified value. Basically, CFAR systems select obser-
vations considered as signal-free and called “reference
cells”. The estimation of the noise standard deviation is
then achieved on the basis of these reference cells. The
design of a CFAR system is no easy task (see [1], [2]).

A second example is the denoising of speech signals
corrupted by independent AWGN. Indeed, most standard
filtering techniques must be adjusted with an estimate of
the noise standard deviation when the latter is unknown. A
popular approach involves using a Voice Activity Detector
(VAD). The VAD decides, with some error rate, that some
periods of time are signal-free and the noise standard
deviation is then estimated on the basis of these periods
of time. Another approach is to achieve an estimate of
the noise standard deviation by computing the smallest
eigenvalues of the noisy speech autocorrelation matrix.
Depending on the matrix size, the computation of the
eigenvalues may prove unstable.

In contrast with such approaches mostly based on the
physics of the problem, we hereafter propose an estimator
relying on statistics only. This estimator is based on a
recent theoretical result established in [3]. A simplified
version of this result will however be sufficient to derive
our estimator.

II. PAPER ORGANIZATION

After introducing some notations and pieces of termi-
nology, section III presents the theoretical result, namely
proposition 3.1, from which the estimator proposed in this
paper is derived. Proposition 3.1 and the more general



result [3, Theorem 1] concern any sequence of mutu-
ally independent d-dimensional real random observations
where signals, with unknown probability distributions but
with norms larger than or equal to some known value, are
randomly present or absent with unknown probabilities
of presence less than or equal to one half in independent
AWGN.

Our estimator is then presented in section IV. It applies
to sets of non signal-free observations where signals have
unknown probability distributions and unknown probabil-
ities of presence less than or equal to one half. No prior
knowledge on a lower bound for the norms of the signals
is any longer required.

The bias, the consistency and the mean square error
of this estimator are still unknown. Nevertheless, several
experimental results are presented in section V. These
experimental results concern two-dimensional observa-
tions where the signals are uniformly distributed on the
circle centred at the origin with known radius α. The
two components of every signal can be regarded as
the in-phase and quadrature components of a modulated
sinusoidal carrier with amplitude α and phase uniformly
distributed in [0, 2π].

An application to speech denoising is also presented.
Given some speech signal corrupted by independent
AWGN, section VI describes how the estimator intro-
duced in this paper makes it possible to estimate the noise
standard deviation and adjust the standard Wiener filtering
of the noisy speech signal.

Section VII concludes this paper by suggesting several
theoretical developments, extensions to speech processing
as well as applications in radar processing and electronic
warfare.

III. THEORETICAL BACKGROUND

In what follows, only one probability space (Ω,M, P)
is considered and every random vector or variable is
assumed to be defined for every ω ∈ Ω by setting this
random vector or variable to 0 on any negligible subset
where it could be undefined. As usual, we write (a-s) for
“almost surely”.

Let S stand for the set of all the sequences of d-
dimensional real random vectors. Given a positive real
value σ0, an element X = (Xk)k∈N of S will be
called a d-dimensional white Gaussian noise (WGN)
with standard deviation σ0 if the random vectors Xk,
k = 1, 2, . . ., are mutually independent and identically
Gaussian distributed with null mean vector and covariance
matrix σ2

0Id where Id stands for the d × d identity
matrix. For the sake of brevity, we will henceforth write
independent instead of mutually independent.

We define the minimum amplitude of an element S =
(Sk)k∈N of S as the supremum a(S) of the set of those
α ∈ [0,∞] such that, for every natural number k, ‖Sk‖
is larger than or equal to α (a-s):

a(S) = sup {α ∈ [0,∞] : ∀k ∈ N, ‖Sk‖ ≥ α (a-s)} .
(1)

If f is some map of S into R, we say that the limit
of f(S) is � ∈ R when a(S) tends to ∞ and write that
lim

a(S)→∞ f(S) = � if, for any positive real value η,
there exists some α0 ∈ (0,∞) such that, for every α ≥ α0

and every S ∈ S with a(S) ≥ α, we have |f(S)−�| ≤ η.
Given ν ∈ [0,∞), let Lν(Ω, Rd) stand for the set

of those d-dimensional real random vectors Y such that
E[‖Y ‖ν ] < ∞. In the sequel, we will encounter the
set �∞(N, Lν(Ω, Rd)) of those elements S = (Sk)k∈N

of S such that Sk ∈ Lν(Ω, Rd) for every k ∈ N and
supk∈N E[‖Sk‖ν ] is finite.

In what follows, 0F1 is the generalized hypergeometric
function (see [4, p. 275]). Given ρ ∈ [0,∞), ξ(ρ) is the
unique positive solution for x in the equation

0F1(d/2; ρ2x2/4) = exp(ρ2/2). (2)

Given q ∈ [0,∞), Υq stands for the map defined for every
x ∈ [0,∞) by

Υq(x) =

∫ x

0

tq+d−1 exp(−t2/2)dt. (3)

The following result is a particular case of a more general
limit theorem established in [3]. The statement considered
in the present paper is sufficient with respect to our
purpose. Given any random vector Y and any real number
τ , I(‖Y ‖ ≤ τ) stands for the indicator function of the
event {‖Y ‖ ≤ τ}.

Proposition 3.1: Let Y = (Yk)k∈N be some element
of S such that, for every k ∈ N, Yk = εkSk + Xk where
S = (Sk)k∈N, X = (Xk)k∈N and ε = (εk)k∈N are an
element of S, some d-dimensional WGN with standard
deviation σ0 and a sequence of random variables valued
in {0, 1} respectively.

Assume that

(A1) for every k ∈ N, Sk, Xk and εk are independent;
(A2) the random vectors Yk, k ∈ N, are independent;
(A3) the probabilities of presence P({εk = 1}), k ∈

N, are less than or equal to one half and the
random variables εk, k ∈ N, are independent;

(A4) there exists some ν ∈ (0,∞] such that S ∈
�∞(N, Lν(Ω, Rd)).

Given two non-negative real numbers r and s such that
0 ≤ s < r ≤ ν/2, some natural number m and any
pair (σ, T ) of positive real numbers, define the random
variable ∆m(σ, T ) by

∆m(σ, T )=

∣∣∣∣∣∣∣∣∣∣

m∑
k=1

‖Yk‖rI(‖Yk‖≤σT )

m∑
k=1

‖Yk‖sI(‖Yk‖≤σT )

−σr−s Υr(T )

Υs(T )

∣∣∣∣∣∣∣∣∣∣
.

(4)
Then, σ0 is the unique positive real number σ such that,

for every β0 ∈ (0, 1],

lim
a(S)→∞

∥∥∥lim
m

∆m(σ, βξ(a(S)/σ))
∥∥∥
∞

= 0 (5)

uniformly in β ∈ [β0, 1].



In the foregoing statement, U models a sequence of
observations where, for every given k ∈ N, Sk stands for
some possible random signal and εk models the possible
occurrence of Sk in the background of AWGN modelled
by X .

In proposition 3.1, neither the probabilities of presence
nor the signals are required to be identically distributed.
Moreover, it is worth mentioning that the convergence
criterion exhibited by this result derives from a corollary
of Kolmogorov’s classical strong limit theorem and not
from usual generalizations of the central limit theorem
such as the Lindeberg and the Lyapounov theorems.

Note that, for τ ∈ [0,∞), the ratio
m∑

k=1

‖Yk‖rI(‖Yk‖ ≤ τ)/

m∑
k=1

‖Yk‖sI(‖Yk‖ ≤ τ)

is defined everywhere for the following reason. Let
x1, x2, . . . , xm be m real numbers. If there exists at least
one natural number k ∈ {1, . . . , m} such that xk �= 0, the
finiteness of the ratio

∑m
k=1 |xk|r/

∑m
k=1 |xk|s is trivial.

Since r > s, the definition of this ratio is then extended
by continuity by setting

∑m
k=1 |xk|r/

∑m
k=1 |xk|s = 0 if

(x1, . . . , xm) = (0, . . . , 0).
Proposition 3.1 concerns positive solutions of Eq. (5)

only because σ = 0 trivially satisfies this equation
regardless of the specific convergence involved. Straight-
forwardly, Eq. (5) is also satisfied for all σ ∈ [0,∞)
when r = s ≥ 0. This explains why it is assumed that
r > s ≥ 0.

IV. THE ESSENTIAL SUPREMUM, THE MODIFIED AND

THE COMPLEX ESTIMATES

In this section, the notations used so far are kept with
exactly the same meaning. On the basis of the previous
theoretical result, we present several algorithms for the
estimation of the noise standard deviation. We begin with
an algorithm already introduced in [3]. This algorithm
requires prior knowledge of the minimum amplitude of
the signals. We then propose a method that does not need
such prior knowledge. This method is mainly heuristic.
We particularize it to the case of two-dimensional real ran-
dom vectors, or equivalently, complex random variables.
This particular case will serve to address the applications
treated in sections V and VI.

A. The Essential Supremum Estimate

According to Eq. (5), given β0 ∈ (0, 1] and some posi-
tive real value η, there exists α0 ∈ (0,∞) that satisfies the
following property: for every real number α larger than
or equal to α0, every element S of �∞(N, Lν(Ω, Rd))
whose minimum amplitude is larger than or equal to α,
and every β ∈ [β0, 1], the absolute value of the difference
between the random variable

m∑
k=1

‖Yk‖rI(‖Yk‖ ≤ σβξ(α/σ))

m∑
k=1

‖Yk‖sI(‖Yk‖ ≤ σβξ(α/σ))

and

σr−s Υr(σβξ(α/σ))

Υs(σβξ(α/σ))

does not exceed η (a-s) when the sample size or number
of observations m is large enough.

In many applications, the signals Sk, k ∈ N, have
“finite energy” in the sense that the second-order moments
E[‖Sk‖2], k ∈ N, are finite. In what follows, this “finite
energy” hypothesis is made. Therefore, with respect to
assumption (A4), we consider the case ν = 2 and assume
that S ∈ �∞(N, L2(Ω, Rd)). Since the values r and s
must verify the inequalities 0 ≤ s < r ≤ 1, our rather
natural choice is r = 1 and s = 0.

Given m observations Y1, . . . , Ym for which the mini-
mum amplitude a(S) is known to be larger than or equal
to some known α, if we set L ∈ N and β� = �/L for
every � ∈ {1, . . . , L}, the foregoing suggests estimating
σ0 by a possibly local minimum of

sup
�∈{1,...,L}

∣∣∣∣∣∣∣∣∣∣

m∑
k=1

‖Yk‖I(‖Yk‖≤β�σξ(α/σ))

m∑
k=1

I(‖Yk‖≤β�σξ(α/σ))

− σΘ(β�ξ(α/σ))

∣∣∣∣∣∣∣∣∣∣
(6)

where Θ is defined for every x ∈ [0,∞) by

Θ(x) =
Υ1(x)

Υ0(x)
=

∫ x

0

td exp(−t2/2)dt∫ x

0

td−1 exp(−t2/2)dt

. (7)

Following the terminology proposed in [3], the estimate
obtained by minimizing Eq. (6) is an Essential Supremum
Estimate (ESE) of the noise standard deviation. This
name follows from the fact that the essential supremum
norm plays an important role in proposition 3.1 and its
generalization stated in [3, Theorem 1].

In [3], experimental results are given for the case of
independent signals that are two-dimensional random vec-
tors uniformly distributed on a circle centred at the origin
with known radius α and that have their probabilities of
presence less than or equal to one half. Such random
signals model modulated sinusoidal carriers whose ampli-
tudes equal α and whose phases are uniformly distributed
in [0, 2π]. The empirical bias and the empirical Mean-
Square Error (MSE) of the ESE remain reasonably good
for α ∈ {0, 0.25, 0.5, 0.75, . . . , 5} and any probability
of presence in {0.1, 0.2, 0.3, 0.4, 0.5}. One conclusion of
[3] is therefore that the asymptotic conditions on which
[3, Theorem 1] and proposition 3.1 rely, are not so
constraining and can certainly be relaxed in practice.

B. Modified and Complex Essential Supremum Estimates

The computation of the ESE requires prior knowledge
of a lower bound for the amplitudes of the signals. This
lower bound is not always known. Since [3] suggests that
the convergence stated by (5) is quite fast, we hereafter



set α to 0 in (6) and, thus, since ξ(0) =
√

d (see [5]),
estimate σ0 by a possibly local minimum σ̃0 of

sup
�∈{1,...,L}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣

m∑
k=1

‖Yk‖I(‖Yk‖≤β�σ
√

d)

m∑
k=1

I(‖Yk‖≤β�σ
√

d)

−σΘ(β�

√
d)

∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Any minimization routine for scalar bounded non-linear
functions is suitable. For instance, the experimental results
presented in the next sections were obtained with the
MATLAB routine fminbnd.m based on parabolic inter-
polation (see [6]). This routine is also that employed in
[3] to compute the ESE.

The search interval [σmin, σmax] is computed as fol-
lows. Sort the observations Y1, . . . , Ym, k = 1, . . . , m, by
increasing norm. Let Y[k], k = 1, . . . , m, be the resulting
sequence. The right endpoint of the search interval is
then σmax = ‖U[m]‖/

√
d. As far as the left endpoint is

concerned, choose a real number Q close to 1 but less than
or equal to 1− m

4(m/2−1)2 . A typical choice is Q = 0.95,

provided that m ≥ 24. Set h = 1/
√

4m(1 − Q) and
kmin = m/2 − hm. The left endpoint is then σmin =
‖Y[kmin]‖/

√
d. The reader is asked to refer to [3] for

justifications regarding the construction of this search
interval.

Regarding the applications considered in the sequel,
simulations of the same type as those proposed below
show that σ̃0 is a reasonably good estimate of σ0. How-
ever, we can propose a better estimate of σ0. This new
estimate, henceforth called the Modified ESE and denoted
by σ̂0, is computed on the basis of σ̃0 by setting

σ̂0 = γ

√√√√√√√√√

m∑
k=1

‖Yk‖2I(‖Yk‖ ≤ σ̃0

√
d)

m∑
k=1

I(‖Yk‖ ≤ σ̃0

√
d)

(8)

where γ is some constant chosen empirically with respect
to the application. For instance, this constant is different
for the two applications addressed in the sequel.

The rationale is the following. Under the assumptions
of proposition 3.1 and in the particular case where β = 1,
Eq. (5) means that, when the amplitudes of the signals are
larger than or equal to some sufficiently large value α and
the sample size is large enough, the random variable

m∑
k=1

‖Yk‖rI(‖Yk‖ ≤ σξ(α/σ0))

m∑
k=1

‖Yk‖sI(‖Yk‖ ≤ σξ(α/σ0))

approximates σr−sΥr(ξ(α/σ0))/Υs(ξ(α/σ0)). For the
computation of σ̃0, we have chosen r = 1, s = 0, and
considered that the convergence stated by Eq. (5) holds
true even for small values of α.

Assume now that S ∈ �∞(N, L4(Ω, Rd)), which
remains reasonable although stronger than the “fi-
nite energy” assumption since �∞(N, L4(Ω, Rd)) ⊂
�∞(N, L2(Ω, Rd)). Then, we can choose r = 2 and s = 0.
Still assuming that Eq. (5) is valid whatever the value of
α, we consider that σ2

0 can be approximated, in a certain
mathematical sense that remains to be specified, by the
random variable

Υ0(ξ(α/σ0))

Υ2(ξ(α/σ0))
×

m∑
k=1

‖Yk‖2I(‖Yk‖ ≤ σξ(α/σ0))

m∑
k=1

I(‖Yk‖ ≤ σξ(α/σ0))

By setting α = 0 and taking into account that ξ(0) =√
d, the foregoing leads to approximate σ0 as proposed in

Eq. (8) with γ =
√

Υ0(
√

d)/Υ2(
√

d). When d = 2, the
case addressed in the sequel, this constant equals 1.0937.
According to the experimental results presented below, it
may be necessary to adjust this value with respect to the
application.

In practice, observations are often complex random
variables, or equivalently, two-dimensional real random
vectors. For instance, such observations can be the com-
plex values provided by the standard I and Q decom-
position encountered in most receivers in radar, sonar
and telecommunication systems. Complex observations
can also be simply the outcome of a Discrete Fourier
Transform (DFT) as in some radar and sonar systems but
also in a great variety of other applications. In section
VI, we will consider an application to speech processing
where the DFT plays a crucial role.

Because of the important role played by two-
dimensional real random vectors and complex random
variables in many applications, the Modified ESE when
d = 2 will be called the Complex ESE (C-ESE). In
the two-dimensional case, note that the expression of Θ
simplifies so that

Θ(x) =

∫ x

0

t2 exp(−t2/2)dt

1 − exp(−x2/2)
. (9)

V. APPLICATION TO THE NON-COHERENT DETECTION

OF MODULATED SINUSOIDAL CARRIERS IN AWGN

The bias, the consistency and the minimum attainable
mean square estimation error of the Modified and Com-
plex ESEs are still unknown. However, we can undertake
some experiments making it possible to assess the per-
formance of such estimates. The experiments presented
in this section are motivated by the following facts.

We keep the notations used so far. Given any real
number x, by thresholding test with threshold height
h ∈ R, we hereafter mean the test Th = I(‖ · ‖ ≥ h)
that assigns 1 to y ∈ R

d if ‖y‖ ≥ h and 0, otherwise.
Given any non-negative real number α, let T̂ be the

statistical test I(‖ · ‖ ≥ σ̂0ξ(α/σ̂0)). Given k ∈ N, the
decision of this test is that εk is 1 if ‖Yk‖ ≥ σ̂0ξ(α/σ̂0)
and that εk is 0, otherwise.



If the Modified ESE σ̂0 is a reasonably good estimate
of the noise standard deviation, the performance of test
T̂ can be expected to approach that of the thresholding
test Tσ0ξ(α/σ0) with threshold height σ0ξ(α/σ0).

To detect the presence of any signal with norm larger
than or equal to α and prior less than or equal to one half,
it follows from [5, Theorem VII.1] that the probability of
error Pe{Tσ0ξ(α/σ0)} of Tσ0ξ(α/σ0) satisfies the following
inequalities

Pe{L} ≤ Pe{Tσ0ξ(α/σ0)} ≤ V (α/σ0). (10)

In these inequalities, Pe{L} stands for the probability of
error of the Minimum-Probability-of-Error (MPE) deci-
sion scheme L, that is the likelihood ratio test with the
smallest possible probability of error among all possible
hypothesis binary tests. In Eq. (10), the map V is defined
for every x ∈ [0,∞) and the reader can refer to [5] for
the general expression of this map.

The inequalities in (10) become equalities in the least
favourable situation where the signal is uniformly dis-
tributed on the sphere centred at the origin with radius
α and has prior equal to one half (see [5, Theorem
VII.1]). Therefore, in this least favourable case, if the
ESE σ̂0 is a good estimate of σ0, the probability of error
Pe{T̂ } of T̂ should not significantly exceed V (α/σ0). If
the probability of presence of every Sk equals one half,
Pe{T̂ } should even be close to V (α/σ0).

We do not know the theoretical value of Pe{T̂ }.
Hence, we estimate this probability of error by the Binary
Error Rate (BER) obtained by a Monte-Carlo simulation
and compare this BER to V (α/σ0). This Monte-Carlo
simulation is carried out in the case of two-dimensional
real random observations (d = 2). We then choose some
p ∈ (0, 1/2] and every Sk has a probability of presence
equal to p and is uniformly distributed on the circle
centred at the origin with radius α. Therefore, the two
components of every Sk can be regarded as the in-phase
and quadrature components of a sinusoidal carrier. In
other words, we consider the “non-coherent detection
of modulated sinusoidal carriers”, a problem particularly
relevant for telecommunication and radar processing (see
[7, p. 65]).

In the two-dimensional case, the mathematical expres-
sions of ξ and V simplify. According to [3], for d = 2,
we have

ξ(ρ) = (1/ρ)I−1
0 (exp(ρ2/2)) (11)

and

V (ρ) =
1

2
exp(−ρ2/2)

∫ ξ(ρ)

0

t exp(−t2/2)I0(ρt)dt

+
1

2
exp(−ξ(ρ)2/2), (12)

where I0 is the zeroth-order modified Bessel function of
the first kind (see [8, Eq. 9.6.47, p. 377]).

For the computation of the C-ESE and on the basis of
some preliminary tests such as those described below, the
constant γ in Eq. (8) is set to 1, the integer part of the
constant suggested in the preceding section.

The BER of T̂ is then computed as follows. Indepen-
dent trials of m observations each are carried out until two
conditions are fulfilled. First, at least M trials must be
performed. Inasmuch as the decision about the presence
or the absence of signals is made on the observations used
for estimating σ0, the accuracy of the estimate affects m
decisions at one go. This effect is then reduced by fixing
a minimum number of trials. Second, trials are performed
until the total number Ne of errors made by test T̂ for
detecting the presence or the absence of signals is above
or equal to some specified number N . If j is the first trial
number larger than or equal to M for which the total
number of errors Ne becomes larger than or equal to N ,
the BER of test T̂ is then defined as the ratio Ne/(j×m).

The simulation is achieved with σ0 = 1. The pre-
specified number of errors is N = 1000 and the mi-
nimum number of trials is M = 1000. We choose
L = m and Q = 0.95 on the basis of preliminary trials.
The comparison between the BER of T̂ and V (α/σ0)
is achieved for p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and A ∈
{0, 0.25, 0.5, 0.75, . . . , 5}. The results are those of figures
1, 2, 3 and 4 for different values of m. As expected,
the performance of T̂ yields performance close to that of
Tσ0ξ(α/σ0).
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Figure 1. V (A/σ0) vs BERs of bT for m = 100

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A

V(A/σ
0
)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

Figure 2. V (A/σ0) vs BERs of bT for m = 200
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Figure 3. V (A/σ0) vs BERs of bT for m = 400
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Figure 4. V (A/σ0) vs BERs of bT for m = 800

Again for signals that have the same probability of
presence p less than or equal to one half and that are
uniformly distributed on the circle centred at the origin
with radius α, we calculated the absolute value |BIAS|
and the empirical MSE of the C-ESE computed over
M = 1000 trials. Tables I, II and III below display some
results obtained for different values of α and p.

The experimental results presented above were
achieved without prior knowledge on the amplitude of the
signals. Nevertheless, they are significantly close to those
given in [3] where the estimation of the noise standard
deviation is performed via the ESE, which does require
such prior knowledge.

VI. APPLICATION TO SPEECH DENOISING

In this section, we describe how the C-ESE can be
used by the standard Wiener filter aimed at denoising
speech signals corrupted by independent AWGN with
unknown standard deviation. We briefly remind the reader
of the basics concerning the standard Wiener filtering
of noisy speech signals (see subsection VI-A). Then,
in subsection VI-B, under the assumption that noise is
white and Gaussian, we explain how to use the C-ESE
to estimate the noise standard deviation and adjust the
filtering. We complete this section by experimental results
(see subsection VI-C).

A. Wiener filtering

Let s(t), t = 0, . . . , T − 1, be the samples of some
speech signal and suppose that these T samples are
corrupted by some noise x(t), t = 0, 1, . . . , T − 1, so
that the samples of the observed signal are

y(t) = s(t) + x(t), t = 0, . . . , T − 1. (13)

It is usual to split the T available samples y(t), t =
0, 1, . . . , T − 1, into frames of N = 2q samples each
where q is some integer such that NFs ≈ 20ms, Fs being
the sampling frequency. Frames are generally constructed
so that two consecutive ones overlap by one half. The
samples of each frame can be weighted. In what follows,
for the sake of simplifying the notations, the description
of the filtering is made without taking such weighting into
account.

For the kth frame, let sk(t), xk(t) and yk(t), t =
0, 1, . . . , N − 1, stand for the N samples of the speech
signal, noise and the observed noisy speech signal, re-
spectively. We thus have yk(t) = sk(t) + xk(t).

Now, let Yk(ν), Sk(ν) and Xk(ν), ν = 0, . . . , N − 1,
denote the DFT coefficients of yk(t), sk(t) and xk(t), t =
0, 1, . . . , N−1, respectively. For every ν = 0, 1, . . . , N−
1, we have Yk(ν) = Sk(ν) + Xk(ν).

The standard Wiener filtering of y is based on Malah’s
decision-directed approach (see [9]). Each frequency com-
ponent Sk(ν) is then estimated by Ŝk(ν) = Wk(ν)Yk(ν)
where Wk(ν) is the so-called Wiener gain function. This
gain is given by

Wk(ν) = Rk(ν)/(1 + Rk(ν)) (14)

where

Rk(ν) = (1 − w)h (ζk(ν) − 1) + w
|Ŝk−1(ν)|2
E [|Xk(ν)|2] (15)

is the so-called decision-directed estimate of the a priori
Signal to Noise Ratio (SNR) E

[
|Sk(ν)|2

]
/E
[
|Xk(ν)|2

]
.

In Eq. (15), Ŝk−1(ν) = Wk−1(ν)Yk−1(ν) is the ν th

spectral component of the Wiener denoised speech signal
in frame k−1; h(x) = x if x ≥ 0 and h(x) = 0 otherwise;
ζk(ν) = |Yk(ν)|2/E

[
|Xk(ν)|2

]
is the a posteriori SNR;

the weighting factor w will be set to 0.98 as recommended
in [9]. The decision-directed approach described by (15)
takes into account the current frame, with weight (1−w),
and the result of the processing of the previous frame,
with weight w.

B. Estimation of the noise standard deviation via the C-
ESE when noise is white and Gaussian

When noise is white and Gaussian with standard devia-
tion σ0, the noise frequency components are independent
and identically distributed so that each Xk(ν) is complex
Gaussian distributed with

Xk(ν) ∼ CN (0, 2NA2σ2
0) (16)

where A is some constant depending on the normaliza-
tion chosen with regard to the Parseval identity. More



TABLE I.

ABSOLUTE VALUE OF THE EMPIRICAL BIAS AND EMPIRICAL MSE OF THE C-ESE WHEN SIGNALS ARE UNIFORMLY DISTRIBUTED ON THE

CIRCLE CENTRED AT THE ORIGIN WITH RADIUS α AND HAVE A PROBABILITY OF PRESENCE p EQUAL TO 0.1.

α 0.5 1 1.5 2 2.5 3 3.5 4

m = 100
|BIAS| 0.077 0.07 0.053 0.039 0.04 0.049 0.048 0.064
MSE 0.036 0.039 0.037 0.032 0.035 0.036 0.034 0.04

m = 200 |BIAS| 0.065 0.051 0.03 0.041 0.054 0.052 0.054 0.056
MSE 0.023 0.023 0.02 0.022 0.026 0.024 0.022 0.023

m = 400 |BIAS| 0.069 0.058 0.05 0.045 0.054 0.061 0.068 0.062
MSE 0.016 0.017 0.016 0.015 0.015 0.016 0.017 0.016

m = 800
|BIAS| 0.082 0.07 0.062 0.054 0.059 0.067 0.07 0.074
MSE 0.014 0.013 0.012 0.011 0.011 0.012 0.012 0.012

TABLE II.

ABSOLUTE VALUE OF THE EMPIRICAL BIAS AND EMPIRICAL MSE OF THE C-ESE WHEN SIGNALS ARE UNIFORMLY DISTRIBUTED ON THE

CIRCLE CENTRED AT THE ORIGIN WITH RADIUS α AND HAVE A PROBABILITY OF PRESENCE p EQUAL TO 0.3.

α 0.5 1 1.5 2 2.5 3 3.5 4

m = 100 |BIAS| 0.071 0.024 0.02 0.041 0.039 0.014 0.005 0.01
MSE 0.037 0.038 0.042 0.046 0.05 0.041 0.038 0.035

m = 200 |BIAS| 0.059 0.005 0.028 0.043 0.033 0.013 0.002 0.017
MSE 0.024 0.023 0.024 0.028 0.028 0.021 0.018 0.018

m = 400
|BIAS| 0.065 0.017 0.026 0.026 0.02 0.002 0.012 0.014
MSE 0.017 0.015 0.016 0.017 0.014 0.012 0.01 0.01

m = 800 |BIAS| 0.07 0.033 0.009 0.024 0.002 0.009 0.017 0.023
MSE 0.013 0.01 0.01 0.01 0.008 0.006 0.005 0.006

TABLE III.

ABSOLUTE VALUE OF THE EMPIRICAL BIAS AND EMPIRICAL MSE OF THE C-ESE WHEN SIGNALS ARE UNIFORMLY DISTRIBUTED ON THE

CIRCLE CENTRED AT THE ORIGIN WITH RADIUS α AND HAVE A PROBABILITY OF PRESENCE p EQUAL TO 0.5.

α 0.5 1 1.5 2 2.5 3 3.5 4

m = 100
|BIAS| 0.056 0.02 0.124 0.193 0.223 0.161 0.101 0.07
MSE 0.035 0.04 0.068 0.098 0.128 0.099 0.059 0.041

m = 200 |BIAS| 0.038 0.042 0.145 0.207 0.209 0.15 0.095 0.08
MSE 0.021 0.027 0.052 0.083 0.088 0.057 0.029 0.021

m = 400 |BIAS| 0.045 0.028 0.129 0.197 0.177 0.135 0.113 0.105
MSE 0.014 0.016 0.036 0.063 0.054 0.031 0.02 0.017

m = 800
|BIAS| 0.059 0.012 0.112 0.17 0.16 0.141 0.137 0.145
MSE 0.012 0.01 0.024 0.043 0.037 0.026 0.021 0.024

specifically, if the sequence U(ν), ν = 0, 1, . . . , N −1, is
the DFT of the discrete sequence of (possibly complex)
values u(t), t = 0, 1, . . . , N − 1, this constant is such
that

∑N−1
ν=0 |U(ν)|2 = NA2

∑N−1
t=0 |u(t)|2 and generally

chosen in {1/
√

N, 1, 1/N}.

To perform the standard Wiener filtering according to
Eq. (15), an estimate of the noise standard deviation must
be calculated so as to estimate E[|Xk(ν)|2] = 2NA2σ2

0 .
A basic and popular solution to perform this estimate
involves using a Voice Activity Detector (VAD). The
estimate of σ0 is then computed on the basis of the
samples of the time frames that the VAD has detected
as noise alone. Subspace approaches can also be used
to estimate σ0 by computing the smallest eigenvalues of
the noisy speech autocorrelation matrix. In this case, the
model order is difficult to choose and the computation of

the eigenvalues may prove unstable.
We now present how to use the C-ESE for the es-

timation of σ0. We begin by splitting the T available
samples y(t), t = 0, 1, . . . , T − 1, into frames of N =
2q successive samples each. In contrast to the previous
subsection, the frames are here constructed so that they
do not intersect; it is even conceivable to choose frames
separated by some time lapse. We proceed thus for
reasons given below.

Let K stand for the number of frames so constructed.
The notations used above to denote the observed signal,
the speech signal and noise in the kth frame are again
yk(t), sk(t) and xk(t), t = 0, 1, . . . , N − 1, respec-
tively. Consider now the set of observations Yk(ν), k ∈
{1, . . . , K}, ν ∈ {0, . . . , N − 1}, where, again as above,
Yk(ν), Sk(ν) and Xk(ν), ν = 0, 1, . . . , N − 1, stand
for the respective DFTs of the signals yk(t), sk(t) and



xk(t), t = 0, 1, . . . , N − 1. Because of the Hermitian
symmetry of the DFT, we can restrict our attention to
half of this set, namely the complex random variables
Yk(ν), k ∈ {1, . . . , K}, ν ∈ {0, . . . , N/2 − 1} where N
is assumed to be even.

Of course, we still have Yk(ν) = Sk(ν) + Xk(ν) for
every k = 1, 2, . . . , K and every ν = 0, 1, . . . , N − 1.
However, depending on the Signal to Noise Ratio (SNR)
and the type of speech signal present during frame k,
some speech time-frequency components can be neglected
in comparison to noise and other speech time-frequency
components. For instance, high frequency components of
voiced speech signals can become negligible with regard
to noise and the low-frequency components of the same
speech signals. For unvoiced fricative speech signals, low-
frequency components can also be significantly smaller
than high-frequency ones and smaller than those due to
noise.

According to these remarks, we propound to model
the presence and the absence of the speech time-
frequency component Sk(ν) by a discrete random variable
εk(ν) valued in {0, 1} and write that the observation
is Yk(ν) = εk(ν)Sk(ν) + Xk(ν). With respect to this
model, P({εk(ν) = 1}) is the probability that some
speech component is present at frequency ν during frame
k. This probability of presence may be larger than one
half for low frequency components. However, for high
frequency components, this probability of presence be-
comes less than or equal to 1/2 and even relatively small.
Summarizing, we can consider that the speech time-
frequency components are less present than absent. If
we now split the observation set Yk(ν), k ∈ {1, . . . , K},
ν ∈ {0, . . . , N/2−1}, into subsets of m observations each
and if the elements of each subset are chosen randomly
amongst the available observations, the observations of
each subset can reasonably be expected to be independent
all the more since these observations are computed on the
basis of non-intersecting frames. We thus assume that the
model underlying proposition 3.1 and the construction of
the C-ESE are satisfied for each subset of m observations.

According to Eq. (16), for each subset of m observa-
tions, the C-ESE will return an estimate ofAσ0

√
N since

each complex random vector Xk(ν) can be regarded as a
centred two-dimensional random vector whose covariance
matrix equals Aσ0

√
NI2. Therefore, our final estimate

of Aσ0

√
N is simply obtained by averaging all these

estimates returned by the C-ESE. Dividing this average
by A

√
N yields an estimate of σ0.

C. Performance evaluation

We randomly select twenty-five sentences in the
TIMIT database and twenty-five sentences in the TIDIG-
ITS database. These two databases are standard in speech
processing. The TIMIT and the TIDIGITS databases are
composed of read speech and connected digit sequences,
respectively. The sentences selected in these databases
are downsampled to 8 kHz before adding white Gaussian

noise. We estimate the noise standard deviation as de-
scribed above via the C-ESE on the basis of frames with
N = 256 samples each. Such a frame thus corresponds
to 32ms of noisy speech signals. As specified above,
we use non-overlapping frames for the estimation of the
noise standard deviation. They are not weighted either.
On the basis of preliminary tests on signals other than
the sentences used to achieve the experimental results
presented below, we set the constant γ in (8) to

√
2.

As far as the Wiener filtering is concerned, there is a
50% overlap between two adjacent frames and each frame
is weighted by a Hanning window.

We evaluate the quality of the filtered speech signals
by calculating the standard Segmental Signal to Noise
Ratio (SSNR) (see [10]) and the Modified Bark Spectral
Distortion (MBSD) (see [11]). The SSNR is the average
of the SNR values on short segments. The SSNR is not
relevant enough to measure the distortion of the denoised
speech signals. This is the reason why we use the MBSD.
The MBSD is an improved version of the Bark Spectral
Distortion (BSD) proposed in [12]. Basically, it extends
the BSD by incorporating the speech masking threshold
so as to perform the measure without taking into account
inaudible distortions. The MBSD proves to be highly
correlated with subjective speech quality assessment [11].

The average SSNR and MBSD obtained over the
twenty-five sentences of the TIMIT database are pre-
sented in figures 5(a) and 5(b). Figures 6(a) and 6(b) are
the average SSNR and MBSD calculated over the twenty-
five sentences of the TIDIGITS database. In all these fig-
ures, the solid curves are the performance measurements
achieved with the filtering defined by equations (14) and
(15) when the C-ESE is used instead of the true value of
the noise standard deviation. The dashed curves are the
results obtained when the filtering is achieved with the
exact value of the noise standard deviation. The results
are similar for the two sets of sentences considered during
these experiments. Clearly, the Wiener filtering adjusted
with the noise standard deviation estimate yields results
that are significantly close to those obtained when the
noise standard deviation is known. In addition, figure
7(a) (resp. figure 7(b)) compares the average value of
the C-ESE obtained by processing the 25 sentences of
the TIMIT database (resp. of the TIDIGITS database)
to the true value of the noise standard deviations at
the different SNR’s tested during the experiments. These
figures illustrate the good behaviour of our algorithm. As
mentioned below, they are preliminary to further studies
undertaken to get better insight into the behaviour of the
C-ESE with respect to applications in speech denoising.

VII. PERSPECTIVES AND EXTENSIONS

We have presented algorithms for estimating the stan-
dard deviation of some AWGN when observations derive
from signals less present than absent in this background.
According to experimental results, this algorithm is very
promising. An application to speech denoising has been
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Figure 5. (a) SSNR and (b) MBSD improvement for 25 speech signals randomly chosen in the TIMIT database and additively corrupted by
independent AWGN with various SNRs.
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Figure 6. (a) SSNR and (b) MBSD improvement for 25 speech signals randomly chosen in the TIDIGITS database and additively corrupted by
independent AWGN with various SNRs.
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described where the estimator avoids the use of a DAV
or subspace approaches that can be difficult to adjust.

New theoretical developments should be achieved in
forthcoming work. In particular, further study of the
Modified and Complex ESEs are required to get better
insight into the behaviour of these estimates, in particular
with regard to the constant γ in Eq. (8) since this constant
is chosen empirically depending on the application.

More exhaustive experiments are in progress so as to
better characterize the statistical behaviour of the C-ESE
in the case of noisy speech signals. The analysis of the
bias, the consistency and the mean square estimation error
of the estimators proposed in this paper should also be
addressed from a theoretical point of view.

As an extension of the application to speech denoising
described above, on-going work concerns the application
of the C-ESE to perceptual speech denoising in AWGN
and coloured noise. As far as coloured noise is concerned,
the use of the C-ESE could be extended along the
following lines. The processing would involve assuming
that the coloured noise power spectral density (psd) is
a step function. Given a set of DFT bins where the
noise psd is assumed to be constant, this constant value
could then be estimated by computing the C-ESE on the
basis of the values returned in these frequency bins by
the DFTs of non-intersecting time-frames. By using non-
intersecting frames, we still expect that the time-frequency
components can reasonably be considered as independent.

The design of CFAR systems for the detection of radar
targets also seems to be a rather natural field of appli-
cation. Application in ESM for the interception of non-
cooperant communications could also be investigated.
Two other areas of applications are proximity sensing
and distributed detection systems (see [13]). Proximity
sensing aims at informing a robot that it is approaching
an object. For the design of distributed detection systems,
the absence of prior knowledge about the statistics of the
observations is still an issue.
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