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I. Introduction 

 In the periodic table, rare earth elements represent a group of 15 elements, specifically 

the lanthanides (Table 7.1). They are often referred to as REE and share common 

physiochemical properties and therefore often occur together as elemental constituents of their 

host minerals. 
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Table 7.1 Yttrium and lanthanide (REE) symbols, atomic weight, and ionic radius for 

coordination number 6 (Shannon, 1976). 

 symbol 
Atomic Number  

(g mol
-1

) 

Ionic radius 

 (Å) 

Yttrium Y 88.9 0.9  

lanthanum La 138.9 1.03  

cerium Ce 140.1 1.01  

praseodymium Pr 140.9 0.99  

neodynium Nd 144.2 0.98  

promethium Pr    

smarium Sm 150.4 0.96  

europium Eu 152 0.95  

gadolimium Ga 157.2 0.94  

terbium Tb 158.9 0.92  

dysprosium Dy 162.5 0.91  

holmium Ho 164.9 0.9  

erbium Er 167.3 0.89  

terbium Tb 168.9 0.88  

ytterbium Yb 173 0.87  

Lutetium Lu 175 0.86  

The term “rare” is a carryover the metallurgical processes needed to isolate the individual metal 

species which are complex and low productive. As a result, lanthanide metals or metal oxides 

were difficult to obtain and are thus considered rare (Sonich-Mullin et al., 2013). Rare earth 

element form a coherent series of elements whose chemical properties display small but 

systematic changes with increasing atomic number. This chemical coherence is due to the 

gradual filling of their 4f electron shell. Because outer electrons (n = 5, 6) shield this inner shell, 

there are only minor differences in the chemical reactivity along the series (e.g., de Baar et al., 

1991; McLennan, 1994). On the basis of their atomic number, REE are segregated into light 

(LREE) and heavy REE (HREE) with a division between Eu and Gd. Some authors distinguish 

middle REE (MREE) from Sm to Tb (e.g., Hannigan and Sholkovitch, 2001, Tang and 
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Johannesson 2003). This "weight" distinction is used to simplify the description and 

quantification of the inter-element relationship, typically ratios of normalized concentrations. 

Similarly, the anomalies of certain REE due to the Ce and Eu redox behavior, and the large 

anthropogenic emission of Gd are used to interpret geochemical processes. 

 

 

Figure 7.1 REE patterns normalized using the UCC, NASC and PAAS references. In , a 

negative Ce anomaly is illustrated 

 

In aquatic systems, with regards to their slight solubility, REE concentrations are low compared 

to their concentration in rocks. Numerous studies suggest that the solution and interface 

chemistry are the major controlling factors of the REE concentration in aquatic systems 

(Goldstein and Jacobsen, 1988; Elderfield et al., 1990; Sholkovitz, 1995). In solution, an 

important chemical property is that REE can form strong complexes with a number of different 

ligands. In general, REE
3+

 ions prefer the donor atoms in the following order O>N>S. The 

resulting chemical species tend to form mainly ionic bonds with REE within their unoccupied 

lower high-energy orbitals (Weber, 2008). 
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For the sake of convenience, the REE distribution in natural materials and water is usually 

illustrated by normalized REE patterns. Two geological reservoirs are used for the normalization, 

the upper continental crust and shales. The REE abundance is thereby normalized to the Post-

Archean Australian Shale, PAAS (McLennan, 1989), North American shale composite, NASC 

(Gromet et al. 1984), or upper continental crust, UCC (Taylor et McLennan, 1985) (Table 7.1, 

Figure 7.1). A dominant systematic change is observed in the REE chemical properties, such as 

solution complexation, caused by the decrease in the ionic radius with an increasing atomic 

number. This change results in a systematic REE fractionation on the pattern called the "REE 

contraction". A normalized REE pattern allows for the recognition of an anomalous 

concentration for an individual REE as a positive or negative anomaly in an otherwise smooth 

pattern. This type of anomaly can occur in response to the redox behavior of Ce and Eu which 

can exist as a tetravalent or divalent state. Processes that convert Ce
3+

 to Ce
4+

 include 

biologically mediated oxidation (Moffett, 1990, 1994a, b) and abiotic oxidation on the surfaces 

of Mn oxides (Koeppenkastrop and De Carlo, 1992; Sholkovitz et al., 1994; Ohta and Kawabe, 

2001). The reduction of Eu generally occurs at high temperatures and pressures, such as in 

hydrothermal fluids (e.g., Michard et al., 1983; German et al., 1990; Klinkhammer et al., 1994). 

The anomalous behaviors of Ce and Eu are quantified via Ce and Eu anomalies such as the Ce 

anomaly = 3CeN (2LaN +  2PrN)⁄  or 2CeN (LaN + PrN)⁄ ) and the Eu anomaly = 

2EuN (SmN + GdN)⁄ with N equal to the normalized abundance (Figure 7.1). 

The REE pattern therefore results from the combination of several processes able to induce their 

fractionation. These processes are themselves controlled by several physicochemical 

mechanisms and parameters. In between, three processes can be distinguished: (i) 

precipitation/dissolution, (ii) sorption onto colloids and particles, and (iii) complexation in 
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solution with organic and inorganic ligands. The REE pattern therefore corresponds to the REE 

pattern for the mineral sources modified by the sorption/complexation constants of REE with 

ligands, colloids and particles. The result is highly diverse REE patterns that can be measured by 

a degree of depletion or enrichment relative to heavy REE (La/Yb or Sm/Yb ratios) or by 

whether or not anomalies are present. 

Table 7.2 REE abundance in the various references used for the REE pattern normalization 

 UCC  NASC  PAAS  

 ppm mol. L
-1 ppm mol. L

-1 ppm mol. L
-1 

La 30 216.0 32 230.4 38.2 275.0 

Ce 64 456.8 73 521.0 79.6 568.1 

Pr 7.1 50.4 7.9 56.1 8.83 62.7 

Nd 26 180.3 33 228.8 33.9 235.0 

Sm 4.5 29.9 5.7 37.9 5.55 36.9 

Eu 0.88 5.8 1.24 8.2 1.08 7.1 

Gd 3.8 24.2 5.2 33.1 4.66 29.6 

Tb 0.64 4.0 0.85 5.3 0.774 4.9 

Dy 3.5 21.5 5.8 35.7 4.68 28.8 

Ho 0.8 4.9 1.04 6.3 0.991 6.0 

Er 2.3 13.8 3.4 20.3 2.85 17.0 

Tm 0.33 2.0 0.5 3.0 0.405 2.4 

Yb 2.2 12.7 3.1 17.9 2.82 16.3 

Lu 0.32 1.8 0.48 2.7 0.433 2.5 

 The coherent physicochemistry of REE allows their abundances and fractionation in rock 

to be used as a tracer and fingerprint for cosmochemical, geodynamic and petrogenetic processes 

(e.g., Henderson, 1984; Taylor and McLennan, 1985). The decrease in the quantification limit 

for REE analytical techniques such as ICP-MS also offers the opportunity for REE patterns to be 

used as a tracer for processes occurring in hydrosystems (ocean, surface and groundwater) (e.g. 

Goldberg et al., 1963; Elderfield and Greaves,1982; De Baar et al., 1983; Byrne et Kim, 1990; 

German et al., 1991; Bau et al., 1997; Duncan and Shaw, 2004; Sholkovitz, 1993; Bau and 

Dulski, 1996; Dupré et al., 1996; Elbaz-Poulichet and Dupuy, 1999; Shiller et al., 2002; Fee et 

al., 1992; Möller and Bau, 1993; De Carlo and Green, 2002; Gammons et al., 2003; Johannesson 
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et al., 1995; 1996; 1997; Viers et al.,1997; Aubert et al., 2001; Janssen and Verweij, 2003). More 

specifically, REE fractionation patterns and abundances have been used to investigate the 

processes occurring in wetlands, such as the hydrology of the system, the mineral phases 

activated during water saturation, the trace element sources and the fine sorption processes 

occurring on wetland colloidal organic matter (Dia et al. 2000; Grybos et al. 2007, 2009; Pourret 

et al., 2007; 2010; Marsac et al., 2011; Davranche et al. 2011). 

II. Rare earth elements analysis 

II. 1. Analytical techniques 

Rare earth elements are analyzed using several techniques such as NAA (neutron activation 

analysis) or TIMS (thermal ionization mass spectrometry). TIMS is a highly precise technique 

but this method requires laborious preparations. After acidic digestion, liquid column 

chromatography is used before analysis to separate REE from the solution. Since the 1990s, the 

development of ICP-MS (Inductively coupled plasma mass spectrometer) allows the direct 

determination of REE and thus became the most widely used technique. This method is used to 

introduce solutions with weak concentrations of REE while providing a low detection limit and 

is able to measure all REE simultaneously without any separation from the matrix. 

II.1.1. Quadrupole-Inductively coupled plasma- mass spectrometer measurements: Q-ICP-MS 

Ions produced in high temperature plasma are identified on the basis of the mass to charge ratio, 

m/z, which is characteristic of a given isotope. Each REE has at least one isotope that is free 

from isobaric overlap and the sensitivity is relatively uniform from 139La to 175Lu. 

The major analytical problem encountered with Q-ICP-MS is the level of oxide formation in the 

plasma (Longerich et al., 1987; Jarvis et al., 1992) (Table 3). REE form a continuous group from 
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139 to 175 m/z, and the formation of light REE and barium oxide can produce significant middle 

REE interferences. In many cases, the LREE concentrations are higher than those for heavy 

REE, and the potential for interferences is increased. Refractory oxide ions are influenced by the 

plasma operating parameters. The oxide production level is close to 1 to 2%. The operating 

conditions are presented in Table 7.3. Mathematical corrections are required in order to suppress 

these spectroscopic interferences; these corrections are calculated as a function of the oxide level 

(Aries et al., 2000; Raut et al., 2005a, b). Previous studies have shown the importance of these 

corrections for accurate REE quantification. The choice of the measured isotopes and 

interferences that can be applied are summarized in Table 7.3. 

Table 7.3 Preferred isotopes for REE analysis, isotopic abundance in %, oxides and hydroxides 

interference on analyte. 
REE 

Element 

Isotope Mass Abundance (%) oxide and hydroxide interferences 

La 139 99.91  

Ce 140 88.48  

Pr 141 100  

Nd 146 17.19  

Sm 147-149 15 
130

BaOH 

Eu 151-153 47.8-52.2 
135

BaO, 
137

BaO, 
136

 BaOH, 

Gd 157-158 15.65-24.84 
142

CeO,
142

NdO,
141

PrO, 
141

PrOH 

Tb 159 100 
143

NdO 

Dy 163 24.9 
147

SmO, 
146

NdOH, 

Ho 165 100 
149

SmO 

Er 166 33.6 
151

EuO 

Tm 169 100  

Yb 172-174 21.9-31.8 
157

GdOH 

Lu 175 97.41 
159

TbO 

Table 7.4 Instrument operating conditions 
Plasma conditions  

RF Power 1450-1550W 

Carrier Gas 15 L/min 

Auxiliary argon flow 1 L/min 

Nebulizer argon flow 0.9- 1.0 L/min 

CeO
+
/Ce

+
 1% 

Ce
2+

/Ce
+
 <2 % 

 

Calibrations can usually be performed by using synthetic multi-elemental solutions prepared in 
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2% HNO3. The quality of the blanks is fundamental because the level of concentrations for this 

technique is very low. Instrument drift is monitored and corrected by spiking each sample with 

an internal standard (In, Re, Rh, etc.) or by introducing it on-line using a peristaltic pump. 

All of the experimental solutions used must be prepared with ultrapure analytical grade solution. 

Polyethylene and Teflon® vessels must have been previously decontaminated, and a clean room 

is recommended in order to obtain lower values for the blanks. The accurate and precise 

determination of the REE element concentration requires very low detection limits (DL). For the 

whole group of REE, the DL are typically between 0.01 and 0.1 ng mL
-1

. These values are 

presented in Table 7.5. 

Table 7.5 Detection limits in ng L
-1

 (ppt), set values obtained on HP 7700x ICP-MS, calculated 

from the AFNOR standards and based on the blank measurement 

Element Isotope 
Detection 

Limit (ppt) 

La 139 0.15 

Ce 140 0.14 

Pr 141 0.06 

Nd 146 0.16 

Sm 147 0.23 

Eu 153 0.10 

Gd 157 0.22 

Gd 158 0.13 

Tb 159 0.04 

Dy 163 0.17 

Ho 165 0.05 

Er 166 0.15 

Tm 169 0.04 

Yb 174 0.17 

ICP-MS analysis normally includes three consecutive replicate measurements, producing a 

repeatability error less than 2%. To control the quality of the REE element measurements, 

certificated reference material is necessary. SLRS-4 followed by SLRS-5 standards (National 

Research Council –CNRC Canada) distributed without certificated values of REE can be used to 

analyze fresh water and soil solutions. Several studies have published REE concentrations 

(Yeghicheyan et al. 2002 and 2013; Lawrence et al., 2006; Heimburger et al., 2013). For peat 
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and organic material, no references are available, and therefore geological standards (USGS or 

NIST) and plant references (NIST1515, 1573a, etc.) are used (Ferrat et al., 2012). 

II. 1.2. High-resolution or sector field inductively coupled plasma mass spectrometer 

measurements: HR-ICP-MS or SF-ICP-MS 

HR-ICP-MS (high-resolution sector mass spectrometer) is more sensitive than Q-ICP-MS. This 

technique is used to analyze the REE concentration with high precision in aqueous samples. HR-

ICP-MS is able to eliminate or reduce interferences due to mass overlap. Typically, HR-ICP-MS 

presents resolving powers for mass separation up to 10,000 and operates at preset resolution 

settings for low-, medium- or high-resolution. 

To increase the precision of the REE measurements, a sample can be enriched with a pre-

concentrated multi-spike REE solution, and the matrix can be removed using ion 

chromatography (Bakers et al., 2002; Rousseau et al., 2013). The level of the detection limit is 

very low, close to a pg L
-1

 (ppq) level. 

II. 2. REE measurement in wetland soils, sediments and solution 

II. 2.1. Sample pre-treatment 

In water soil samples, the levels of the REE concentrations are close to the µg L
-1

 to ng L
-1

 level 

(ppb to ppt). These solutions are rich in organic matter and Fe. Water samples must be collected 

and filtered using 0.22 µm or 0.45 µm filters (cellulose acetate membrane filters) that have 

previously been decontaminated. The water is sampled in acid-washed polyethylene bottles and 

is immediately acidified after filtration with ultrapure HNO3 up to 2% to prevent iron oxide or 

hydroxide precipitation. Acidified samples are stored at 4°C. The level of dissolved organic 

carbon (DOC) must be controlled, as a high concentration affects the ICP-MS analysis. For a 
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high DOC concentration, the sample must be treated in order to eliminate the organic matter, 

after an acidic digestion with a mix of HNO3 and H2O2 at 95°C on a hotplate or in a microwave 

furnace, and thus the sample is entirely solubilized. 

In wetland soil and sediment samples, the levels of the REE concentrations are close to the mg 

kg
-1

 to µg kg
-1

 (ppm to ppb) level. The organic-rich soil sample is dried at 20°C and then sieved 

at 2 mm. Dried soil samples (approximately 0.1-0.2g) are first digested in a HNO3 and HF 

mixture in Teflon® containers using hot plate or microwave autoclave protocols. Then, two 

acidic digestions are needed to remove the excess of HF, and sometimes a H2O2 treatment is 

necessary. The dried residue is dissolved to a clear nitric acid solution (2%) for analysis. Finally, 

the sample is diluted by a factor ranging from 500 to 2000. The pre-treatment protocols are 

summarized in Figure 7.2. 

 

Figure 7.2 Pretreatment protocol for REE analysis in wetland soils and water soil samples 

II. 2.2. Separation and speciation of Rare Earth Elements 

REE concentrations in wetland solutions are strongly associated with dissolved and colloidal 

organic matter (e.g. Dia et al., 2000; Grybos et al., 2007, Pédrot et al., 2008). The reactive 

fraction of this soluble organic matter is mainly comprised of humic substances (Fulvic Acid and 
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Humic Acid), which are known to strongly bind metals and influence the sorption of trace metals 

onto the mineral surfaces (e.g. Avena and Koopal, 1998). It is therefore interesting to study and 

to precisely identify the distribution of REE in the different organic and inorganic fractions. 

Several technologies can be used to identify this distribution, such as capillary electrophoresis, 

field-flow fractionation and size exclusion coupled to ICP-MS or ultrafiltration systems.  

II. 2.2.1. Ultra filtration systems 

 Ultrafiltration systems are used to study the control of organic-colloidals on metal 

partitioning in water samples. To separate the colloidal bound elements from the non-colloidal 

elements, ultrafiltration experiments can be performed using centrifugal tubes at different 

molecular cut-off sizes (Amicon Ultra Millipore®, Vivaspin Sartorius®, Macrosep Pall®, etc.) 

equipped with permeable membranes of decreasing pore size ranging from 30-20-15-10-5-3 or 2 

kDa, with 1 Da = 1 g mol
-1

. Each centrifugal filter device must be washed prior to use, in order 

to remove the glycerin protecting the membranes. Blank tests must be performed to determine 

possible contaminations (DOC and REE elements). The centrifugation speed is approximately 

3000-4000 g; this is a function of the choice of ultrafiltration cells. The temperature must be 

controlled during centrifugation and the length of time is determined from the experiment.   

According to the different cutoffs, REE-colloid complexes are retained by the ultrafiltration 

membrane while free ions and smaller complexes pass into the ultrafiltrate. The degree of metal–

colloid complexation is usually determined from the metal concentration in the ultrafiltrate, 

relative to the original solution (e.g. Pourret et al., 2007; Pédrot et al., 2010; Vasuykovas et al., 

2012).  

II. 2.2.2. CE-ICP-MS 

Capillary electrophoresis (CE) combined with inductively coupled plasma-mass spectrometry 
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(ICP-MS) is used as a speciation tool in order to investigate the complexation of humic acids 

with trivalent REE. CE separates the elements with a short separation time; ICP-MS has an 

excellent elemental selectivity with a high sensitivity. The main advantage of this speciation 

method is the simultaneous detection of metal that is either complexed and not by humic acid in 

only one analytical run. CE-ICP-MS studies are able to identify free and complexed HA-REE 

species and qualify the ligand effect (Sonke and Salters, 2005; Stern, 2007, Kautenburger, 2014). 

II. 2.2.3. SEC-ICP-MS and FFF-ICP-MS. 

SEC (size-exclusion chromatography) is usually used to separate natural organic matter over a 

column with a stationary phase using a porous gel material. The high molecular mass of the 

organic matter elutes first, followed by the smaller components. Coupled with UV detection and 

ICP-MS, SEC can be used to explore metal/organic matter complexation (Neubauer et al., 2013).  

The FFF (field-flow fractionation) technique determines the continuous size distribution of 

colloids without the disadvantage of the stationary phase. It determines the size and REE-

composition of the distinct types of colloids, information that usually cannot be acquired from 

standard ultrafiltration. FFF-ICP-MS is used to characterize REE-binding to colloids (Stolpe et 

al., 2012; Neubauer et al., 2013). 

III. REE in waterlogged soil and sediments 

Waterlogged soils and sediments are probably one of the most striking investigated surface 

environments involving the use of REE as efficient tracers of processes and/or matter sources.  

Wetland and paddy soils are temporally or permanently flooded which involve the development 

of anoxic conditions and subsequent soil reduction. Both organic matter adsorption and Fe(III) 

oxyhydroxides reduction accompanying wetland soil flooding strongly control the mobility, 
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transfer and fate of REE in wetlands. (e.g. Grybos et al., 2007, 2009). Thereby, specific REE 

patterns that are displayed within these environments are related to the sources, but also to the 

prevailing reduction processes and associated organic matter and Fe dynamics.  

Mihajlovic et al. (2014) who studied the REE distribution in wetland soil profile (Eutric 

Fluvisols, at the Wupper River, Germany) found very small differences between the total REE 

concentration and distribution between the different horizons as evidenced in Figure 7.3. Total 

REE concentrations and indicators of REE pattern fractionation (Eu/Eu*, Ce/Ce*, La/Yb ratio) 

do not evolve significantly. They explained these so small differences by the wetland soil 

flooding and the subsequent homogenization processes.  

 
Figure 7.3 Evolution of the total REE concentration, LaUCC/YbUCC, Eu/Eu* and Ce/Ce* relative 

to the different soil horizons (Ah1, Ah2, Ah3, Ah-Bg, C1, C2, Cq, C, WRB classification) in 

Eutric Fluvisols, at the Wupper River, Germany (Mihajlovic et al., 2014). 

 

Sequential extractions that are performed on soils wetland generally show -whatever the 

protocol- that REE dominate in the residual fraction, followed by the reducible and the 

oxidizable fraction, the exchangeable fraction being very low (Leybourne and Johannesson, 

2008; Pédrot et al., 2008; Davranche et al., 2011; Mihajlovic et al., 2014). 
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III. 1. REE signature of the solid fraction  

The REE patterns displayed by wetland soils or floodplain sediments could provide a large 

amount of information. The REE patterns of floodplain sediments taken from the Kaveri River 

basin (southern India) were discussed in terms of the REE behavior during sedimentary 

processes and as provenance tracers (Singh and Rajamani, 2001). As reported elsewhere 

(McLennan, 1989; Morey and Setterholm, 1997; Vital and Stattegger, 2000), this study clearly 

pointed out that fluvial sorting processes affect the REE distribution in the sediments. This type 

of physical sorting by fluvial processes could result in the accumulation of various minerals that 

are possibly enriched in REE. As a consequence, a REE-mediated provenance assessment study 

should be undertaken with sediments characterized by similar granulometric grades, because 

they would more closely reflect the source area (Singh and Rajamani, 2000). However, it should 

also be considered that a large amount of REE could be also present as surface coatings on grains 

in addition to those occurring within heavy minerals and clay minerals.  

Paddy fields are usually distributed in flood plains along rivers and associated tributaries and 

valley floor plains incised by small rivers (Egashira et al., 1997; 2004), such as those occurring 

in the Mekong River. The REE content and associated patterns were studied, as well as the 

particle-size distribution and clay mineralogical composition, to estimate both the origin and 

fertility potentiality of the soil materials (Figure 7.4) (Egashira et al., 1997; Singh and Rajamani, 

2000). The various REE patterns displayed in the paddy field samples along the Mekong River 

were divided into two groups establishing that the material origin was controlled by local 

composite materials and sediment carried by the Mekong River. This division was (i) confirmed 

through a mineralogical survey establishing differences in the origin and genesis of the soils, 

notably between the upper and lower areas, (ii) compared with indicators of soil potentiality such 
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as the exchangeable Ca or organic C content. However, conversely to samples recovered along 

the Mekong River (Egashira et al., 1997), unambiguously use of REE patterns was not possible 

to assess the t soil origins in floodplains of the Brahmaputra, Meghna and Ganges rivers in 

Bangladesh (Egashira et al., 2004). It is of prime importance to remember that whereas the REE 

composition in soils has mostly been considered as being inherited from the parent rock (Taylor 

and McLennan, 1984), given the low solubility and relative immobility of REE in the upper 

Earth’s crust, the environmental parameters and processes involved in soil formation cannot be 

neglected nor can the anthropogenic inputs (e.g. manure, phosphate fertilizers or waste 

effluents...) (Tsumura and Yamasaki, 1993; Yuan et al., 2001; Protano and Riccobono, 2002).  

 

Figure 7.4 Chondrite-normalized REE patterns of a soil recovered in a low land of the Mekong 

River floodplain in Laos (Egashira et al., 1997) and a sediment collected in the floodplain of the 

Kaveri River basin in southern India (Singh and Rajamani, 2001). 

 

III. 2. REE fingerprinting the paleoredoximorphic features in waterlogged soils  

Wetlands and paddy soils are at the heart of alternating redox processes induced by waterlogging 

associated with the occurrence of large amounts of organic matter responsible for leaching, Fe-

oxide dissolution or precipitation as oxide coatings, concretions or amorphous organo-mineral 
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colloidal phases.  

Since both REE are strongly associated with Fe- and Mn-oxides and their fractionation is related 

to the drainage conditions, they are particularly interesting with regards to tracing the redox 

conditions, especially when considering Ce and Eu. However, all Eu fractionation must be 

precluded in the soils since the required reducing conditions that result in Eu reduction are far 

from the conditions possibly encountered within the soils (Bonnot-Courtois, 1981; Henderson, 

1984; Panahi et al., 2000). By contrast, if the Eu anomaly cannot trace any redox processes 

occurring within the soils, the oxidation of Ce(III) to Ce(IV) can take place in soils, as previously 

established through field observations and experiments (Takahashi et al., 2000). This process 

results in the precipitation of the so-called cerianite (CeO2) coupled with the reduction of Mn(IV) 

to Mn(III) on the surface of the Mn oxides (Ran and Liu, 1992; Bau, 1999; Ohta and Kawabe, 

2001). Oxidative conditions allow for new Fe and Mn oxide precipitation preferentially 

incorporating Ce over REE, leading to the development of a positive Ce anomaly. Conversely, 

when reducing conditions prevail, notably during podzolisation, Fe-oxides are reduced by 

organic matter and Fe can be transferred within the organic complex, and then possibly 

precipitated again as ferrihydrite (Schwertmann and Fisher, 1973; Buurman and Jongmans, 

2005; Sauer et al., 2007; Laveuf and Cornu, 2009). The newly precipitated Fe-rich phases might 

be enriched in HREE with regards to LREE, in response to the observed preferential transfer of 

HREE as organic complexes, but might also be enriched in MREE when the newly formed 

phases remain amorphous (Aubert et al., 2004). The dissolution of the Fe and Mn oxides, which 

releases all REE except Ce bound to cerianite, the dissolution of which is more dependent on pH 

than Eh, results in the persistence of the Ce anomaly, whereas Fe and Mn oxides disappear as 

shown by Koppi et al. (1996) in clayey areas bleached by flooding and drainage - and subsequent 
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degradation - in northern Australia. The Cerium anomaly resulting from cerianite precipitation 

could trace the redox processes (Koppi et al., 1996), keeping in mind that the relative 

contribution to the mobilization of REE that is made through redox conditions by primary 

minerals depends on both their initial proportion in the different pedological features possibly 

related to different redox processes, their relative mobilization during the redox process of 

concern, and their initial REE signatures (Laveuf et al., 2012). 

IV. Biogeochemical factors controlling REE signature in wetlands waters 

 One of the critical questions concerning REE behavior in wetlands is whether REE 

concentrations are controlled by the sources or the physico-chemistry. Besides the specific 

characteristics of a specific site, it seems reasonable to state that the REE dynamics in the water–

soil system depends on: (i) the fractionation characteristics of the host rock/sediment, III) the 

weathering process that might improve the dissolution of a mineral that is either depleted or 

enriched in REE, (ii) the water physicochemical characteristics (pH, Eh, organic and inorganic 

ligands, colloids/particles) and (iii) the water hydrodynamics. A systematic evolution in the REE 

pattern is thereby observed between the wetland soil/sediments and the soil solution or shallow 

groundwater. This evolution indicates that soil cannot be the one single factor controlling REE 

dynamics in wetland solutions (Figure 7.5). Several chemical and physical parameters either 

combined or not, have been advanced to explain this discrepancy. 
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Figure 7.5 (a) REE patterns for a solid peat sample and peat solutions from the Cotentin 

marshland (France) (Auterives, 2007). (b) REE pattern for the uppermost soil horizon and its soil 

solution at various sampling dates from the riparian Le Home wetland (Brittany, France) 

(modified from Gruau et al., 2004). The peat and soil REE patterns are flat whereas the peat and 

wetland soil solution patterns exhibit a LREE depletion significant of a REE fractionation during 

their solubilization. 

 

IV. 1. Seasonal flooding and redox conditions 

 In wetlands, redox conditions and their alternations are the main factors accounting for 

REE solubilization and mobilization in the environment. Many authors have therefore considered 

Mn and Fe-oxides reducing dissolution/precipitation as a major parameter controlling trace metal 

mobility in wetland soils (Charlatchka and Cambier, 2000; Chuan et al., 1996; Davranche et al., 

2003; Francis & Dodge, 1990; Green et al., 2003; Quantin et al., 2001; Quantin et al., 2002). 

However, in the case of REE, Fe and Mn-oxides seem to just act indirectly. The gradual 

establishment of reducing conditions in wetlands results in the release of metals, either redox-

sensitive or not, such as Fe or Mn, and Pb, Cd, etc. as well as a large concentration of 

dissolved/colloidal organic matter (fraction < 0.45 or 0.2 m). Several studies report positive 
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correlations between Mn(II) and Fe(II) concentrations in wetland soil solutions and dissolved 

organic matter (DOC) (Hagedorn et al., 2000; Olivie-Lauquet et al., 2001; Gruau et al., 2004). 

Grybos et al. (2009) demonstrated that organic matter is mainly released as humic substances 

desorbed from soil minerals in response to the rise in pH caused by the reduction reactions (H
+
 

consumption). They also reported that the colloidal fraction of this organic matter strongly bound 

a large range of metals including REE. They experimentally demonstrated that the REE 

speciation was entirely dominated by their binding with the dissolved/colloidal organic fraction 

of the soil solution. This strong binding of REE by organic matter has been confirmed by several 

field, experimental and modeling studies (Tang and Johannesson, 2003, Sonke and Salters, 2006; 

Pourret et al., 2007a-b, Stern et al., 2007; Pédrot et al., 2008, Kerr et al., 2008; Marsac et al., 

2011). Using REE patterns as a tracer for REE sources in wetland soil, Davranche et al. (2011) 

demonstrated that soil organic matter was the main source of REE and trace metals during 

wetland soil reduction. Iron was mainly present in the soil as amorphous Fe(III)-nanoparticles, 

which are poor in REE and trace elements, embedded within the organic matter. Therefore, in 

permanently or temporarily flooded wetlands, the establishment of reducing conditions produces 

an increase in pH (H
+
 consumption by reductive reactions) which is responsible for the 

desorption of soil organic matter from the solid phases. This organic matter is solubilized with its 

metal loading constituted notably with REE (Grybos et al., 2007; Pourret et al., 2007; Pédrot et 

al., 2008; Shiller et al., 2010). During the flood period, REE are thus solubilized and transported 

to the hydrosystem mainly as organic colloidal phases. The flood period constitutes the major 

input of REE into hydrosystems. Shiller (2010) calculated that reducing conditions resulting 

from the spring flood of soil near the Loch Vale (Colorado, USA) led to an 8-fold increase in all 

REE concentrations. In the Amazon River main stream and its major tributaries surrounded by 
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many floodplains, the highest concentrations of REE are reported in winter during water 

saturation and when reducing conditions are established (Barroux et al., 2006). Tachikawa et al., 

(2003) calculated that during the high water season, the maximum Nd flux measurement is 1,277 

t yr
-1

, constituting 30% of the required flux to the Atlantic Ocean. Shiller (2010) suggests that the 

seasonal flooding of wetlands may be an important regulator of REE concentrations in 

hydrosystems. 

 Under oxidizing conditions, in the low water season, the exported flux of REE is low and 

mainly controlled by the dynamics of the soil organic matter. Pourret et al. (2010) showed that 

REE speciation is controlled by colloidal organic matter present in wetland soil solution even 

under oxidizing conditions. In the same way, Dia et al. (2000) did not observe any significant 

evolution in the REE patterns in shallow groundwater from the Naizin wetland (Brittany, France) 

between periods of oxidized and reduced conditions. Figure 7.5 shows that Eh decreases and the 

Fe concentration increases in solution subsequent to the reductive solubilization of Fe(III). The 

establishment of the moderately reducing condition caused a rise in the dissolved REE 

concentration but without any drastic modification of the REE pattern (Figure 7.6). The 

speciation of REE in the shallow groundwater was therefore not significantly modified between 

the oxidized and reduced periods. Thus, REE are bound to the dissolved/colloidal organic matter 

present in the soil solution and shallow groundwater under oxidizing and reducing conditions 
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Figure 7.6 (a) Evolution of the REE pattern relative to time in shallow groundwater from the 

Naizin wetland (Brittany, France), (b) Evolution of the Eh and Fe concentration indicating the 

establishment of moderately reducing conditions and the reductive dissolution of soil Fe oxides 

(Dia et al., 2000). Although the redox conditions became moderately reduced, the REE pattern 

was not significantly modified suggesting no drastic change in the REE speciation. 
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IV. 2. Colloidal control 

 In wetland soil solution or shallow groundwater surrounded by wetlands, REE are closely 

associated with colloids. Studies performed on surface water that drains wetlands, wetland 

solution or shallow wetland groundwater from various type of boreal, tropical, Mediterranean or 

temperate wetlands, used an ultrafiltration analysis and various pore sizes to demonstrate that 

REE are mainly concentrated in the high molecular weight fraction, namely bound to the colloid 

phases (Viers et al., 1997; Dia et al., 2000; Tang and Johannesson 2003; Pourret al., 2007, Pédrot 

et al., 2008; Cidu et al., 2012; Vasyukova et al., 2012; Neubauer et al., 2013). If colloids are 

regarded as the main transfer and binding phases of REE in wetland solutions and waters, there 

is no real consensus on the nature of the REE carrier phases in the colloids themselves. The iron 

and organic matter phases are the major components of the colloids encountered and formed 

within wetlands or waterlogged soils. The term wetland covers a large diversity of areas that are 

subject to various hydrodynamic and climatic conditions which drastically influence the nature 

of the colloids released in solution. Andersson et al. (2006) demonstrated that in subarctic boreal 

rivers, draining organic-rich soils, two different REE colloid phases can be distinguished. During 

the sole spring flood, subsequent to soil saturation, small organic-rich colloids (3 nm) are 

released. By contrast, large Fe-rich colloids (12 nm) are formed during the winter and spring 

floods. Rare earth elements are bound to both C-rich and F-rich colloids. However, the amount 

of released REE is higher during the spring flood when organic-rich colloids are present. 

Moreover, the subsequent LREE-enriched REE pattern suggests that REE are released with the 

organic-rich colloids found in the litter of the organic-rich topsoil. In a temperate climate, in 

swamp water, speciation modeling and the voltammetric titrations all indicate that dissolved 

REE in the Great Dismal Swamp water are controlled by the REE complexation with natural 
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organic matter (Johannesson et al. 2004). Neubauer et al. (2013) applied Flow Field-Flow 

Fractionation analyses (FlowFFF) to water sampled in a small stream draining an unpolluted 

wetland (Tanner Moor) in Upper Austria to study the REE colloidal distribution. They showed 

that the REE size distribution corresponds to that of organic matter, namely that REE are bound 

to organic-rich colloids. Several authors, who studied temperate wetlands that are temporarily 

flooded from autumn until spring, have reached the same conclusions although they used 

different analyses or experimental methods (Pourret et al., 2007; Davranche et al., 2012). The 

controlling parameters for the REE distribution between organic and Fe-rich colloids probably 

does not account for climate or redox conditions. The same organic colloidal binding was 

demonstrated to dominate REE speciation in a humid tropical watershed in Cameroon (Viers et 

al., 1997; Braun et al., 1998). Pédrot et al. (2008), who performed leaching experiments on 

wetland soils under an oxidizing condition, provided evidence that REE speciation is dominated 

by their binding with organic colloids, such as under reducing conditions (Grybos et al., 2007). 

By contrast, it has been shown that REE patterns and therefore speciation in shallow 

groundwater along a catchment transect is strongly related to topography (Dia et al., 2000; Gruau 

et al., 2004; Pourret et al., 2010). These studies demonstrated that REE are mainly bound to 

colloids which are Fe enriched in the top of the catchment and organic-enriched in the bottom of 

the catchment where riparian wetlands are encountered (Pourret et al., 2010). The major feature 

of this evolution in the REE patterns is the decrease in the Ce anomaly with the topography. 

Pédrot et al. (2015) observed that this spatial variation is strongly correlated with the soil organic 

carbon/Fe ratio. They observed that for a low organic carbon/Fe ratio, the negative Ce anomaly 

amplitude in the soil solution is high, whereas for a high organic carbon/Fe ratio, the negative Ce 

anomaly is small or insignificant. They showed that REE pattern for soil Fe oxyhydroxides 
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exhibited a positive Ce anomaly and HREE enrichment, indicating that in the upland, the REE 

signature may be sourced in the Fe-oxyhydroxides in the upper soil horizons. Iron oxides are, 

indeed, able to present this positive Ce anomaly with regards to their capacity to oxidize Ce(III) 

in Ce(VI) and preferentially trap Ce(IV) compared to the other REE(III) (Bau, 1999; Davranche 

et al., 2005). By contrast, in soil with a high organic carbon/Fe ratio, the REE patterns obtained 

under reducing conditions did not exhibit any Ce anomaly suggesting that in the bottomland, the 

REE signature is sourced in the organic carbon in the uppermost soil which is solubilized as 

organic colloids in the wetland soil solution. These mechanisms are summarized in Figure 7.7 

Therefore in wetlands, the patterns, speciation and transfer of REE are mainly controlled by 

colloids. The composition of these colloids (organic or Fe-rich) is dependent on the wetland soil 

composition, and on the mechanisms that themselves control the formation and transfer of 

colloids in solution such as, for instance, hydrodynamic conditions.  

 

Figure 7.7 Sketch summarizing the processes responsible for the topography-related REE 

pattern in a theoretical catchment. In the top of the catchment, a negative Ce anomaly in the 
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shallow groundwater is sourced in the presence of Fe-oxide in the uppermost soil although the 

REE pattern is controlled by the solubilization of organic colloids in the bottomland occupied by 

riparian wetlands. 

 

IV. 3. Impact of biological parameters 

 Biological parameters could potentially influence the REE distribution in wetland waters 

through direct and indirect mechanisms. Several authors have demonstrated the ability of the 

bacterial cell surface to bind REE (Takahashi et al., 2005; 2010; Ngwenya et al., 2009; 2010). 

The resulting REE pattern exhibits a tetrad effect and a prominent enrichment in HREE (from Er 

to Lu). Based on EXAFS evidence and modeling calculations, this shape was further attributed to 

the binding of REE as inner sphere complexes with carboxylic and multiple phosphate sites 

occurring on the surface cells (Takahashi et al., 2010; Ngwenya et al., 2010; Martinez et al., 

2014). Simpson et al. (2007) suggested that bacterially derived biomass could constitute more 

than 50 % of the total soil organic carbon in aerobic soils. However, in wetlands, with regards to 

the temporary or permanent saturation of the soil, the bacterial activity is low, the nitrate 

respiratory or Mn and Fe reduction is less energetic compared to the O2 respiratory in soil where 

aerobic conditions prevailed. A direct consequence is that organic molecules are transformed 

into humic substances rather than been degraded. The proportion of bacterial biomass as 

compared to humic ligand is therefore potentially lower than 50%. Moreover, bacteria and cells 

residues have also to compete with the soil organic ligand present in high amounts for REE 

binding. Therefore, it is unlikely that REE binding by bacterial cells could account significantly 

for the REE pattern and distribution. Another mechanism that can be inferred in the REE 

behavior in wetlands is the mechanism used by plants. The absorption of REE by plants is low 

(Lima e Cunha et al.,  2012). The REE concentration varied from 1 to 500 ppm depending on the 
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plant species, organs and soil concentration. However, the internal processes of plants can 

fractionated the REE (Ding et al., 2006; Lima e Cunha et al., 2009). For example, Ding et al. 

(2006) observed MREE enrichment in the roots and MREE and HREE enrichment in the leaves. 

These results suggest that the REE patterns observed in the wetland solution could potentially be 

inherited from their fractionation in wetland plants. However, further studies need to be carried 

out in order to confirm or dispel this hypothesis. 

 Therefore, the major biological mechanism that seems account significantly for the 

behavior and distribution of REE in wetlands is the indirect bioreduction of Mn(IV) and Fe(III) 

which is mediated by the bacteria consortium occurring in wetlands. The saturation of wetland 

soil with water promotes the use of Mn and Fe oxides as the e- acceptor by the bacteria for their 

growth. This reduction involves the concomitant dissolution of Mn and Fe oxides and the rise in 

pH which is responsible for the release of REE in solution. 

IV. 4. Organic matter control 

 In wetland soil solution or shallow groundwater, REE are mainly associated with organic 

colloids. However, two types of REE patterns are generally observed, a MREE downward 

concavity (Figure 7.8a) and a HREE enrichment (Figure 7.8b). Pourret et al. (2007) 

experimentally demonstrated that the distribution coefficient (Kd) between REE and humic acid 

(HA) increases for MREE at pH < 7 and at high REE concentrations with respect to HA (figure 

8a). Between pH values from 6 to 9 and with a low REE concentration in regards to HA, Sonke 

and Salters (2006) observed a regular increase from La to Lu, i.e. a “lanthanide contraction” 

(Figures 7.8b). Marsac et al. (2010, 2011) demonstrated that this discrepancy between both kinds 

of REE patterns is explained by the combined effect of the metal loading and the surface 
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heterogeneity of HA. At low loading, REE are complexed to strong but less abundant HA sites, 

namely phenolic and/or multidendate sites. The resulting REE pattern exhibits a lanthanide 

contraction. By contrast at high metal loading, REE are complexed to weak but more abundant 

HA sites, the carboxylic group. The resulting REE pattern exhibits a MREE downward 

concavity. 

 

 

 

 

Figure 7.8 REE patterns in the dissolved fraction (< 0.2 m) of the organic-rich shallow 

groundwater from the (a) Kervidy Naizin wetland (France) (DOC ≈ 15 ppm) and (b) The Le 

Home-Pleine Fougère wetland (France) (DOC ≈ 27 ppm). Both REE patterns are different 

although the modeling calculations using Model VI and ultrafiltration analysis showed that REE 

are bound to colloidal organic matter at around 90% (Gruau et al., 2004; Pourret et al., 2007).  
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Humic acids can be regarded as a group of discrete sites. It is thus possible to compare HA 

binding properties with the binding properties of organic ligand models. The REE pattern 

corresponding to the binding of REE with acetate (carboxylic group) exhibits a MREE 

downward concavity whereas catechol and NTA (phenolic and chelate group) exhibit a 

lanthanide contraction effect corresponding to both REE-HA patterns obtained respectively at 

high and low metal loadings (Figures 7.8 and 7.9). Figure 7.9d plots the evolution of the log(K 

Lu-organic ligand /K La-organic ligand) relative to the average log K REE-organic ligand for the 

101 organic ligands compiled by Byrne and Li (1995). This figure shows that when the ligand is 

stronger, HREE are more strongly bound to the ligand compared to LREE. This result is 

supported by infra-red spectroscopy findings demonstrating that HREE, compared to LREE, are 

preferentially bound to aromatic functional groups of organic matter such as phenolic sites 

(Gangloff et al., 2014). 
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Figure 7.9 Log K REE pattern with (a) acetate, (b) catechol and (c) NTA, and (d) log(KLu-

organic ligand/KLa-organic ligand) relative to the average log KREE-organic ligand for the 101 

organic ligands compiled by Byrne and Li (1995). 

 

 In a second step, Marsac et al. (2011) used a modeling to provide evidence that HREE 

and LREE are not complexed to HA via the same functional sites. At high loading and acidic pH, 

LREE are bound to carboxylic groups and HREE to carboxylic and chelate groups. For 

circumneutral pH, LREE are bound to carboxylic groups and HREE via phenolic groups. The 

denticity of the REE-HA complex is also dependent on the metal loading (Marsac et al., 2011; 

2014). More recently, Marsac et al. (2015) from EXAFS records suggest that at high loading, 

REE are bound to HA through bi-ligand complexes without any chelation effect in which REE 

act as cation bridge between two organic molecules whereas at low loading, REE are bound to 

HA via multi-carboxylic chelate ligands.  
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 Competition between cations in solution in terms of their binding to HA also appeared to 

be another important controlling factor for the REE pattern developed in organic-rich wetland 

solution and shallow groundwater (Tang and Johannesson, 2003; Marsac et al., 2012; 2013). In 

natural water, the HA metal loading is generally imposed by other dissolved metals, such as Fe 

and Al, which occur in much higher concentrations than REE. Marsac et al. (2012; 2013) 

demonstrated that (i) Fe
3+

 competes more strongly with HREE than LREE, whereas Fe species 

formed at higher pH values (i.e. FeOH
2+

 or Fe polymer) compete equally with LREE and HREE, 

and that (ii) Al
3+

 has the same competitive effect on REE-HA binding as Fe
3+

, but AlOH
2+

 

competes mainly with LREE. Kohler et al. (2014) studied the mobilization of REE, Al, Fe and U 

in a boreal catchment. They demonstrated that organic matter controls their speciation in 

solution. However, the pH increases downstream from the catchment and involves the 

precipitation of Fe and Al as ferrihydrite and gibbsite, respectively. This selective removal of Al 

and Fe from the organic matter binding sites results in a higher La concentration downstream, 

namely a higher amount of La bound to colloidal organic matter present in the solution. 

Therefore the pH, which controls the chemical species of the competitor present in the solution, 

appears to drive this competition between trivalent cations and REE and the resulting REE 

pattern. 

V. REE as probes of water circulation pathways and trace element sources  

In recent years, REE have received much attention from hydrochemists because of their potential 

to be used as tracers or probes of water movement and water mixing (e.g. Smedley et al., 1991; 

Johannesson et al., 1997; Lawrence et al., 2006; Pourret et al., 2010; Siebert et al., 2012; Lu, 

2014; Noack et al., 2014). In this respect, the discovery of a major difference in terms of the REE 
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signatures between organic-rich, wetland waters, and organic-poor surrounding groundwater (see 

previous sections of this chapter) could be extremely useful in detecting the contributions of 

wetland waters to stream and river waters, or in determining groundwater circulation pathways at 

the catchment scale. The most significant and useful difference here could be the lack of a Ce 

anomaly that characterizes the REE patterns in wetland waters, and which can be used to 

differentiate these waters from the less organic-rich, deeper groundwater that most commonly 

display profound negative Ce anomalies (see compilations in Gruau et al., 2004 and Pourret et 

al., 2010) (Figure 7.10).  

 

Figure 7.10 Strong difference in the negative Ce anomaly amplitude between wetland waters 

(reduced or non-reduced negative Ce anomaly) and deep/upland ground waters (deep negative 

Ce anomaly) as revealed by data from three toposequences located in Europe (Gueriniec; Le 

Home) and Africa (Goyoum). 

 

This spatial variation in the negative Ce anomaly amplitude, which was earlier shown in this 

chapter to be due to the essentially organic speciation of REE in wetland waters, provides the 

basis for using REE patterns as a probe of the occurrence of a wetland water component in 

streams and rivers, notably during high flow periods when wetland domains and rivers and 

streams often become hydrologically connected to each other. This principle is illustrated in 
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Figure 7.11, which shows a conceptual model comparing high-flow and low-flow periods in a 

theoretical catchment developed on low-permeability basement rocks (e.g. shales or granites), 

and consisting of the juxtaposition of a poorly-drained bottomland domain (wetland area) and a 

well-drained upland domain. Because of the spatial difference in the Ce anomaly amplitude 

depicted in Figure 7.10, the model predicts that during low-flow periods, when most of the flow 

is expected to come from deep and upland groundwater because of the water table drawdown, 

REE patterns in stream waters should exhibit a deep negative Ce anomaly. By contrast, during 

high-flow periods, the connection between the wetland area and the stream induced by the rise in 

the water table should result in REE patterns showing much reduced negative Ce anomaly 

amplitudes.  

This possibility of using the negative Ce anomaly amplitude as a probe to detect the occurrence 

of wetland water contributions in stream and river waters and to evaluate the temporal variability 

of this contribution has been tested in the Kervidy-Naizin catchment in western France, where 

extensive information exists regarding the spatial and temporal variability of the REE signatures 

in both organic-rich (wetland) and organic-poor groundwater (Gruau et al., unpublished). The 

test proved to be successful as the daily monitoring of the dissolved (< 0.22 m) REE 

concentrations during almost one entire hydrological year (1999-2000) revealed strong Ce 

anomaly amplitude fluctuations (Figure 7.12). Systematic reductions in the Ce anomaly 

amplitude were observed in phase with the stream discharge and increases in the DOC 

concentration (Figure 7.12); two features that are known to correspond to wetland water inputs 

into the stream of this catchment (Olivié-Lauquet et al., 2001; Morel et al., 2009). 
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Figure 7.11 How the Ce anomaly amplitude in stream and river waters could be used to detect 

the contribution of a wetland water component and the possible temporal variability of this 

contribution. 

 

 

Stream water 

Wetland 

Ce 

Wetland  water Water Table 

Ce 

Groundwater Ce 

Stream water 

Low flow period (groundwater dominated stream flow)  

Stream water 

Wetland 

Ce 

Wetland  water Water Table 

Ce 

Groundwater 

High flow period (wetland water dominated stream flow)  

Ce 

Stream water 



Davranche M., Gruau G., Dia A., Le Coz-Bouhnik M., Marsac R., Pédrot M., Pourret O. (2016) Chapter 7. Rare Earth Elements in wetlands. In 

Trace Elements in Waterlogged Soils and Sediments. Eds Rinklebe J., Knox A.S., Paller M., Taylor & Francis Group/CRC Press. pp 135-162. 

34 

 

 

Figure 7.12 Synchronous Ce anomaly amplitude, discharge and DOC concentration variations in 

the stream at the outlet of the Kervidy-Naizin catchment during hydrological year 1999-2000.  

 

This use of the Ce anomaly amplitude variation as a probe of wetland water contributions to 

stream and river water flows could be regarded as having limited applicability, as the example 

presented relies on the daily monitoring of REE concentrations, which could be seen as a severe 

limitation for extrapolation to other river systems. However, comparable variations (i.e. decrease 

in the negative Ce anomaly amplitude along with an increase in the discharge and DOC 

concentrations) were observed at the Loch Vale catchment outlet in Colorado and in the Kalix 

River in Sweden based on weekly sampling (Ingri et al., 2010; Shiller, 2014), suggesting that the 
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method does not necessarily require a systematic daily monitoring frequency. Although possibly 

difficult to implement, this ability of the negative Ce anomaly to serve as a tool to identify the 

periods when the rivers and streams are becoming hydrologically connected to wetland soils is 

worth considering. For example, it could be used to show that some of the pollutants occurring at 

that time in the rivers and streams considered (e.g. some trace metals) have these soils as an 

ultimate source.  

 

Figure 7.13 How the REE pattern can be used to determine the ultimate soil source of the REE 

and trace metals released during the reduction of wetland soils (Davranche et al., 2011). 

 

Another domain in which REE can be used as a probe concerns the identification of soil 

components that host trace metals which are released during wetland/floodplain soil reduction. 

The release of trace metals such as Pb, Cr, Ni, Zn, Cd, and As during flooding and their 

subsequent reduction is a classical feature of floodplain/wetland soils (Schulz-Zunkel and 

Krueger, 2009; Du Laing et al., 2009). In this type of soil, several soil phases such as Mn(IV)- 

Fe(III)–oxyhydroxides, organic matter (OM) or mixed Fe–OM particles can host trace metals, 
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and one important question is to know which of these phases is(are) mobilized during the release 

process. Davranche et al. (2011) tackled this question by using REE as a probe of the activated 

phases. To do this, they used a wetland soil from the Kervidy Naizin catchment in France for 

which previous field monitoring data (Dia et al., 2001) revealed trace metal release during 

reduction. Their work was based on (i) the difference in the REE pattern between soil OM 

(relative MREE enrichment) and soil Fe(III) oxhydroxides (LREE enrichment) and (ii) the 

virtual absence of REE in the Fe components of the mixed Fe-OM particles. By performing 

different incubation laboratory experiments, Davranche et al. (2011) demonstrated that the REE 

fraction released in solution during the reduction of the studied soil had a pattern similar to that 

of the soil OM fraction, suggesting in turn that this fraction is the main source of REE and other 

trace metals that are released during the reduction of this soil (Figure 7.13). 

The methodology developed by Davranche et al. (2011) is very promising with regards to the 

potential of REE to serve as a probe to identify the soil components from which trace metals are 

released during the reduction of wetland/floodplain soils. However, this use is clearly dependent 

on the occurrence of significant differences in the REE patterns between the end-members 

involved in the soil-water exchange process, a pre-requisite condition that should be evaluated in 

a greater number of sites. 

V. REE impact on the human health and environment quality 

 Rare earth elements have been long considered as rare since the metallurgic extraction of 

individual elements is complicated and because of their low concentrations (ppb to ppt) in 

natural waters. However, over the past several decades, REE became of critical importance to 

many high-tech products and medical applications, and are therefore of great economic interest 
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(U.S. GAO, 2010). The global production of REE oxides increased from 10,000 t y
-1

 in 1965 to 

> 80,000 t y
-1

 in 2000 (Haxel et al., 2002). In 2008, the consumption of REE oxides was 

approximately 129,000 t (Goonan, 2011). The various applications of REE and the intense use of 

fertilizers in agriculture (0.1 to 1% REE in natural phosphate, Otero et al., 2005) may lead to a 

significant release of REE into the environment (Cidu et al., 2013). Kulaksiz and Bau (2011) 

showed abnormally high concentrations of Gd and La in the Rhine River (France). These authors 

highlighted that La was extremely mobile in this environment since La contamination was 

present more than 400 km after the source of the contamination. Tagami and Uchida (2006) 

provided evidence that REE are able to accumulate in soil and water and to bioaccumulate in the 

food chain. Sonich-Mullin et al. (2012) compiled the studies concerned with the specific human 

health effects of elevated REE concentrations. They only found a few studies which are, for the 

most part, dedicated to epidemiological data mixtures of REE rather than individual elements. 

These data indicate that the pulmonary toxicity of REE in humans may be a concern. 

Additionally, it has been shown that the larger, lighter (i.e. smaller atomic number), and less 

soluble REE are primarily deposited in the liver, while the smaller, heavier and more soluble 

REE are similar, in terms of their ionic radius, to divalent calcium and are primarily distributed 

to the bones. Therefore, it appears especially important to assess the occurrence and fate of 

aqueous REE in the environment. 

Specifically concerning wetlands, previous concerns suggest that REE could be trapped by 

wetland soil components, notably organic matter. Their subsequent fate would thereby be 

controlled by the soil components and the behavior of the organic matter, which are themselves 

relative to the redox conditions prevailing in the wetland. Smuc et al. (2012) investigated the 

mobility of REE in contaminated paddy soil in Macedonia. Paddy soil can be considered as an 
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anthropogenic wetland, as the soils are regularly saturated. Although there were elevated REE 

concentrations in the soil, low amounts of REE occurred as soluble and exchangeable forms, as 

showed by the sequential extractions. The rice did not accumulate REE. Sequential extractions 

indicated that REE are mainly distributed in the organic and residual fractions, namely bound to 

soil organic matter and as minerals. Chen at al. (2014), who studied a series of paddy soil 

profiles with approximately 50, 300, 700 and 1000 years of paddy cultivation history, showed 

that paddy cultivation favors the accumulation of all REE in the soil profile. Several studies used 

sequential extractions of wetland soils under oxidizing conditions to demonstrate that REE are 

not very water soluble or exchangeable (Pédrot et al., 2008; Davranche et al., 2011; Mihajlovic 

et al., 2014). However under reducing conditions, when the organic phases of the soil are 

solubilized with their REE charge, REE are released into the wetland solution, and the question 

is now to know if the affinity between REE and organic ligands is strong enough to limit their 

bioavailability. Unfortunately, no ecotoxicology study is available to assess the potential 

bioavailability of REE bound to humic substances sourced in wetlands. 
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