Pushforwards of $p$-adic differential equations - Archive ouverte HAL
Article Dans Une Revue American Journal of Mathematics Année : 2020

Pushforwards of $p$-adic differential equations

Résumé

Given a differential equation on a smooth $p$-adic analytic curve, one may construct a new one by pushing forward by an \'etale morphism. The main result of the paper provides an explicit formula that relates the radii of convergence of the solutions of the two differential equations using invariants coming from the topological behavior of the morphism. We recover as particular cases the known formulas for Frobenius morphisms and tame morphisms. As an application, we show that the radii of convergence of the pushforward of the trivial differential equation at a point coincide with the upper ramification jumps of the extension of the residue field of the point given by the morphism. We also derive a general formula computing the Laplacian of the height of the Newton polygon of a $p$-adic differential equation.

Dates et versions

hal-02136440 , version 1 (22-05-2019)

Identifiants

Citer

Velibor Bojković, Jérôme Poineau. Pushforwards of $p$-adic differential equations. American Journal of Mathematics, 2020, 142 (3), pp.923-955. ⟨10.1353/ajm.2020.0021⟩. ⟨hal-02136440⟩
31 Consultations
0 Téléchargements

Altmetric

Partager

More