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I ntroduction of wall effectsinto explicit
algebraic stress models through €lliptic blending

Abdou G. Oceni, Bmi Manceau, Thomas B. Gatski

1 Introduction

Explicit Algebraic Stress Models (EASMs) are a compromiseneen representa-
tion of the physics and numerical robustness. They inhaygtrof the capacities of
the Reynolds stress model (RSM) from which they are derigeattount for com-
plex physical mechanisms. A corollary of the previous rémarthat the EASMs
also inherit some of the shortcomings of their underlyindvRBarticularly, the in-
fluence of the blocking effect of the wall, which is not takeoi account within
the usual context of EASMs. The present work aims at incepay in EASMs the
elliptic blending method proposed by Manceau and Han[dli 2].

The Elliptic-Blending Reynolds-Stress Model (EB-RSM) siwat reproducing
the blocking effect of the wall by enforcing the correct limg behavior of the
difference between the velocity—pressure-gradient asgightion terms of the
Reynolds stresst(j) transport equation. The EB-RSM model is characterized by a
simple blending between two asymptotically-correct foofithe model forg; — &

ij 2
@ —aj = (1-a?) [(n‘j-”—%f]Jraz [(H’}—fd,} (1)

In order to reproduce the nonlocal character of the bloclkfigct, the blending
functiona is obtained from the elliptic relaxation equation

a—L%0%a =1, 2)

with the boundary conditiom = 0, such thatnr goes from O at the wall to 1 far
from the wall.qﬂ denotes hereafter the SSG [10] model, valid far from the.wall
The analysis of the near-wall asymptotic behavior [4] shttvastq"j" must be of the
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form

£ 1
@i = =50 | TikN M+ TjkNiNk — 5 Tia My (ninj + &) |, 3)

wheren is a pseudo-wall-normal vector defined hy= Oa/||Oa||. The present
article describes the derivation and validation of expldgebraic representations
based on this Reynolds-stress model.

2 Explicit Algebraic Methodology

Using the weak equilibrium assumptionisf dt = 0 andD;; /Dy = Tij/ Tk, Where
bij = 1ij/(2k) — &;/3 andD;; are the anisotropy and the total diffusion By, re-
spectively, the following algebraic equation for the Regscstress is obtained

T . T
(Rj— P +aj— (8- &) =0 (4)
Introducing the EB-RSM model into Eq. (4) yields, under tare form

1 2
—o b (bs+5b 3{bS}I) +ap (bW — W)

(5)

_a (bM—ka—g{bM}I—;{bM}M) —aS+| B

N[ &

where{.} denotes the trace, arland W are the mean strain and mean rotation
tensors, respectively. In Eq. (5) and henceforth, the eedderms are the terms due
to the introduction of the elliptic blending procedure. $aderms vanish far from
the wall, where the parametergoes to one. The’s are given by

2 1 —
al:§_7(93_ gé 1_02)027 a2:l_%a a3:1_97247
1

2

k H P |13 13 - €
ks S (B 2l 5] . [m-spa-a)]

where theg;’s are the coefficients of the SSG model. Since the impligehtaic
system (5) is numerically intractable, an explicit solatioust be sought. The theory
of invariants [9] indicates that the solution of such a lielatbetween tensors is a
polynomial function of the tensors involved in the equatiofthe form

(6)

b= _ifm ™

whereT; are the tensors of the so-called functional integrity hasisl theS;’s are
polynomial invariant functions.
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3 Invariant and functional integrity bases

The specificity of the present model lies in the presenceefahsorM in Eq. (5).
Indeed, in the standard explicit algebraic methodologytfig relation only involves
b, S andW, such that the solution is of the form (7), in which the fuooal in-
tegrity basis consists of tHé = 10 terms [7]

Ti=S ; Th=SW-WS ; T3=82-1{S?}1 ;| T;=w?2?-}{w?}I ;
Ts=WS?—S°W ;| To=SW2+W2S-2{SW?\I ;| Ty=WSW?-W2SW ; (8)
Ty=SWS2-S?°WS ;| To=W?2S2+8?W2-2{S?W?}I ; Tio=WS?W2-W25°W.

The ’s are polynomial functions of the terms of the invarianeuntty basis
m=1{82};n2={W?2};ns={5%;na={SW?} ; ns = {S?W?2} ; ne = {SWS2w?2}. (9)

In the present case, the relation (5) involesS, W and M, such that the func-
tional integrity basis now contaié = 41 terms and the invariant integrity basis 29
terms [9]. However, using the fact thar? = M + 21, the functional integrity
basis reduces thl = 27 terms, i.e., Eq. (8) and the 17 additional terms

Tn=M ; T12:SM+M57%{SM}I v Tiz3=WM-MW ;
Tis=MWS—-SWM—-2{MWS}I ; Tis=S?M+MS?-2{S?M}I ;
Tig= MW2+W2M —2{MW?}I ; Ti=W?MW-WMW? ;
Tig=WMS—-SMW —2{WMS}I ; Tio=WSM-MSW -2{WSM}I ; (10)
Too=WS2M — MS?W — 2{WS?M}I ; Toy=MWS?-S?°WM -3{MWS?}I ;
Tro=WMS?—S2MW - 2{WMS?}I ; Ti=SWS’M-MS*WS-2{SWS’M}I ;
Tos=SW2M +MW?2S - 2{SW2M}I ; Tps=W2SM+MSW?-2{W2SM}I ;
Toe=W2S2M + MS?*W2 - 3{W2S2M}I ; Tor=W2SWM-MWSW2-2{W2SWM}I,

and the invariant integrity basis to 16 terms, i.e., Eq. (&) the 10 additional terms

N7={SM};ng={S?M} ;no={W2M};no={WSM};ni={WS2M} ; o= {WS?MS} ; (11)
Nns= {WZSM} s N1a= {WZSZM} s Nis= {WZSWM} s N1e= {WZMWSZ}.

The solution (7) of Eq. (5) can be obtained by performing ae@ah projection,
which leads to a 2% 27 invertible linear system for th@ functions.

4 Truncated bases

In order to reduce the complexity of the model, the usual @ggin, for instance
followed by [8] for the SSG model, is to consider a 2D plane flowthis case, it
can be shown [7] that the functional integrity basis is redlio the 3 termd3—T5—
T3, and the invariant integrity basis tp—n». The expression (7) witN = 3 is the
solution of Eq. (5) in 2D plane cases only, and can be used appoximation in
3D.

However, in our case, the integrity basis in 2D plane flowsaios the 6 terms
T-T»,-T5-T11-T1>-T13, Which leads to an overly complex model. Therefore, in
the present paper, only bases consisting of at most 3 teenssad.



4 Abdou G. Oceni, Bmi Manceau, Thomas B. Gatski

This restriction is not too severe, considering that in a 2ahe flow case, the
anisotropy tensor is determined by only 3 independent petensib; 1, by2 andby .
However, since such a basis is not an integrity basis, thetium(7) obtained by
Galerkin projection can be singular at particular locagionthe flow domain.

The standard choice for the 3-term basis is the 2D plane floegiity basis
T,—T>-T3. The use of this basis leads to a model denoted by EB-EASM i#dt (F
Elliptic Blending Explicit Algebraic Stress Model).

However, basis tensors involving the tenddrare attractive. Indeed, this tensor
is independent of the mean field, and tensors such asli» andTi3 are at most
linear in the mean velocity gradient. This is a very deseaisbperty for improving
numerical robustness. Moreovey/ carries the information about the orientation
of the wall, which is crucial in its vicinity to ensure a cattgepresentation of the
anisotropy in 3D flows (where a 3-term basis representatiob is incomplete).
Another interesting characteristic 8 is that it does not vanish whei® and W
vanish.

Several combinations of models based on 2-, 3- and 5-teresbies/e been an-
alytically investigated. The complexity of the formulaties only dependent on the
number of tensors retained in the basis, not on the partichlzice of the basis ten-
sors. Using a 5-term basis may be valuable in 3D, complex flbutsat the price of
a considerable increase of the complexity of the formutatibdifferent attractive
choices for the basis have been identified, and the resuttodgls are

EB-EASM#1:  b=[p1S+B(SW —WS)+Bs(S?—5{S?} 1)
EB-EASM#2: b= 1S+ M

EB-EASM#3: b= BiS+BM +L3(SM +MS—3{SM}I)
EB-EASM #4: b= 1S+ Bo(SW —WS) + M

The reasons for selecting these particular models can benatimed as follows:
EB-EASM #1 is the standard choice and can thus be easily catpaith stan-
dard models, but it is nonlinear in the mean velocity gradieBB-EASM #2 is
the simplest formulation (only 2 basis tensors) that presethe two-component
limit of turbulence at the walll;, = —1/3) ; EB-EASM #3 is linear in the mean
velocity gradient, which is desirable for numerical rolmests, but degenerates to
EB-EASM #2 in 1D flows, since the last two tensors of the basisliaearly de-
pendent in this situation ; EB-EASM #4 is not susceptiblehis tiegeneracy, and
incorporates the tens@/, such that it does not degenerate wh€r@ndW vanish.
In the following sections, the focus will be on 1D flows, wh&®R-EASM #3 and #4
are identical to EB-EASM #2 and #1, respectively. Thus, It ainly be necessary
to present results given by the models #1 and #2.

For a 2D plane flow, the Galerkin projection of Eq. (5) ontdeitone of the 4
bases selected in the previous section prov[gief the form

B (n.2[Z)[2) {5 (@), (12)
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wheren = /i1 = \/{S2} andZ = \/—n2/n1 = \/—W?2/S2 are the mean strain
parameter and the mean kinematic vorticity number, reghet The introduction
of elliptic blending results in the appearance of two addidl invariants in the mod-
els,Z =n;={SM} and2 = 2n10=2{W S M}, that both characterize the ori-
entation of the velocity gradient in the coordinate systartkeld to the wall.& is
zero in a flow parallel to the wall and maximum at an axisymioetnpingement
point, and.2 is zero at an impingement point and maximum in a flow paratiéhé
wall. Therefore,#? and 2 are called thémpingement invariant and theBoundary
layer invariant, respectively.

The dependence diye, P/¢ anda originates from the variable coefficients
of Eq. (6).k, € anda are provided by their own differential equations, such that
the original second-moment closure is reduced to a 3-emuatodel. The ratio of
production to dissipatiorP/e, appears in Eq. (5) vias, and is a function of3;,
sinceP/e = —2B1n?k/e. Consequentlyp; is the solution of a nonlinear algebraic
equation, that is cubic for the model EB-EASM #2, ugrtic for the others. It is
worth pointing out that this equation is only cubic in stambianodels using 3-term
bases: the increase of the degree of the equation is due tottbduction of the
elliptic blending method. This peculiarity does not make s$kelection of the proper
root more problematic in the 1D cases under consideratidhdrpresent article,
since there is a single physically admissible root (realreeghtive).

5 Validation of the models

The first validation test is the investigation of the analgtiform of the models
in a channel flow, in order to check that the models inheritnfthe EB-RSM the
reproduction of the two-component limit of turbulence at thall. In such a 1D
flow, the invariants reduce 9 = dU /dy//2, # =1, # =0 and2 = n?, and it

can be shown that the models EASM #1 and #2 yield

~Ben?+i6sn?  2Bin 0 ~1B 2pin 0O
b= 2Bin Ben?+iBn? 0 andb=|2pn 26, 0 |, (13)
0 0 —ipn? 0 0 -1

respectively. In both models;kpB; plays the role of an eddy-viscosity. In model #1,
B2 and 33 drive the anisotropy of the normal stresses, while in mog@ethie use of
a 2-term basis does not enable the reproduction of the fidb&mopy of the normal
stresses, leading tm; = bsz throughout the channel.

As the wall is approached/(— 0), it can be shown thgB; — 0. For model
#1,B, — —1/(4n?) andBs — —1/(2n?), while for model #23, — —1/2. There-
fore, for both models, the original limiting behavior of t&B-RSM (12 = 0,
boo = —1/3,b11 = bgz = 1/6, b1 = 0) is preserved, and the two-component limit
of turbulence is correctly enforceth, = —1/3). Such a favorable behavior with
the linear, 2-term model #2 is noteworthy.
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Fig. 1 EB-EASM #1: Mean velocity profiles Fig. 2 EB-EASM #1: Reynolds-stress pro-
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Fig. 3 EB-EASM #2: Mean velocity profiles Fig. 4 EB-EASM #2: Reynolds-stress pro-

in plane Poiseuille flows. files in the plane Poiseuille flow &; = 590.

o

Fig. 1 shows the mean velocity profiles given by EB-EASM #1 asdinderly-
ing RSM, the EB-RSM, in the case of Poiseuille flows at Reysaldmbers rang-
ing from Re; = 180 to 2000 [5, 1]. In Fig. 2, the corresponding Reynoldsssis
at Re; = 590 are shown. It is seen that the algebraic model gives gsofilmost
identical to the EB-RSM, except for the anisotropy at thenclgh center, due to the
weak equilibrium hypothesis on the diffusion term. The R#ga stresses given by
the explicit algebraic model of [8] are also shown in Fig. BisTmodel is identical
to EB-EASM #1 far from the wall¢ — 1), as highlighted in Egs. (5)—(12). This
comparison emphasizes the effect of the introduction oétiiygtic blending method
in the explicit algebraic formulation.

Figs. 3 and 4 show the same results for EB-EASM #2, compartteteescaled-
v2—f model [3]. As pointed out previously, the reproduction af #nisotropy is not
complete since the wall-normal componegtand the shear-stres® are closely
approximated, but the model yields exaatk/= w? throughout the channel. This
behavior is similar to that of the2—f model, provided that the? component used
for comparison is the one given by the additiona&™equation, not by the Boussi-
nesq relation.
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stress profiles foRe; = 182. profiles forRe; = 204.

Figs. 5-8 show the results obtained using EB-EASM #1, EB-HAR and the
EB-RSM, in Couette-Poiseuille flows, compared with the DN&df Orlandi [6].
These 1D flows are generated by imposing a pressure gradidra moving wall.
Three different configurations are studied, distinguishyethe velocity gradient at
the moving wall: positive for the “Poiseuille-type” flow; gative for the “Couette-
type” flow; and nearly zero for the “intermediate-type” flobwo Reynolds numbers
are studied for each configuration.

Fig. 5 shows the satisfactory reproduction of the mean vtglgeofiles by all
the models, and in Figs. 6-8 it is shown that the EB-RSM reypred the Reynolds
stress very well for the 3 types of flows. The nonlinear mod®EASM #1 gives
satisfactory results overall, but overestimates the ampy in the vicinity of the
moving wall, in particular for the Couette-type flow. In suahLD flow, this dis-
crepancy necessarily comes from the use of the weak equitidrypothesis for the
diffusion terms: in the region close to the moving wall, tie&tive weight of these
terms is increased due to the reduction of the turbulent.leve

The results given by EB-EASM #2 are comparable to those shmewiously
for Poiseuille flows. The crucial componentg andv2 are correctly reproduced:;
although,u? = w2 is obtained. It is worth pointing out that EB-EASM #2 actyall
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better approximategv and v2 than EB-EASM #1 in the intermediate-type flow.
This can be traced to the vanishing of the shear compdgenh the vicinity of
the moving wall, that leads to the degeneracy towards zetioeo basis tensors of
EB-EASM #1; whereas, in EB-EASM #2, the tenddf is independent on the mean
flow.

6 Conclusions

The introduction of the elliptic blending strategy into égjp algebraic stress mod-
els was presented. The extended integrity basis due to tifoelirction of the wall-
normal-sensitive tensor in the algebraic relation led taumlmer of possible ap-
proximated formulations. The validation of selected medébr several cases of
Poiseuille and Couette-Poiseuille flows, has shown satisfia behavior, and that
the main properties of the underlying Elliptic Blending Relds-Stress Model are
preserved.

The possibility of building models linear in the mean vetg@radients but re-
solving the anisotropy is attractive from a numerical rdbass standpoint. The 2-
term linear model appears as a very acceptable simplifiecehaith many simi-
larities with thev2—f model, but derived from an approach valid in general config-
urations, and with only 3 differential equations fore anda.
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