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Abstract. A consistent formalism is developed for seamless hybrid RANS-
LES models in inhomogeneous, stationary flows, based on Eulerian temporal
filtering. The issues of Galilean invariance of the filtering process and consis-
tency with the Reynolds average are addressed. The similarity of the RANS
and TLES equations suggests the use of the same form of model for the two
limiting approaches. The inconsistency of the existing TLES models with the
RANS limit leads to the choice of the opposite strategy: adapting a RANS
model to the TLES limit. The method proposed to achieve this adaptation
is the Temporal Partially Integrated Transport Model (TPITM), a tempo-
ral version of the spatial PITM. The applicability of the method is shown
by performing channel flow simulations using transport equations for the
subfilter stresses, derived from the Elliptic-Blending Reynolds-Stress RANS
Model (EB-RSM). Finally, the fact that the temporal filter width can be
implicitly defined by the associated spatial filter width suggests that most of
the unsteady approaches used in everyday applications, such as DES, SAS,
URANS, among others, can be regarded as temporally filtered approaches.

Keywords: Eulerian Temporal filter; TLES; T-PITM; URANS; DES; Elliptic-
blending Reynolds-stress model.
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1 Introduction

Unsteady computations of turbulent flows are of great relevance in an in-
dustrial context, and concern, e.g., noise emissions, structure vibrations or
thermal fatigue. Since LES (Large-Eddy Simulation) is too CPU-demanding
for many complex industrial applications, a multitude of unsteady low-cost
strategies have gained prominence over the last decade (see, e.g., Fröhlich and
von Terzi, 2008; Sagaut et al., 2006). Some of these models can be described
as seamless hybrid RANS-LES models, in the sense that the computation
progressively transitions from a RANS (Reynolds-Averaged Navier-Stokes)
model in some regions of the flow, particularly in the near-wall zones, to an
LES in other regions where explicit computation of the large-scale structures
is required. In statistically homogeneous flows, such a model can be seen as
an LES with a filter width ∆S continuously going to infinity or, equivalently,
as an LES with a cutoff wavenumber κc = π/∆S continuously going to zero
– a limit that corresponds formally to the RANS approach. However, the
majority of flows of practical relevance are inhomogeneous, and in that case
such models suffer from an important conceptual weakness due to the inher-
ently different concepts underlying LES and RANS models: the former give
spatially filtered fields; whereas, the latter give long-time averaged fields.
In order to develop a consistent seamless hybrid RANS-LES model in in-
homogeneous flows, an Eulerian temporal filtering approach (Pruett, 2000;
Pruett et al., 2003) within the LES formalism can be used so that the discus-
sion is now within the context of a TLES (Temporal Large-Eddy Simulation)
approach. In this paper a consistent seamless hybrid RANS-LES model for
incompressible, stationary, inhomogeneous flows is developed by using an Eu-
lerian temporal filtering approach consistent with the TLES formalism.The
constraint of stationarity, i.e., the statistical independence with respect to a
shift in time, is not too restrictive, since many flows of practical importance
are stationary. This class includes all the flows for which the boundary con-
ditions are not varying in time. In particular, although it can be a matter of
philosophical debate, since the vortex shedding appearing in some simple tur-
bulent flows, such as 2D wakes, is not periodic in time (e.g., Ma et al., 2000;
Perrin et al., 2007), such flows are considered herein as stationary processes,
rather than cyclostationary processes (Antoni, 2009). The case of boundary
conditions varying with a time-scale much larger than the time-scale of tur-
bulence can also be considered as eligible to the application of the present
methodology, by replacing the constraint of an infinite filter width with the
constraint of a filter width much larger than the turbulent time scale.
In section 2, the time-filtering process is presented that satisfies the property
of Galilean invariance and the consistency with the Reynolds average. The
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following sections are devoted to the modeling of the subfilter stress in the
temporally filtered momentum equation. Section 3 analyzes the behavior of
TLES models making explicit use of the filter (Pruett, 2000; Pruett et al.,
2003; Tejada-Martinez et al., 2007) in the limit of infinitely large temporal fil-
ters. The inherent limitations of these models lead to the proposal, in section
4, of a new approach, the so-called Temporal Partially-Integrated Transport

Model (TPITM), which is a transposition to temporal filtering of the PITM
approach (Schiestel and Dejoan, 2005; Chaouat and Schiestel, 2005), based
on an analysis in the frequency domain, and enables the adaptation of any
RANS model to the context of hybrid RANS/TLES. Section 5 then presents
the adaptation of a particular model, the Elliptic Blending Reynolds-Stress
model (EB-RSM), which leads to a hybrid RANS/TLES based on trans-
port equations for the subfilter stresses, and its application to the case of
a channel flow at Reτ = 395. Finally, section 6 discusses the possibility of
providing a consistent interpretation of the usual eddy-resolving methods,
such as DES, SAS, OES, URANS, among others, within the framework of
temporal filtering.

2 Toward a consistent formalism

In this section, a Galilean invariant, time filtering operation is defined that
can be applied in the partitioning of the flow variables into resolved and
unresolved (subfilter) parts. The consistency of the filter with the Reynolds
average in the limit of an infinite filter width and the formal similarity be-
tween the filtered and Reynolds-averaged equations form the foundation for
the development in the following sections of a unified model able to bridge
RANS and LES.

2.1 Definition of the time-filtering process

In order to decompose the instantaneous velocity u∗ into a filtered, resolved
part Ũ =<u∗>, and a residual part u′′, the resolved part is defined by using
a filter <.> expressed in the general form

<u∗> (x, t) =

∫∫
G(x′ − ξ(x, t′ − t), t′ − t) u∗(x′, t′) dx′dt′, (1)

with a kernel of the form

G(x′ − ξ(x, t′ − t), t′ − t) = δ(x′ − ξ(x, t′ − t)) G∆T
(t′ − t) (2)
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with ∆T the temporal filter width. For instance, the exponential filter used
by Pruett et al. (2003) and Tejada-Martinez et al. (2007) reads

G(x′ − x, t′ − t) = δ(x′ − x)
1

∆T

exp

(
t′ − t

∆T

)
H(t− t′), (3)

where H is the Heaviside function. In this case, the spatial part of the filter
is the familiar Dirac function, i.e., ξ(x, t′ − t) = x.
The introduction of ξ(x, t′ − t), with ξ(x, 0) = x, in the definition of the
filter aims at ensuring that the filtering operation preserve the translational,
or Galilean, invariance, which is not the case for all the filters (Pruett, 2000).

2.2 Galilean invariance of the filter

In the development of a seamless hybrid temporally filtered methodology
that is capable of spanning the range of solution methodologies from DNS to
RANS, it is necessary to insure that the resulting equations retain the same
invariance properties as the Navier-Stokes and Reynolds averaged equations.
Consider the translational transformation of the spatial frame of reference x
given by

x• = x−U0 t (4)

where x• is the coordinate vector in the translating frame, and U0 is a
constant displacement velocity. In order to retain Galilean invariance for
the filtered equations, it is necessary that

<u∗•> (x•, t) =<u∗> (x, t)−U0 , (5)

where u∗• is the velocity in the translating frame.
For the case where the standard filter ξ(x, τ) = x is applied, which reads
ξ•(x•, τ) = x• in the translating frame, the filtered velocity reads

<u∗•> (x•, t) =

∫
G∆T

(τ) u∗•(x•, t+ τ) dτ

=

∫
G∆T

(τ)u∗(x• + (t+ τ)U0, t+ τ) dτ −U0

=

∫
G∆T

(τ)u∗(x+U0 τ, t+ τ) dτ −U0

6=
∫

G∆T
(τ)u∗(x, t+ τ)dτ −U0

6= <u∗> (x, t)−U0, (6)
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such that the transformation is not Galilean invariant. This is the relation
obtained by Pruett (2000) in assessing a Doppler effect on time filtered vari-
ables. This lack of translational invariance can be remedied by considering a
new, generalized definition for ξ parametrized by a reference velocity

ξ(x, τ) = x+Vref τ, (7)

which transforms as ξ•(x•, τ) = x• + V•
ref τ in the translating frame. The

filtered velocity then becomes

<u∗•> (x•, t) =

∫
G∆T

(τ)×

u∗(x• +V•
ref τ + (t+ τ)U0, t+ τ) dτ −U0

=

∫
G∆T

(τ)u∗(x• +U0 t+ τVref, t+ τ) dτ −U0

=

∫
G∆T

(τ)u∗(ξ, t+ τ) dτ −U0

= <u∗> (x, t)−U0, (8)

such that now the desired Galilean invariant transformation property holds.
These results show that, in order to preserve the Galilean invariance, the filter
G must be defined using ξ(x, τ) = x +Vref τ , i.e., the temporal kernel G∆T

of the filter is necessarily applied at a location moving with some reference
velocity. In order to unambiguously define the filter, this reference velocity
Vref must be related to the flow configuration, e.g., the boundary conditions
(for instance, the velocity of an obstacle).
Moreover, in the limit of an infinite filter width ∆T , this definition of the
filter ensures, in all the inertial frames, the compatibility with the Reynolds
average that is Galilean invariant. On the contrary, the standard definition
goes to the long-time average when ∆T → ∞, which does not satisfy Galilean
invariance, as noted by Speziale (1987). For instance, with a kernel of top-hat
type and ξ defined by Eq. (7), the generalized filtering operator (1) becomes

G(x′−ξ(x, t′−t), t′−t) = δ(x′−x−Vref (t
′−t))

1

∆T

H(t′−t+∆T )H(t−t′), (9)

and the generalized long-time averaging defined by

[u∗]{∞;Vref}(x, t) = lim
∆T→∞

<u∗> (x, t) (10)

inherits the Galilean invariance from the filter. The definitions of the filter
(1) and the associated generalized long-time average (10) thus provide the
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consistent formalism for seamless hybrid RANS/LES methods (more accu-
rately, hybrid RANS/TLES), for a particular class of flows: the flows that
are stationary in a particular reference frame. Therefore, in describing the
model development in the remainder of this paper, in order to simplify the
analysis, the flow is assumed to belong to this class, the reference frame is
the particular frame in which the flow is stationary, and the parameter Vref
of the filter is zero in this frame.

2.3 Filtered equations

The filtered velocity is denoted by Ũ =< u∗ > and the residual velocity is
defined by

u′′ = u∗ − Ũ. (11)

Reynolds averaging, or long-time averaging, is denoted by an overbar ( . ),
and the Reynolds-averaged velocity by U = u∗. The fluctuating part of the
filtered velocity is defined by

u′ = Ũ−U, (12)

and the total fluctuation by

u = u∗ −U = u′ + u′′. (13)

The same notation is used for the decomposition of the instantaneous pres-
sure

p∗ = P̃ + p′′ = P + p = P + p′ + p′′. (14)

Assuming, as in spatial LES, that the filter commutes with the differential
operators, which is exact if the temporal filter width ∆T is constant, the
incompressibility constraint for the instantaneous field is inherited by the
filtered field

∂Ũk

∂xk

= 0, (15)

and the filtered momentum equation reads

∂Ũi

∂t
+ Ũk

∂Ũi

∂xk

= −1

ρ

∂P̃

∂xi

+ ν
∂2Ũi

∂xj∂xj

− ∂τijSFS
∂xj

. (16)

τijSFS is the subfilter-scale (SFS) tensor, defined as the generalized central
second moment τijSFS = τ(u∗

i , u
∗
j), where τ(a, b) =< ab > − < a >< b > for
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any variables a and b. Similarly to what was shown by Germano (1992) for
spatial filtering, the transport equation for the subfilter stress reads

∂τijSFS
∂t

+ Ũk

∂τijSFS
∂xk

= −
∂τ(u∗

i , u
∗
j , u

∗
k)

∂xk︸ ︷︷ ︸
DT

ijSFS

+ ν
∂2τijSFS
∂xk∂xk︸ ︷︷ ︸
Dν

ijSFS

− 2ντ

(
∂u∗

i

∂xk

,
∂u∗

j

∂xk

)

︸ ︷︷ ︸
εijSFS

−1

ρ
τ

(
u∗
i ,
∂p∗

∂xj

)
− 1

ρ
τ

(
u∗
j ,
∂p∗

∂xi

)

︸ ︷︷ ︸
φijSFS

−τikSFS
∂Ũj

∂xk

− τjkSFS
∂Ũi

∂xk︸ ︷︷ ︸
PijSFS

, (17)

where

τ(a, b, c) =<abc> − <a> τ(b, c)− <b> τ(a, c)

− <c> τ(a, b)− <a><b><c> .

This equation is formally identical to the familiar RANS equation for the
Reynolds stress uiuj, which is the basis for the adaptation of a RANS second
moment closure to the hybrid RANS/TLES context presented in section
5. DT

ijSFS
, Dν

ijSFS
, εijSFS, φijSFS and PijSFS represent subfilter-scale turbulent

diffusion, viscous diffusion, dissipation, velocity–pressure gradient correlation
and production, respectively. The formal similarity of these terms with their
RANS counterpart becomes obvious with an idempotent filter: for instance,
in this case, the SFS turbulent diffusion term reads

DT
ijSFS

= −
∂ <u′′

i u
′′
ju

′′
k>

∂xk

. (18)

One of the advantages of Eulerian temporal filtering in the context of sta-
tionary flows is that the following property is satisfied

<u∗> = u∗, (19)

such that, as shown by Germano (1992), the total Reynolds stress uiuj is
exactly decomposed as

uiuj =
(
ŨiŨj − UiUj

)
+ τijSFS. (20)

The total fluctuating kinetic energy is decomposed as

k =
1

2
uiui = km + kr, (21)
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where the subfilter scale contribution, or modeled part, is

km = kSFS =
1

2
τiiSFS (22)

and the resolved part

kr =
1

2

(
ŨiŨi − UiUi

)
=

1

2
u′
iu

′
i. (23)

In Eq. (20), the last term in the RHS, τijSFS, is generally not accounted for in
standard LES, since the cutoff wavenumber is located well inside the inertial
region. In the case of hybrid methods, the contribution of the subfilter scales
can be dominant, and even represent 100 % of the energy in RANS regions.
Consequently, an accurate evaluation of this part is necessary, in general
through transport equations for the subgrid energy kSFS or, as in Chaouat
and Schiestel (2005, 2009); Jakirlić et al. (2009), by directly solving transport
equations for the subfilter stress.
The formalism introduced in this section provides an appropriate framework
for hybrid methodologies. The definition of the filtering operator, based on
a temporal kernel, ensures that the variables Ũi, P̃ and τijSFS consistently
and continuously tend to their corresponding RANS counterparts, Ui, P and
uiuj, when the temporal filter width goes to infinity. The main issue in this
framework is the modeling of the subfilter stress, which must be compatible
with all the possible locations of the characteristic cutoff frequency ωc in
the turbulent spectrum: well inside the inertial range (standard TLES), at
the RANS limit (ωc = 0), or, by continuity, in the energetic range, where
equilibrium cannot be assumed and complex production and redistribution
phenomena play a major role.
The formal similarity of the TLES transport equation for the subfilter stress
and the standard RANS equation for the Reynolds stress, moreover suggests
that the form of the models used in TLES and RANS regions can be identical,
and that a sensitization of the model to the temporal filter width can provide
the appropriate adaptation of the level of subfilter stresses in the momentum
equation to account for the transition from a TLES to a RANS behavior.

3 State-of-the-art subfilter stress models

The first possibility to be considered in order to develop an hybrid RANS/TLES
model is to extend an existing TLES subfilter stress model such that it be-
comes compatible with the RANS limit. For this purpose, the behavior of
the models in the limit ∆T → ∞ must be investigated.
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Models for the subfilter stresses for LES based on Eulerian temporal filtering
have been proposed by Pruett (2000); Pruett et al. (2003); Tejada-Martinez
et al. (2007). Since in Smagorinsky-type models, a length scale characterizing
the filter is explicitly needed to determine the subfilter viscosity, such models
cannot be directly adapted to temporal filtering. Therefore, the authors have
used models in which the filter is explicitly used, such as a scale-similarity
model (Pruett, 2000; Pruett et al., 2003) or a deconvolution model (Pruett
et al., 2003; Tejada-Martinez et al., 2007).
In the former model, the so-called Temporal Scale-Similarity Model (TSSM),
the subfilter stress is approximated by

τijSFS ≈<<u∗
i ><u∗

j >> − <<u∗
i >><<u∗

j >>, (24)

which is formally equivalent to the model of Bardina et al. (1980) who used
a spatial filter. Beside the fact that the scale-similarity hypothesis is valid
only in case of equilibrium of the turbulent structures above and below the
cutoff frequency, which is only valid in the inertial range of the spectrum,
the TSSM model vanishes in the limit ∆T → ∞, such that the model is
not compatible with the RANS limit. The reason for this behavior is simply
that the filtered variables tend to the Reynolds-averaged variables, for which
<<u∗

i ><u∗
j >>=<<u∗

i >><<u∗
j >> (Kampé De Fériet and Betchov, 1951).

Therefore, the best candidate for an extension to the hybrid methodology
is the Temporal Approximate Deconvolution Model (TADM) proposed by
Pruett et al. (2003), as an adaptation to time filtering of the ADM model
(Stolz et al., 2001). This model is based on a spectral partitioning in the
frequency domain

ω ∈ [0,∞] = [0, ω∆T
]︸ ︷︷ ︸

Resolved
scales

∪ [ω∆T
, ω∆t] ∪ [ω∆t,∞]︸ ︷︷ ︸
Subfilter
scales

where ω∆T
and ω∆t are the frequencies associated to the temporal width

of the filter ∆T and to the time step ∆t, respectively. Two parts are thus
distinguished in the subfilter scales: the resolved subfilter scales (RSFS), in
the range [ω∆T

, ω∆t], and the unresolved subfilter scales (USFS) in the range
[ω∆t,∞].
The RSFS are reconstructed using the temporal approximate deconvolution
method

τijRSFS ≈<vivj> − <vi><vj> (25)

where vi is an approximation of the instantaneous (unfiltered) velocity u∗
i

obtained by applying the approximate inverse filter G−1
∆T a to the resolved
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velocity

vi = G−1
∆T a∗ <u∗

i >= c0 <u∗
i > +c1 <<u∗

i >> + · · ·+ cp <u∗
i >

(p+1) (26)

(∗ stands for the convolution product). < . >(q) denotes the application of
the filter q times, using the primary filter G∆T

.
The remaining contribution to the subfilter stress, the USFS, is obtained by
a regularization procedure

∂τijUSFS
∂xj

= χ(I −G∆T
∗G−1

∆T a)∗ <u∗
i >, (27)

which is purely dissipative.
The behavior of the TADM model for large values of the temporal filter
width ∆T was investigated by Pruett et al. (2003), who showed that the
approximate deconvolution procedure is able to accurately reproduce the
exact filtered velocity, provided that the order q of the approximate inverse
is sufficiently high. However, they also mentioned that in the limit ∆T → ∞,
the model is not valid, because the deconvolution procedure assumes that
the filter is invertible, which is not the case in this limit: the frequency ωc

characterizing the width of the Fourier transform of the filter Ĝ∆T
goes to

zero, such that lim∆T→∞ Ĝ∆T
(ω) = 0.

Under the criteria that have been established here for the construction of
a hybrid RANS/TLES methodology, it is not possible to adapt the TLES
formulation just discussed to the hybrid approach since the filter does not
tend to the Reynolds average in the limit ∆T → ∞. Oftentimes, it is assumed
that modification of coefficients is the change necessary in migrating RANS
or (T)LES methodologies to a hybrid level. Delineating criteria based on
mathematical consistencies, as is done here, can lead to a selection process
that preclude what may appear viable hybrid approaches. In the remainder
of this article, an alternate strategy is developed: a RANS model is modified
by sensitizing the coefficients to the temporal width of the filter.

4 TPITM methodology

Within the consistent temporal framework, a new approach is proposed, the
Temporal Partially Integrated Transport Model (TPITM), which is an adap-
tation/extension of the PITM model (Schiestel and Dejoan, 2005; Chaouat
and Schiestel, 2005) to the temporal filtering context. The TPITM model is
based on a spectral analysis in the frequency domain, in order to guarantee
compatibility between the two methodologies – RANS and TLES.
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In section 4.1, the energy partition among filtered and residual scales Eq. (21)
is written in the frequency domain. The transport equation for the Eule-
rian temporal energy spectrum is derived, in order to obtain the transport
equation for the subfilter energy km. This equation is the basis for the sen-
sitization, introduced in section 4.2, of the standard RANS dissipation rate
equation to the temporal filter width.

4.1 Energy partition in frequency space

The turbulent kinetic energy can be written as

k(x) =
1

2
Qi,i(x, 0) =

∫ ∞

−∞

1

2
Q̂i,i(x, ω) dω =

∫ ∞

0

ET (x, ω) dω, (28)

where φ̂ denotes the temporal Fourier transform of φ, defined by

φ̂(x, ω) =
1

2π

∫ ∞

−∞

e−iωτφ(x, τ)dτ. (29)

Qi,j(x, τ) is the two-time correlation tensor

Qi,j(x, τ) = ui(x, t)uj(x, t+ τ) (30)

and ET (x, ω) the Eulerian temporal turbulent kinetic energy spectrum, given
by

ET (x, ω) = Q̂i,i(x, ω). (31)

Introducing Ĝ∆T
(ω), the Fourier transform of the temporal filter kernel

G∆T
(τ), the resolved part of the turbulent energy reads

kr(x) =

∫ ∞

0

Ĝ∆T
(ω) Ĝ∗

∆T
(ω)ET (x, ω) dω , (32)

where a star denotes the conjugate, and the residual energy, km = k − kr,

km(x) =

∫ ∞

0

[
1− Ĝ∆T

(ω) Ĝ∗
∆T

(ω)
]
ET (x, ω) dω. (33)

In order to derive the model equation for the dissipation rate, as presented
in the next section, the transport equation for km is required. According to
Eq. (33), this equation can be derived from the Eulerian temporal energy
spectrum equation.
By taking the Fourier transform of the transport equation for Qi,i, the Eule-
rian temporal energy spectrum equation can be written as

DET

Dt
= P̂+ D̂− Ê+ T̂. (34)

12



The details of the derivation of this equation are given in the appendix.
The terms of the RHS of Eq. (34) are the source and transport terms driving
the evolution of the turbulent energy per frequency unit along a streamline.
P̂ is the production by the mean velocity, D̂ the diffusion term, sum of the
turbulent D̂T , molecular D̂ν and pressure D̂P diffusions, and Ê the dissipation
rate. The term T̂ originates from the non-linear interactions, and is a spectral
flux, i.e., does not contribute to the creation or destruction of turbulent
kinetic energy, since

∫ ∞

0

T̂(x, ω) dω = 0. (35)

Note that integrating Eq. (34) over all the frequencies, the turbulent kinetic
energy equation is obtained

Dk

Dt
=−uiuj

∂Ui

∂xj︸ ︷︷ ︸
P

+ν
∂2k

∂xj∂xj

− 1

2

∂uiuiuj

∂xj

− 1

ρ

∂puj

∂xj︸ ︷︷ ︸
D

−ν
∂ui

∂xj

∂ui

∂xj︸ ︷︷ ︸
ε

. (36)

Since the subfilter kinetic energy is given by Eq. (33), its transport equation
can be obtained by taking the derivative of Eq. (33) and making use of
Eq. (34), which leads to

Dkm
Dt

= Pm +Dm − εm − TG (37)

where

Dm =

∫ ∞

0

(1− Ĝ∆T
Ĝ∗

∆T
)D̂ dω; Pm =

∫ ∞

0

(1− Ĝ∆T
Ĝ∗

∆T
)(P̂+ T̂) dω;

(38)

εm =

∫ ∞

0

(1− Ĝ∆T
Ĝ∗

∆T
)Ê dω; TG =

∫ ∞

0

ET
D

Dt
(Ĝ∆T

Ĝ∗
∆T

) dω. (39)

The terms εm and Dm are respectively the SFS dissipation and diffusion
terms. The term Pm is the sum of a production term by the mean velocity
and a spectral flux. These terms are the subfilter parts of the terms appearing
in Eq. (36). Moreover, in the RANS limit, ∆T → ∞, Eq. (36) is recovered

term by term, since lim∆T→∞ Ĝ∆T
(ω) = 0. The last term in the right-hand

side of Eq. (37), TG, is a transfer term arising from the variations of filter
width. This term is second order in a standard LES, and, therefore, is usually
neglected (Ghosal and Moin, 1995).
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Figure 1: Schematic view of the application of the two filters to the Eulerian
temporal spectrum (arbitrary units).

4.2 Dissipation rate equation

In seamless hybrid RANS/LES methods, the amount of resolved energy is
to be controlled by making the equations of the model dependent on the
filter width. Similar to the PITM approach (Schiestel and Dejoan, 2005;
Chaouat and Schiestel, 2005) (spatial filtering), this can be achieved by us-
ing a transport equation for the dissipation rate that is a modification of
the usual RANS equation. In order to know how to modify this equation to
make it dependent on the characteristic frequency of the filter ωc = π/∆T ,
a second filter G′

∆T
is introduced, at the frequency ωd, such that the turbu-

lent spectrum is schematically divided into three parts, the resolved range
[0;ωc], the subfilter energetic range [ωc;ωd] and the subfilter dissipative range
[ωd;∞], as illustrated in Fig. 1. With this energy partition, the model is a
particular case, reduced to only three spectral zones, of the multi-scale mod-
els proposed by Schiestel (1983a,b, 1987). Similar to what was proposed by
Schiestel (1987) and Schiestel and Dejoan (2005) for the spatial version of
the PITM, the following definition is used for ωd

ωd = ωc + χm
εm
km

, (40)

where χm is an arbitrary constant, chosen such a way that the energy in
the range [ωd;∞] is negligible compared to the energy in the range [ωc;ωd].
Using Eq. (37), the material derivative of (40) leads to a transport equation
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for the subfilter dissipation rate

Dεm
Dt

=
εm
km

Pm − ε2m
km

[
1−

(
km
εm

)
ω̇d − ω̇c

ωd − ωc

+
TG

εm

]
+

εm
km

Dm . (41)

where φ̇ denotes the material derivative of φ. In order to write Eq. (41) in
a form similar to the usual RANS equation, the functions C ′

ε1
and C ′

ε2
are

introduced
Dεm
Dt

= C ′
ε1

εm
km

Pm − C ′
ε2

ε2m
km

+
εm
km

Dm, (42)

where

C ′
ε2
= 1 + (C ′

ε1
− 1)

Pm

εm
−
(
km
εm

)
ω̇d − ω̇c

ωd − ωc

+
TG

εm
. (43)

C ′
ε1
can be chosen arbitrarily as a function of the characteristic frequency ωc,

but it must satisfy the RANS limiting behavior limωc→0C
′
ε1
= Cε1 . (Cε1 and

Cε2 denote hereafter the coefficients entering the dissipation equation used in
RANS mode.) Moreover, in order to recover the standard RANS dissipation
equation in the RANS limit, the function C ′

ε2
given by Eq. (43) must satisfy

lim
ωc,ω̇c→0

C ′
ε2
= 1 + (Cε1 − 1)

P

ε
− k

ε

ω̇d

ωd

= Cε2 (44)

This relation provides a constraint on ω̇d that can be introduced into Eq. (43)
to give

C ′
ε2
=

r

rε

ωd

ωd − ωc

(
Cε2 − 1− P

ε
(Cε1 − 1)

)

+1 + (C ′
ε1
− 1)

Pm

εm
+

(
km/εm
ωd − ωc

ω̇c +
TG

εm

)
, (45)

where r = km/k, and k = kr + km is the total kinetic energy, i.e., the
sum of the resolved part kr = 1

2
u′
iu

′
i and SFS part km = 1

2
τiiSFS. Similarly,

rε = εm/ε, and ε = εr + εm is the total dissipation rate, i.e., the sum of
the resolved part εr and SFS part εm.At this stage, it can be noticed that
Eq. (45) is difficult to use from a practical point of view, because the total
(resolved+SFS) variables P and ε are not known at the beginning of the
computation: a relation between these total variables and their resolved part
is needed in order to rewrite Eq. (45) in terms of modeled quantities only.
Such a relation can be obtained from the material derivative of r = km/k,
which gives exactly, using of Eq. (36) and Eq. (37)

P

ε
= 1 +

rε
r

(
Pm

εm
− 1

)
+

rε
εm

(
Dm

r
−D

)
− km

εm

rε
r2

ṙ − rε
r

TG

εm
. (46)

15



In the following, it will be assumed that the filter width varies sufficiently
slowly for the terms in ω̇c and TG to be negligible in Eq. (45), as well as the
terms in ṙ and TG in Eq. (46). This hypothesis, e.g. valid for a channel flow,
is used here to simplify the analysis, but the influence of the variations of
the filter width can be reintroduced if necessary. By inserting Eq. (46) into
Eq. (45), the SFS dissipation rate equation can be written as

Dεm
Dt

= C ′
ε1

Pmεm
km

− C ′
ε2

ε2m
km

+Dεm , (47)

with

C ′
ε2

=
ωd

ωd − ωc

[
r

rε
(Cε2 − Cε1) + (Cε1 − 1)×

(
1− Pm

εm

)]
+ 1 +

(
C ′

ε1
− 1
) Pm

εm
(48)

and

Dεm =
εm
km

Dm + (Cε1 − 1)
εm
km

ωd

ωd − ωc

(Dm − rD) . (49)

In practical applications, the aim of such a hybrid model is not to achieve
the DNS limit, especially if the Reynolds number is high. Therefore, it is
assumed that ωc ≪ ωd and rε ∼ 1, such that Eq. (48) becomes

C ′
ε2
= Cε1 + r (Cε2 − Cε1) +

Pm

εm

(
C ′

ε1
− Cε1

)
(50)

Inserting Eq. (50) into Eq. (47), it is noticed that the final result does not
depend on the function C ′

ε1
, since the SFS dissipation rate equation is finally

given by

Dεm
Dt

= Cε1

εm
km

Pm −
[
Cε1 + r (Cε2 − Cε1)

]

︸ ︷︷ ︸
C∗

ε2

ε2m
km

+Dεm (51)

Eq. (51) is similar to the one found in the spatial PITM approach (Schiestel
and Dejoan, 2005; Chaouat and Schiestel, 2005), but includes the additional
diffusion term Dεm . The RANS/TLES transition is controlled by the param-
eter r. The RANS limit corresponds to r = 1, in which case the classical
RANS dissipation rate equation is recovered. During the computation, the
value of this parameter must be prescribed as a function of the filter width, in
order to enforce the desired behavior of the model. This function is proposed
in the next section.
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4.3 Relation between r and the filter width

In TLES, the choice of the temporal filter width ∆T , or equivalently, the
frequency ωc = π/∆T , is not as obvious as in spatial LES. Transposing the
standard practice of spatial LES in the temporal domain, it would seem
straightforward to link ∆T to the time step used in the computation, ∆t, for
instance by ∆T = 2∆t. However, since ∆t is necessarily the same everywhere
in the domain, this relation does not allow local variations of the filter width,
which is in contradiction to the objective of hybrid models. Moreover, it is
widely recognized in LES that linking the filter width to the local grid step
optimizes the cost of a computation.
Therefore, the possibility of linking the temporal filter width to the local
mesh refinement is investigated. For this purpose, ωc must be related to the
wavenumber associated with the mesh size κc = π(∆x∆y∆z)−1/3. The main
difficulty then lies in the fact that a dispersion relation ω = f(κ) is required
to evaluate the frequency ωc. This relation is not known in general, and
combines complex effects. Indeed, the frequency associated to a particular
wavenumber in not only determined by the natural lifetime of the structure,
but also by their convection velocity (Doppler effect), as mentioned by Pruett
(2000).
However, since the Eulerian frequency spectrum ET (ω) and the wavenumber
spectrum E(κ) are related by

dk = E(κ) dκ = ET (ω) dω, (52)

the energy ratio r = km/k, which is the only parameter entering the model,
can be evaluated either in the frequency domain or in the wavenumber do-
main.
In order to obtain a simple analytical expression of r, a spectral cutoff filter
is considered. In this case, the ratio r is given by

r =
1

k

∫ ∞

ωc

ET (ω) dω. (53)

Using Eq. (52), a change of variable yields

r =
1

k

∫ ∞

κc

ET (ω)
E(κ)

ET (ω)
dκ (54)

=
1

k

∫ ∞

κc

E(κ) dκ . (55)

This relation is a noticeable feature of the TPITM formulation: the model
only depends on the parameter r, which can be evaluated by integration of
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either the temporal spectrum or the spatial spectrum, as shown by Eq. (55).
Consequently, the model can be equivalently sensitized to the cutoff fre-
quency of the filter ωc or to the corresponding wavenumber defined by κc =
f−1(ωc), without any explicit knowledge of the dispersion relation f . This
remarks is interesting for two reasons: firstly, the model for the temporally
filtered equations can be linked to the local grid step, which is convenient in
practice and enables optimizing the use of computer resources; secondly, the
ratio r can thus be evaluated using a schematic shape for the wavenumber
spectrum, such asa standard Kolmogorov spectrum, which yields

r =
3

2
Cκ

(
κc

k3/2

ε

)− 2

3

. (56)

Such a relation cannot be found in general using Eq. (53), since the Eulerian
temporal spectrum is not known. It is worth emphasizing that the use of
this relation does not imply that the temporal filtering is replaced by spatial
filtering. It is only a convenient way, justified by Eq. (55), of making the
equations of the model sensitive to the local grid step, i.e., of adapting the
cutoff frequency of the temporal filter to the highest frequency that can be
resolved by the grid.
An illustration of this result can be given by considering the particular case
of turbulence in the absence of mean flow. In this case, Tennekes (1975)
assumed that the scales in the inertial range are swept by the large scales,
and proposed the dispersion relation

ω = κ
√
k . (57)

Using this relation yields

dk = Cκε
2/3κ−5/3dκ (58)

= Cκε
2/3k1/3ω−5/3dω , (59)

such that
ET (ω) = Cκε

2/3k1/3ω−5/3 . (60)

Using this Eulerian spectrum in Eq. (53) finally provides the relation between
r and the cutoff frequency

r =
3

2
Cκ

(
ωc

k

ε

)− 2

3

(61)

which is identical to Eq. (56) since ωc = κc

√
k.
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Therefore, in the present TPITM formulation, the temporal filter width is
not explicitly used. The transport equations for the subfilter stresses are
indirectly sensitized to the filter width through the associated dissipation
rate equation; the temporal filter implicitly enters the latter via the energy
ratio r, and the above analysis shows that r can be related to the local grid
step.

5 Example of model based on the TPITM

methodology: Elliptic blending model for

the subfilter stresses

The previous section shows that a RANS model can be modified in order
to be used as a TLES model by simply making the coefficient Cε2 in the
dissipation rate equation a function of the filter width. This procedure can
in principle be used within any type of RANS model that uses a dissipation
rate equation (the adaptation to the ω equation is straightforward).
However, in a hybrid RANS/TLES context, in which the cutoff frequency
can be located in the large-scale region of the turbulent spectrum, we believe
that it is necessary to take into account the complex production and redistri-
bution mechanisms occurring at these scales. Therefore, the use of transport
equations for the SFS stresses, rather than an eddy-viscosity model, is de-
sirable, as proposed in the spatial PITM context by Chaouat and Schiestel
(2005); Jakirlić et al. (2009).
Since the transport equation for the subfilter-stress tensor (17) is formally
identical to the transport equations for the Reynolds-stress tensor, it can be
assumed that using a model formally identical to a RANS second-moment
closure is adequate, as soon as the length and time scales are modified to
account for the variable cutoff frequency.
In this paper, in order to demonstrate the applicability of the TPITM ap-
proach, an adaptation of the Elliptic Blending Reynolds-Stress Model (EB-
RSM) (Manceau and Hanjalić, 2002; Manceau, 2005), usually applied in a
RANS context, is used. In this model, six transport equations for the sub-
filter stresses are thus solved, in addition to the transport equation (51) for
the dissipation rate. However, it is worth emphasizing here that Eq. (51) is
written for εm, i.e., the long-time averaged value of the SFS dissipation rate
εm = εSFS =

1
2
εiiSFS, The analysis done in spectral space shows that the vari-

able coefficient C∗
ε2 enables the control of the amount of long-time averaged

modeled energy km = kSFS. In the computations, equations are solved for
the time-dependent subgrid stresses rather than for their long-time averages.
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However, it is assumed that the control of the level of modeled energy via
C∗

ε2 is also valid for the time-dependent quantities: Eq. (51) is thus solved
for the time-dependent subfilter dissipation rate

DεSFS
Dt

= Cε1

εSFS
kSFS

PSFS − C∗
ε2

ε2SFS
kSFS

+DεSFS (62)

Note that the diffusion term is modeled by a standard generalized gradient
diffusion hypothesis.

5.1 Model for the subfilter stresses

The EB-RSM model is an extension of the SSG model (Speziale et al., 1991)
to the near-wall region. The particularity of this model is that it uses a
blending of the ”quasi-homogeneous” (away from the wall) and the near-wall
models of the pressure term φijSFS and the dissipation tensor εijSFS using

φijSFS = (1− α3)φw
ij + α3φh

ij, (63)

εijSFS = (1− α3)
τijSFS
kSFS

εSFS + α32

3
εSFSδij . (64)

α is a blending coefficient which goes from zero at the wall, to unity far from
the wall. The nonlocal character of the pressure is reproduced by solving an
elliptic equation for the blending function

α− L2
SFS∇

2α = 1. (65)

The near-wall form of the model φw
ij can be shown to be consistent with the

asymptotic behavior of all the variables at the wall when it is taken as

φw
ij = −5

εSFS
kSFS

[
τikSFSnjnk + τjkSFSnink −

1

2
τklSFSnknl (ninj + δij)

]
. (66)

A generalization of the concept of wall-normal vector is used here: n =
∇α/‖∇α‖, which is applicable everywhere in the domain. The SSG model
(Speziale et al., 1991) is used for φh

ij.
The association of the elliptic blending model and the TPITM approach
leads to some modeling issues that have been previously investigated in the
frame of spatial PITM (Fadai-Ghotbi et al., 2007; Jakirlić et al., 2009): in
particular, a better control of the parameter r in the near-wall region is
obtained when the elliptic blending function α is empirically introduced in
the formulation in order to enforce the RANS mode close to the wall

r = (1− α3) + α3β−1
0

(
κc

k3/2

ε

)− 2

3

, (67)
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with β0 = 0.20, and the length scale of the elliptic equation (65) is made a
function of the parameter r

LSFS = CLmax

(
k
3/2
SFS

εSFS
, r3/2Cη

ν3/4

ε1/4

)
. (68)

In Eqs. (67) and (68), k and ε are evaluated during the computation, using
time-averaging and, in the particular case of the channel flow, averaging in
homogeneous directions. k is the sum of the modeled energy km and the
resolved energy kr, defined by Eqs. (22) and (23), respectively. Consistent
with the hypothesis rε = 1 made in section 4.2, the contribution of the re-
solved scales to the dissipation rate is assumed negligible, such that ε = εSFS.
These modeling aspects are directly imported from the spatial PITM adap-
tation of the EB-RSM and are not repeated herein. The reader is referred to
Fadai-Ghotbi et al. (2007); Jakirlić et al. (2009) for details.

5.2 Validation in channel flow

Computations are performed using the open-source software Code Saturne,
a parallel, finite volume solver on unstructured grids, developed at EDF (Ar-
chambeau et al., 2004), distributed under Gnu GPL license2. The numerical
method is based on a SIMPLEC algorithm, with a Rhie & Chow interpola-
tion in the pressure correction step. The convection terms in the transport
equations (16) for the filtered momentum are discretized using central differ-
encing. On the contrary, upwind biased differencing is used in the transport
equations for the subfilter stresses (17). Time-marching is based on a second-
order, Crank-Nicolson scheme.
The case is a channel flow at Reτ = 395, and results are compared with DNS
data (Moser et al., 1999). The mesh is made of 32 × 54 × 32 cells, with
∆x+ = 100, ∆z+ = 50 and, at the wall, ∆y+1 = 1.5, which is very coarse
compared to a mesh suitable for LES, which requires with the present second-
order numerical method ∆x+ = 20, ∆z+ = 10 and, at the wall, ∆y+1 = 1.
In order to evaluate the sensitivity of the model to the mesh, a second mesh
was also used, consisting of 48× 54× 48.
First of all, it is worth pointing out that the hybrid method is indeed able
to control the respective contributions of the resolved (filtered) and modeled
(subfilter) fields. The relation (67) for the energy ratio r aims at enforcing
a RANS solution in the near-wall region, independently of the grid, and at
continuously transitioning to TLES toward the outer part of the flow. Fig. 2

2http://www.code-saturne.org
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Figure 2: Contributions of the resolved and modeled flow fields to the shear
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(second mesh).

Ũ+

shows that this aim is fulfilled for both the shear stress and the turbulent
kinetic energy. In the near-wall region, the contribution of the resolved stress
is zero and the modeled stress represents the integrality of the total shear
stress. This partition of the stress progressively transitions toward the center
of the channel, where the amount of resolved shear stress reaches about 50%
for the first mesh, and 80% for the second mesh. The same trend is observed
for the turbulent kinetic energy, although the weight of the subfilter part is
slightly larger than in the case of the shear stress. Although the partition
of energy among the resolved and SFS scales is very dependent on the mesh
refinement, the total turbulent energy remains approximately constant, in
particular below y+ = 250. A variation in the central region was also observed
by Chaouat and Schiestel (2005) with the spatial version of the PITM, using
a different model for the subfilter scales. As shown in Fig. 3, the energy ratio
r = km/k (modeled energy/total energy) significantly varies in the domain,
and with mesh refinement. At the center of the channel, it reaches about 0.4
for the first mesh and 0.2 for the second mesh, i.e., the contribution of the
resolved scales represents 60% and 80%, respectively. Since in the central
region, α = 1, Eq. (67) shows that r is determined by the local grid step.
A particularly interesting feature can be observed in Fig. 3: the ratio r =
km/k does not reach unity at the wall, contrary to the ratio τ12SFS/τ12. This
behavior shows that the near-wall region is subject to unsteadiness induced
by the large scale motions coming from the outer layer. These motions
contribute to the fluctuating energy in the near-wall region, but not to the
shear stress, which is 100% modeled at the wall. This description corresponds
to the definition of the inactive motions of Townsend. Although it does
not provide any detailed information about the dynamics of the flow, the
structures present in the resolved field are visualized using the Q-criterion
in Fig. 4. As could be expected in such a low resolution computation, only
very large scale structures are obtained.

23



0 100 200 300
0

2

4

6

8

y+

DNS

TPITM
τ
+ ij

EB-RSM

Figure 5: Diagonal Reynolds stresses (first mesh).

Figs. 2 and 5 show a satisfactory reproduction of the turbulent energy and
the Reynolds stresses. In the near-wall region, this results is to be credited
to the RANS model. In the central region, the contribution of the resolved
field is significant, but the level of modeled energy is appropriately reduced,
such that the sum of the two contribution provides the correct level of energy.
Fig. 5 shows that in the TLES region the streamwise fluctuations are over-
estimated, to the detriment of the fluctuations in the other directions.Since
the RANS model correctly reproduces all the Reynolds stresses in the cen-
tral region, as can be seen in the figure, this behavior is to be related to the
TPITM methodology or, at least, to the use of a modified RANS model as
a SFS model.
Finally, Fig. 6 illustrates the main interest of this approach: despite the
fact that DNS is not perfectly matched, the mean velocity profile is very
acceptable, even using the first mesh which is much coarser than a LES-
type mesh. As shown in the figure, a LES performed with the dynamic
Smagorinsky model on the same mesh strongly overestimates the flow rate.
When the mesh is refined, although the relative weights of the resolved and
modeled contributions to the flow field are drastically modified, as shown
above, the prediction of the mean velocity profile shows a very moderate
sensitivity to the mesh, the variation of the flow rate being less than 0.5%.

6 Extension to other methodologies

As mentioned in the Introduction, numerous approaches have been proposed
in the recent years to achieve an objective similar to the TPITM presented
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Figure 6: Mean velocity profiles. Comparison with results obtained on the
first mesh using the dynamic Smagorinsky model.

in section 4, i.e., to provide a level of description of turbulence intermedi-
ate between LES and RANS. They are collectively termed as eddy-resolving
methods by Fröhlich and von Terzi (2008). The approaches that ensure a
continuous transition from a RANS model to a LES model, depending on
the local grid size, are called seamless, global (Sagaut et al., 2006), uni-
fied (Fröhlich and von Terzi, 2008) or non-zonal hybrid RANS/LES models.
Other methods, which do not rely explicitly on the grid step, are denoted by
second-generation URANS models by Fröhlich and von Terzi (2008).
One of the main features shared by these models is an ambiguous definition
of the resolved variables, as mentioned in the Introduction. Indeed, in the
regions where the model works in LES mode, the spatially-filtered momentum
equations are solved. In the RANS region, the Reynolds average is used,
which is a statistical average, and the two approaches do not continuously
match, except in the case of homogeneous flows.
On the contrary, it was shown in section 2 that the introduction of tempo-
ral filtering provides a consistent framework for inhomogeneous, stationary
flows. Thus, it suggests that seamless and second-generation URANS meth-
ods should be regarded as TLES/RANS hybrid methods.
Indeed, all the models share a common objective: controlling the level of
stresses in the momentum equations to ensure a transition from a RANS to
a (T)LES behavior where necessary. The TPITM model presented in sec-
tion 4.2 is based on transport equations for the subfilter stresses τijSFS, but
an eddy-viscosity TPITM model can be easily derived following the same
methodology (similar to the eddy-viscosity PITM model proposed by Schi-
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estel and Dejoan, 2005). In this case, the subfilter viscosity is

νt = Cµ
k2
m

ε
= r2 νtRANS, (69)

where νtRANS is the eddy-viscosity of a RANS model. In case of spectral
equilibrium, for a cutoff frequency in the inertial range, it can be deduced
from Eq. (56) that the subfilter length scale is directly linked to the cutoff
wavenumber by

k
3/2
m

ε
=

(
3Cκ

2

)3/2

κ−1
c ≃ ∆S, (70)

where ∆S = π/κc (the TPITM does not assume equilibrium at the cutoff
frequency, such that, in general, the length scale characterizing the largest
unresolved structures is determined by the transport equations, and Eq. 70
does not hold). Therefore, in this case, the TPITM is equivalent to a spatial
LES with the filter width ∆S.
It is easy to show that other methodologies, using various modifications of the
equations, basically achieve the same reduction of the level of stresses in the
momentum equation, via a direct damping of the eddy-viscosity or, equiv-
alently, a reduction of the length scale. For instance, the most widespread
hybrid method, DES (Spalart et al., 1997), in its original formulation, di-
rectly reduces the level of eddy-viscosity in detached regions, by increasing
its destruction term. In SAS (Menter et al., 2003), the same effect is achieved
by a decrease of the production term in the eddy-viscosity transport equa-
tion. Other methods, such as OES (Bourguet et al., 2007, 2008), XLES
(Kok et al., 2004) or the method of Fan et al. (2004), directly modify the
Boussinesq relation, either by redefining the coefficient Cµ or by blending
the RANS and LES formulae. In LNS (Batten et al., 2004) and FSM (Fasel
et al., 2002), the stresses in the momentum equations are directly premulti-
plied by a damping factor, as originally proposed by Speziale (1998), which
is equivalent to modifying the eddy-viscosity. In the case of PANS (Giri-
maji, 2006), which controls the ratio modeled energy/total energy through
the Cε2 coefficient, the similarity with PITM is obvious, despite a completely
different argumentation and significant differences in the practical details.
Many of these methods are built in such a way that, for sufficiently fine grids,
the length scale entering the model coincides with the grid step, in order to
be equivalent to LES. However, as shown in section 4.3, a relation can be
found between the wavenumber and the frequency characterizing the energy
partition, which reflects the fact that a spatial filtering implicitly induces a
temporal filtering, and vice versa. Therefore, a hybrid formulation based on
a filter width related to the grid step can be associated with a temporally-
filtered approach.
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More precisely, the relation between the temporal filter and the spatial filter
can be expressed in a case where the turbulent spectra can be defined both
in frequency and wavenumber domains, as, e.g., forced homogeneous turbu-
lence. Indeed, the explicit introduction of the dispersion relation ω = f(κ)
into Eq. (52) yields

E(κ) = ET ◦ f(κ) df

dκ
(κ) (71)

Now, for any temporal filter G∆T
, the resolved energy reads

kr =

∫ ∞

0

Ĝ∆T
(ω)Ĝ∗

∆T
(ω)ET (ω) dω (72)

=

∫ ∞

0

Ĝ∆T
◦ f(κ) Ĝ∗

∆T
◦ f(κ) ET ◦ f(κ)df

dκ
(κ)dκ (73)

Moreover, the corresponding spatial filter must satisfy

kr =

∫ ∞

0

Ĝ∆S
(κ)Ĝ∗

∆S
(κ)E(κ)dκ (74)

such that, using Eq. (71),

Ĝ∆S
= Ĝ∆T

◦ f. (75)

Finally, the case of URANS in stationary flows deserves some attention. In-
deed, in such flows, the Reynolds average is equivalent to a long-time average,
such that the solution of the RANS equations is expected to be independent
of time. However, in practice, e.g. in the case of the wake of a bluff body, the
solutions found are often time-dependent, and the method is then denoted
by URANS. It is worth emphasizing that, although the RANS equations are
recovered by making the temporal filter width go to infinity, the time scale
entering the RANS models is the integral time scale. Therefore, the equations
of the model are formally identical to the equations of a subfilter stress model
with a filter width equal to the integral time scale. Consequently, URANS
can be regarded as a particular case of hybrid RANS/TLES. Depending on
the practical flow configuration, in particular the type of instability modes at
the origin of the appearance of unsteadiness, the solution of this model can
be steady or unsteady (i.e., RANS or URANS, respectively). The possibility
of obtaining a steady solution with a filter of finite width is not surprising:
it is the method used by Åkervik et al. (2006) to obtain unstable, steady
solutions of the Navier–Stokes equations in globally unstable flows.
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7 Conclusion

Temporal filtering provides a consistent formalism for a class of seamless
hybrid RANS-LES methodologies, applicable to most of the industrial con-
figurations, which are inhomogeneous and stationary. In such flows, the
generalized temporal filter introduced in section 2 consistently bridges the
two approaches, RANS, based on Reynolds averaging, and TLES, based on
temporal filtering, in a Galilean invariant manner. In practice, similar to
what is usually done for approaches developed in homogeneous turbulence,
the present approach can also be applied to non-stationary flows, such as
flows with variable boundary conditions, although the theoretical link be-
tween RANS and TLES is then lost.
The formal similarity between the RANS and TLES equations provides the
basis for the use of formally similar models for the subfilter stresses, with
a continuous variation of the coefficients of the model to transition between
the two methodologies.
In order to seamlessly transition from RANS to TLES, the model must be
able to control the amount of resolved energy. Such a model, the TPITM,
the temporal version of the PITM, was proposed. It was shown through an
analysis in the frequency domain that any RANS model using a transport
equation for the dissipation rate can be sensitized to the cutoff frequency
introduced by the filter. One of the interests of this approach is that the
cornerstone is the energy ratio (ratio between the subfilter and total turbulent
energies), which can be expressed either as a function of the cutoff frequency
of the filter or as a function of the cutoff wavenumber of the spatial filter
implicitly related to the temporal filter. Consequently, the temporal filter
width can be implicitly fixed by the grid step, which enables local refinement
and optimizes the use of computational resources.
Although the TPITM method can be used with eddy-viscosity models, in
order to account for the complex production/redistribution mechanisms oc-
curring when the cutoff frequency lies in the energetic scales, transport equa-
tions are solved for the subfilter stresses. The model provides very encour-
aging predictions of the mean velocity profile and turbulent anisotropy in a
channel flow.
Finally, based on the fact that a temporally filtered approach does not nec-
essarily need to use explicitly the temporal filter width, but can rather be
based on a corresponding spatial filter width, it can be concluded that most
of the existing seamless hybrid methodologies, such as the widely used DES,
or the so-called second-generation URANS models (Fröhlich and von Terzi,
2008), such as SAS, and even the basic URANS, can be regarded as tem-
porally filtered approaches. This point of view enables the conciliation of a
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consistent formalism and methods routinely used in applied research.

Appendix: Derivation of the Eulerian tempo-

ral spectrum transport equation

In a stationary flow, the Eulerian temporal energy spectrum ET is the trace
of the Fourier transform of the two-time correlation tensor

ET (x, ω) = Q̂i,i(x, ω), (76)

with
Qi,j(x, τ) = ui(x, t)uj(x, t+ τ) = uiAujB, (77)

where indices A and B denote the values taken at times tA = t and tB = t+τ ,
respectively. The temporal Fourier transform φ̂ of any variable φ, and its
inverse, are defined as

φ̂(x, ω) =
1

2π

∫ +∞

−∞

e−iωτφ(x, τ) dτ, (78)

φ(x, τ) =

∫ +∞

−∞

eiωτ φ̂(x, ω) dω. (79)

The turbulent kinetic energy k =
1

2
uiui is given by

k(x) =
1

2
Qi,i(x, 0) =

∫ ∞

0

ET (x, ω) dω. (80)

Note that for stationary flows, Qi,i(τ) is an even function, such that ET (ω)
is a real and even function.
The equation of the fluctuating velocity ui leads to

Uk
∂

∂xk

(uiAujB) = −ujB
∂uiA

∂tA
− uiA

∂ujB

∂tB
− ukAujB

∂Ui

∂xk

− uiAukB
∂Uj

∂xk

− uiA
∂

∂xk

(ujBukB − ujBukB)− ujB
∂

∂xk

(uiAukA − uiAukA)

− ujB

ρ

∂pA
∂xi

− uiA

ρ

∂pB
∂xj

+ νujB
∂2uiA

∂xk∂xk

+ νuiA
∂2ujB

∂xk∂xk

(81)

In stationary flows, the mean velocity does not depend on time, and therefore
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UkA = UkB = Uk. The following definitions are introduced:

Sik,j(x, τ) = uiAukAujB ; Ei,j(x, τ) = 2ν
∂uiA

∂xk

∂ujB

∂xk

K(p),j(x, τ) = pAujB ; Ki,(p)(x, τ) = uiApB

Ti,j(x, τ) = (ukA − ukB)uiA
∂ujB

∂xk

,

(82)

in which subscripts before and after the comma refer to the times tA = t and
tB = t + τ , respectively. The subscript (p) refers to the pressure, and is not
a tensorial subscript. Using the incompressibility constraint, simple algebra
yields

−uiA
∂

∂xk

ujBukB − ujB
∂

∂xk

uiAukA = −∂Sik,j

∂xk

+ Ti,j (83)

and

νujB
∂2uiA

∂xk∂xk

+ νuiA
∂2ujB

∂xk∂xk

= ν
∂2Qi,j

∂xk∂xk

− Ei,j (84)

Introducing the change of variables t = tA and τ = tB − tA

∂

∂tA
=

∂

∂t

∂t

∂tA
+

∂

∂τ

∂τ

∂tA
=

∂

∂t
− ∂

∂τ
(85)

∂

∂tB
=

∂

∂t

∂t

∂tB
+

∂

∂τ

∂τ

∂tB
=

∂

∂τ
, (86)

it can be shown that

ujB
∂uiA

∂tA
+ uiA

∂ujB

∂tB
=

(
∂

∂tA
+

∂

∂tB

)
Qi,j =

∂Qi,j

∂t
= 0 (87)

Taking the Reynolds average of Eq. (81), and using relations (83), (84) and
(87), the transport equation for the two-time correlation tensor is obtained

DQi,j

Dt
= −∂Ui

∂xk

Qk,j −
∂Uj

∂xk

Qi,k −
∂Sik,j

∂xk

+ Ti,j + ν
∂2Qi,j

∂xk∂xk

− Ei,j

− 1

ρ

(
∂Ki,(p)

∂xj

+
∂K(p),j

∂xi

)
+

1

ρ

(
pB

∂uiA

∂xj

+ pA
∂ujB

∂xi

)
. (88)

where D/Dt = Uk∂k.
The trace of Eq. (88) reads

DQi,i

Dt
= P+ D

ν + D
T + D

P

︸ ︷︷ ︸
D

−E+ T, (89)
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where

P = −(Qi,j +Qj,i)
∂Ui

∂xj

; D
ν = ν

∂2Qi,i

∂xj∂xj

D
T = −∂Sik,i

∂xk

; D
P = −1

ρ

∂

∂xj

(
Kj,(p) +K(p),j

)

E = Ek,k ; T = Tk,k .

(90)

For τ = 0 (i.e., tA = tB), Eq. (89) leads to the equation for the turbulent
kinetic energy

Dk

Dt
= −uiuj

∂Ui

∂xj︸ ︷︷ ︸
P

+ ν
∂2k

∂xj∂xj

− 1

2

∂uiuiuj

∂xj

− 1

ρ

∂puj

∂xj︸ ︷︷ ︸
D

− ν
∂ui

∂xj

∂ui

∂xj︸ ︷︷ ︸
ε

(91)

The Fourier transform of Eq. (89) gives

DET

Dt
= P̂+ D̂− Ê+ T̂ (92)

Integrating Eq. (92) over all the frequencies, the turbulent kinetic energy
equation (91) is recovered, since

P (x) =
1

2
P(x, 0) =

∫ ∞

0

P̂(x, ω) dω, (93)

D(x) =
1

2
D(x, 0) =

∫ ∞

0

D̂(x, ω) dω, (94)

ε(x) =
1

2
E(x, 0) =

∫ ∞

0

Ê(x, ω) dω, (95)

0 =
1

2
T(x, 0) =

∫ ∞

0

T̂(x, ω) dω. (96)
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Schiestel, R., 1983b. Sur le concept d’échelles multiples en modélisation des
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