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ABSTRACT
Domain adaptation consists in learning from a source data
distribution a model that will be used on a different target
data distribution. The domain adaptation procedure is usually
unsuccessful if the source domain is too different from the
target one. In this paper, we study domain adaptation for im-
age classification with deep learning in the context of multiple
available source domains. We propose a multisource domain
adaptation method that selects and weights the sources based
on inter-domain distances. We provide encouraging results
on both classical benchmarks and a new real world applica-
tion with 21 domains.

Index Terms— Domain Adaptation, Negative Transfer,
Deep Learning, Image Classification.

1. INTRODUCTION AND RELATED WORK

Domain adaptation [1] consists in learning from a (labeled)
source data distribution, a model that will be used on a differ-
ent (but related and often unlabeled) target data distribution.
Many real word tasks require the use of domain adaptation
simply because of a lack of (target) labeled data or because of
some shift between the source and the target data distribution
that prevents from successfully using the learned model on the
target data. When using deep learning, the most common do-
main adaptation algorithmic setting is to construct a common
representation space for the two domains while keeping good
performance on the source labeling task. This can be achieved
through the use of adversarial techniques where feature rep-
resentations from samples in different domains are encour-
aged to be indistinguishable [2], [3]. Whatever the technique,
the domain adaptation procedure is usually unsuccessful if the
source domain is too different from the target one. In [4] for
example, the authors have empirically identified positive and
negative transfer situations. We study domain adaptation for
image classification with deep learning in the context of mul-
tiple available source domains and when no label are available
on the target domain.

Notations We consider having D source domains. Data
of the ith domain are noted Zi and are composed of examples

Xi and labels Yi. The target domain is given the index j.
A number of related works propose to select or weight

(elements of) the source domains in order to improve the test
accuracy on the target domain but none of these works ex-
plicitly evaluate and propose solutions to overcome the effect
of negative transfer during the adaptation process. For exam-
ple, the work from [5] considers transfer learning from only
one source domain and when the target task is a sub-task of
the source task (as for us, no target label is available). They
also extend the work of [2] but they decompose the domain
classifier according to each source classes. During the adap-
tation phase, each target example is weighted according to
the class-domain classifier loss. The works from [6], [7], [8]
and [9] tackle the problem of multi-source domain adapta-
tion but their selection scheme makes use of a few target la-
bels and is used to select one single source domain. The un-
published work from [10] is the closest to ours. The authors
propose to select multiple domains according to four possi-
ble distances (the χ2-divergence, the Maximum Mean Dis-
crepancy, the Wassertein distance and the Kullback-Liebler
divergence) and according to the classification performance
on each single source domain. Both the distance and the per-
formance features are weighted by a parameter β computed
as:

β = arg min
β≥0

D∑
i=1

D∑
k=1;k 6=i

|ξ(Zi, Zk)− βf(Zi, Zk)| (1)

with f the set of considered features and ξ(Zi, Zk) the
performance of the classifier trained on Zi and tested on
Zk. The authors show that on a homogeneous dataset, their
method is better than randomly selecting the domains but not
better than when using all of them. However, on a hetero-
geneous dataset, selecting the sources with their proposed
distance is better than both selecting all the domains and se-
lecting them randomly. Note that to optimize β, D classifiers
should be trained which can be costly in practice (especially
for deep neural networks). Besides, the authors do not pro-
vide any criterion to set the number of selected sources.

In Section 2, we show our strategy to automatically se-
lect the best sources to avoid negative transfer during do-



main adaptation. Section 3 shows extensive experiments and
promising results on both classical benchmarks and a new real
world application related to ski-resort chairlift security. We
conclude in Section 4.

2. DOMAIN SELECTION AND WEIGHTING

Considering a target domain j andD source domains, we pro-
pose an approach that automatically computes a weight vec-
tor pj ∈ ∆D−1 ⊂ RD (probability simplex) and uses pj

to reweight the domains (when sampling minibatches) during
“domain-adversarial training [2]”. This training phase is usu-
ally done to fine-tune a pre-trained network. The proposed
approach is modular as we decompose the computation of the
domains weight vector pj in three configurable steps :

1. the distance vector dj =
{
dji

}D
i=1

is computed (dis-
tance of each source domain, i, to the target one, j),

2. it is mapped to a score vector sj = score(dj),

3. it is normalized to a probability vector pj = sj/
∑
i s
j
i .

Computing pairwise dataset distances We focus here
on a distance based on optimal-transport but other distances
could be considered. For instance, one could use the average
minimal Euclidean distance (dji = averagex∈Xi

miny∈Xj ‖x− y‖)
or a distance based on auto-encoder where an autoencoder
AEj is trained with the points of domain j and dji =

averagex∈Xi
‖x−AEj(x)‖2 (average squared reconstruc-

tion error).
The optimal transport problem aims at finding the min-

imal cost for transforming a data distribution into another
one [11]. This minimal cost is defined as a sum of the (proba-
bility) mass to displace multiplied by the given displacement
price (for instance the euclidean distance). The minimal cost
is called the Wasserstein distance and constitutes a distance
between distribution. In our discrete case (samples of points),
the distance can be expressed as:

dji =
∑
x∈Xj

∑
y∈Xi

γ∗x,yCx,y (2)

where C is a distance matrix between all pair of elements
of the two domains. The optimal transport plan γ∗ is obtain
by solving the optimal transport problem:

γ∗ = arg min
γ∈Π(µ̂j ,µ̂i)

〈γ,C〉F (3)

where F is the Frobenius inner product and the constraint
set Π(µ̂j , µ̂i) =

{
γ ∈ R|Xj |×|Xi|

+ | γ1 = µ̂S , γ
T1 = µ̂T

}
ensures that the transport plan γ does not create or remove
mass (by ensuring that the marginal distributions µ̂j and µ̂i
are preserved).

Two set of points, even if drawn from the same distribu-
tion, will exhibit a variable non-zero Wasserstein distance.
To compensate for this sampling-induced bias and variance,
we normalize the Wasserstein distance dji by subtracting
the mean and dividing by the variance, of djj , obtained by
sampling subsets of the source domain and computing their
Wasserstein distance.

Transforming distances into scores Possible score func-
tions include the inverse distances ( 1

d ) or the inverse squared
distances ( 1

d2 ). Here, we focus on the negative exponential
scoring function:

sji = e−λd
j
i (4)

The parameter λ allows a smooth interpolation between
putting all the weight on the closest domain and having a uni-
form distribution of all domains. Thanks to this parameter,
we will be able to control the variety of the subset of domains
we are considering (see below).

Ensuring training set variety In case of many source do-
mains and when some of them have a very small number of
training examples, it becomes important to avoid selecting too
few domains in the process (e.g., a single one). For general-
ization (i.e. avoiding overfitting) and transfer purpose, the
training set should exhibit enough variety. For domain sizes
n ∈ ND, a probability vector pj and a draw of N training
samples (with replacement), we define the training set variety
as the expected number of distinct samples we will use for
training. The variety can be approximated as:

variety(pj , n,N) ≈
∑
i

ni ·

1−

(
1− pji

ni

)N (5)

Our probability vector pj depends on the λ parameter. As
such, by varying λ from ∞ to 0, we can move from a min-
imal variety (sampling from the closest domain i, getting a
diversity of approximately ni, the number of examples in this
closest domain) to a maximal one (using a uniform pj , getting
a variety of N −N

(
N−1
N

)N ≈ 0.63N in case of a balanced
n). In the experiments, we consider one “epoch” (with re-
placement) of N =

∑
i ni samples. We use pj and n to find

the highest value of λ for which the variety is below a target
variety.

3. EXPERIMENTS

Our backbone classifier is a residual network (ResNet50) [12]
pre-trained on the ImageNet dataset [13]. We report the av-
erage test-accuracy on the target domain using a 5-fold cross
validation procedure. We use the following names to report
the model performance:
– Target (only): models trained on the labeled target dataset.
Note that this is an ideal but unrealistic situation since, in our
actual applications, there is no target label. This setting re-
quires the target domain to be split into training/test sets.



– Only near.: models trained using only the nearest domain
(according to our distance measure) to the target one;
– Only far.: models trained using only the farthest domain
(according to our distance measure) to the target one;
– LODO: models trained using all domains but the target
one, using domain adaptation on the remaining target domain,
without using our domain selection method;
– w/o near.: models trained using all domains but two: the
target and the closest domain to the target one (according to
our distance measure) are not used.
– w/o far.: models trained using all domains but two: the tar-
get and the farthest domain to the target one (according to our
distance measure) are not used.
– OURS: models trained by weighting the source domains
with our method, using the variety criterion (with a target va-
riety of half its maximum value).

3.1. Datasets

Office-Caltech (O-C) [14] is a classical domain adaptation
benchmark with four domains: Amazon (A), DSLR (D), We-
bcam (W) and Caltech (C). It is composed of the 10 classes
(Backpack, Bike, Calculator, Headphones, Keyboard, Lap-
top, Monitor, Mouse, Mug, and Video-projector) common be-
tween Office-31 [15] and Caltech256 [16].

ImageNet-Caltech (I-C). To control the discrepancy be-
tween each domain and validate our chosen domain similar-
ity measure, we have designed a dataset using images from
Caltech101 [17] (C1), Caltech256 [16] (C2) and from Ima-
geNet [13] (IN) with mixed labels (bird, car, chair, dog, and
person, following, among others, [18, 19]) described in Ta-
ble 1. This dataset is composed of three different types of
domain. The ”Good” (G ) domains are created with the true
original classes, the ”Bad” (B ) domains are created with dif-
ferent but similar original classes, and the ”Random” (R ) do-
mains are created with randomly chosen classes in the cor-
responding datasets. With this design, the ”Good” domains
are expected to be closer to each other since the original la-
bels are the same. The ”Bad” domains should be farther away
from the ”Good” ones and the ”Random” datasets should be
the farthest (and are expected to be far from each others too).

Bluecime. In [20], we introduced an image dataset for the
classification of risky situations on chairlifts. The task is to
detect if a chairlift vehicle is empty, with passengers in a safe
situation, or with passengers in an unsafe situation (security
railing not put down, children alone, ...). The images come
from 21 different chairlifts: we consider that each chairlift
represents a different domain. This dataset is currently not
publicly available, so the actual sky resort names are replaced
by letters in the corresponding performance table.

3.2. Results

In Figure 1, we show the probabilities we obtain using the
selection process described in Section 2 on the 3 datasets.

Domains Class Dataset Classes # Ex
bird ”pigeon”, ”flamingo”, ”ibis”, ”rooster”, ”emu” 294
car ”car side” 123

G C1 chair ”chair”; ”windsor chair” 118
dog ”dalmatian” 67
person ”Faces”; ”Faces easy” 870
bird ”birds” (56) 1456
car ”motorcar” (8) 1496

G IN chair ”chair” (3) 1500
dog ”domestic dog” (117) 1404
person ”individual” (2) 1500
bird ”butterfly”; ”dragonfly” 159
car ”Motorbikes” 798

B C1 chair ”grand piano” 99
dog ”cougar body” 47
person ”buddha” 85
bird ”024.butterfly” 112
car ”072.fire-truck”, ”178.school-bus” 216

B C2 chair ”011.billiards” 278
dog ”105.horse” 270
person ”038.chimp”; ”090.gorilla” 322
bird ”butterfly” (6) 1500
car ”motortruck” (9) 1494

B IN chair ”dining table, board” 1500
dog ”domestic cat” (5) 1500
person ”apes” (5) 1500
bird ”brain” 98
car ”chandelier” 107

R C1 chair ”watch” 239
dog ”ketch” 114
person ”bonsai” 128
bird ”saltshaker” 1473
car ”fiddler crab” 1182

R IN chair ”brown bear” 1500
dog ”banana” 1409
person ”dough” 1249

Table 1: Classes used in each dataset to create the different
domains (G = ”good”; B = ”bad”; R = ”random”, C1: from
Caltech101; C2: from Caltech256; IN: from ImageNet). In
parentheses: number of classes composing the superclass that
has been used (e.g. 56 classes of birds).
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Fig. 1: Probabilities used to reweight the different do-
mains: ImageNet-Caltech (top-left), Office-Caltech (bottom-
left), Bluecime (right).

In most datasets, only up to three domains have a selection
probably greater than 0.1 and more than half the source do-
mains are totally unused. For instance, during training with
”Bad” ImageNet as the target domain, 67.2% of the training
images come from ”Bad” Caltech256, 21.6% from ”Good”
ImageNet, 6.7% from ”Good” Caltech101, and only 4.6%
from the three other source domains.



Setting A C D W AVG G C1 G IN B C1 B C2 B IN AVG R C1 R IN AVG

Target 95.10 94.44 92.11 92.46 93.53 99.81 96.17 99.56 98.32 98.23 98.42 100.0 98.21 98.61
Only near. 95.30 91.32 100.0 96.43 95.76 98.09 68.84 34.85 83.79 81.61 86.03 0.00 2.66 61.83
Only far. 83.80 84.19 95.07 98.01 90.27 0.88 14.39 38.97 28.42 24.95 21.52 3.17 12.53 17.62

LODO 94.41 92.76 99.26 98.44 96.22 94.40 87.24 93.86 91.80 91.88 91.67 11.76 9.01 68.56
w/o near. 91.06 83.20 93.92 96.22 91.10 77.77 75.56 95.72 81.88 86.43 83.47 11.99 5.68 62.15
w/o far. 95.38 91.52 100.0 98.57 96.37 97.20 86.66 96.90 90.16 91.99 92.58 18.27 12.40 70.51
OURS 94.98 92.70 100.0 98.57 96.56 97.54 84.93 97.38 94.73 91.13 93.14 8.89 16.81 70.20

Table 2: Accuracy averaged over 5 experiments on the Office-Caltech datasets (first 5 columns) and the datasets created from
ImageNet and Caltech (last 9 columns). We use a ResNet50 pretrained on ImageNet, and train it for 50 epochs (batch-size 64,
learning rate 10−5). The last column is grayed-out as it gives the average including the “Random” domains.

Setting A B C D All 21
LODO 95.70 98.26 98.28 98.69 95.94
OURS 95.63 98.38 98.07 98.94 97.06

Table 3: Accuracy on the Bluecime dataset, averaged on 5
experiments, on a selection of 4 domains (the same A/B/C/D
as in [20]) and on all 21 domains.

In Table 2, we show the results on the Office-Caltech (O-
C, first five columns) and ImageNet-Caltech (I-C, last nine
columns) datasets. On both datasets, using only the nearest
source domains is beneficial compared to using the farthest
one (+5.49 accuracy points on O-C and +44.21 pts on I-C)
which suggests that our distance is meaningful. On Office-
Caltech, using the target domain as source (Target line) gives
worst performance than using the nearest source (-2.23 pts),
which can be explained by the lack of training data which in-
duces overfitting phenomena. Since ImageNet-Caltech con-
tains more data, the Target setting is much more suited, as
expected, than the Only nearest one (+36.78 pts).

Using the LODO setting (all source domains are used dur-
ing training), we observe better performance than with the
Only nearest and Only farthest ones thanks to a more diverse
training set (respectively, on O-C, +0.46 pts and +5.95 pts,
on I-C, +6.73 pts and +50.94 pts). This means that there is
a real trade-off between the domain selection and the num-
ber of remaining training data. However, if we remove the
nearest source domain, the performance becomes worst than
for the LODO setting (-5.12 pts on O-C and -6.41pts on I-C),
on Office-Caltech we even get worst performance than using
the Only nearest setting (-4.66pts). If we remove the farthest
source domain, we do obtain better performance than with the
LODO setting (+0.15 pts on O-C and +1.95 pts on I-C). We
can conclude that using many data (LODO setting) is impor-
tant and always better than choosing a single domain (even
the most similar one) but selecting a good number of sources
can be beneficial.

Our distance-based weighting approach provides bet-
ter performance than removing the farthest source domain
on Office-Caltech (+0.19pts). On ImageNet-Caltech, we

get worst results than when removing the farthest domain
(-0.31pts), but, still notably better than with the LODO set-
ting (+1.64 pts). However, if we ignore the results on the
”Random” domains (which are close to random by design),
on average, the LODO setting gives 91.67% of accuracy,
w/o farthest 92.58%, and our approach allows us to get the
best accuracy performance of 93.14% which confirms the
relevance of our approach.

In Table 3, we show the results on the Bluecime dataset.
Due to the page limit, we only detail the results on 4 domains
(the same ones as in [20]) and give the averaged results over
the 21 domains. As with the other datasets, we obtain bet-
ter results by selecting the source domains (+1.12 pts). This
shows that the proposed method works well even when there
are much more source domains to select from.

4. CONCLUSION

We have shown that unsupervised domain adaptation can be
improved by selecting and weighting a good subset of the
sources that are the most similar to the target domain. Our
approach weights the sources according to the Wasserstein
distance between unlabeled domain distributions and accord-
ing to the variety of the data in the selected sources. Extensive
experiments showed the relevance of our proposed weighting
scheme. Future work involves exploring and reporting the
behavior of our approach with different settings (e.g. combi-
nation of distances, scoring functions, variety criterion), that
were left out due to the page limit.
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