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Abstract—This article shows how fundamental higher-order 

theories of mathematical structures of computer science (e.g. 

natural numbers [Dedekind 1888] and Actors [Hewitt et. al. 1973]) 

are categorical meaning that they can be axiomatized up to a 

unique isomorphism thereby removing any ambiguity in the 

mathematical structures being axiomatized. Having these 
mathematical structures precisely defined can make systems more 
secure because there are fewer ambiguities and holes for 
cyberattackers to exploit. For example, there are no infinite 

elements in models for natural numbers to be exploited. On the 

other hand, the 1st-order theories and computational systems 

which are not strongly-typed necessarily provide opportunities for 

cyberattack.  

Cyberattackers have severely damaged national, corporate, and 

individual security as well causing hundreds of billions of dollars 

of economic damage. [Sobers 2019] A significant cause of the 
damage is that current engineering practices are not sufficiently 
grounded in theoretical principles. In the last two decades, little 

new theoretical work has been done that practically impacts large 

engineering projects with the result that computer systems 

engineering education is insufficient in providing theoretical 

grounding. If the current cybersecurity situation is not quickly 

remedied, it will soon become much worse because of the projected 

development of Scalable Intelligent Systems by 2025 [Hewitt 

2019].  

Kurt Gödel strongly advocated that the Turing Machine is the 

preeminent universal model of computation. A Turing machine 

formalizes an algorithm in which computation proceeds without 

external interaction. However, computing is now highly 

interactive, which this article proves is beyond the capability of a 

Turing Machine. Instead of the Turing Machine model, this 

article presents an axiomatization of a strongly-typed universal 

model of digital computation (including implementation of 

Scalable Intelligent Systems) up to a unique isomorphism. 
Strongly-typed Actors provide the foundation for tremendous 
improvements in cyberdefense. 
 

Index Terms—categorical theories, strong types, Scalable 

Intelligent Systems, Alonzo Church, Kurt Gödel, Richard 

Dedekind  

 

I. INTRODUCTION 

The approach in this article is to embrace all of the most 
powerful tools of classical mathematics in order to 
provide mathematical foundations for Computer Science. 
Fortunately, the results presented in this article are technically 

simple so they can be readily automated, which will enable 

better collaboration between humans and computer systems. 

Mathematics in this article means the precise formulation 

of standard mathematical theories that axiomatize the 
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following standard mathematical structures up to a unique 

isomorphism:  Booleans, natural numbers, reals, ordinals, set 

of elements of a type, computable procedures, and Actors, as 

well as the theories of these structures. 

In a strongly typed mathematical theory, every proposition, 

mathematical term, and program expression has a type where 

there is no universal type Any. Types are constructed bottom 

up from mathematical types that are individually categorically 

axiomatized in addition to the types of a theory being 

categorically axiomatized as a whole. 

[Russell 1906] introduced types into mathematical 
theories to block paradoxes such as The Liar  which could be 
constructed as a paradoxical fixed point using the mapping 
p↦p, except for the requirement that each proposition 
must have an order beginning with 1st-order.  Since p is a 
propositional variable in the mapping, p has order one 
greater than the order of p. Thus because of orders on 
propositions, there is no paradoxical fixed point for the 
mapping p↦p which if it existed could be called I’mFalse 
such that I’mFalse ⇔I’mFalse. Unfortunately in addition to 
attaching orders to propositions, [Whitehead and Russell 
1910-1913] also attached orders to the other mathematical 
objects (such as natural numbers), which made the system 
unsuitable for standard mathematical practice. 

II. LIMITATIONS OF 1ST-ORDER LOGIC 

Wittgenstein correctly proved that allowing the proposition 

I'mUnprovable [Gödel 1931] into mathematics [Russell and 

Whitehead 1910-1913] infers a contradiction as follows:  

“Let us suppose [Gödel 1931] was correct and therefore] I 

prove the unprovability (in Russell’s system) of [Gödel's 

I'mUnprovable] P; [i.e., ⊢Russell ⊬Russell P where 

P⇔⊬Russell P] then by this proof I have proved P [i.e., 

⊢Russell    P because P⇔⊬Russell   
P]. Now if this proof were 

one in Russell’s system [i.e., ⊢Russell ⊢Russell P] — I 

should in this case have proved at once that it belonged [i.e., 

⊢RussellP] and did not belong [i.e., ⊢Russell P because 

P⇔⊢Russell 
P] to Russell’s system. But there is a 

contradiction here! [i.e., ⊢Russell P and ⊢Russell P] ... 
[This] is what comes of making up such propositions.” 

[emphasis added] [Wittgenstein 1978] 

    Gödel made important contributions to the 
metamathematics of 1st-order logic with the countable 
compactness theorem and formalization of provability. 
[Gödel 1930] However decades later, Gödel asserted that the 

[Gödel 1931] inferential undecidability results were for a 1st-
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order theory (e.g. like [Paulson 2014]) instead of the theory 

Russell [Russell and Whitehead 1910-1913] as originally 

stated in [Gödel 1931]. In this way, Gödel dodged the point 

of Wittgenstein’s criticism. 

    Technically, the result in [Gödel 1931] was as follows: 

              Consistent[Russell]⇨⊢Russell ⊬Russell P  

where P⇔⊬RussellP and Consistent[Russell] if an only if 

there is no proposition  such that ⊢Russell⋀, 

However, Wittgenstein was understandably taking it as a given 

that Russell is consistent because it formalized standard 

mathematical practice and had been designed to block known 

paradoxes (such as The Liar) using orders on propositions. 

Consequently, Wittgenstein elided the result in [Gödel 1931 to 

⊢Russell⊬RussellP. His point was that Russell is 

consistent provided that the proposition ⊢Russell ⊬Russell P 

is not added to Russell. Wittgenstein was justified because 

the standard theory of natural numbers is arguably consistent 

because it has a model. [Dedekind 1888] 

    According to [Russell 1950]: “A new set of puzzles has 
resulted from the work of Gödel, especially his  article 
[Gödel 1931], in which he proved that in any formal system 
[with recursively enumerable theorems] it is possible to 
construct sentences of which the truth [i.e., provability] or 
falsehood [i.e., unprovability] cannot be decided within the 
system. Here again we are faced with the essential 
necessity of a hierarchy [of sentences], extending upwards 
ad infinitum, and logically incapable of completion.” 
[Urquhart 2016] Construction of Gödel’s I’mUnprovable is 

blocked because the mapping ↦⊬Ψ does not have a fixed 

point because the order of ⊬Ψ is one greater than the order of 

 since  is a propositional variable. 

    Although 1st-order propositions can be useful (e.g. in 1st-

order proposition satisfiability testers), 1st-order theories are 

unsuitable as the mathematical foundation of computer science 

for the following reasons: 

 Compactness Every 1st-order theory is compact [Gödel 

1930] (meaning that every countable inconsistent set of 

propositions has a finite inconsistent subset). Compactness 

is false of the standard theory of natural numbers for the 

following reason:  if k is a natural number then the set of 

propositions of the form i>k where i is a natural number is 

inconsistent but has no finite inconsistent subset, thereby 

contradicting compactness. 

 Monsters Every 1st-order theory is ambiguous about 

fundamental mathematical structures such as the natural 

numbers, lambda expressions, and Actors [Hewitt and 

Woods assisted by Spurr 2019].  For example,  

o Every 1st-order axiomatization of the natural numbers 

has a model with an element (which can be called ∞) for 

a natural number, which is a “monster” [Lakatos 1976] 

because ∞ is larger than every standard natural number. 

o Every 1st-order theory T that can formalize its own 

provability has a model M with a Gödelian “monster” 

element  that proves T inconsistent (i.e. ⊨
M

⊢T⋀) 
by the following proof:  According to [Gödel 1931], 

⊬TConsistent[T] and consequently because of the 1st-

order model “completeness” theorem [Gödel 1930] 

there must be some model of T in which Consistent[T] 

is false. [cf. Artemov 2019] 

Such monsters are highly undesirable in models of 

standard mathematical structures in Computer Science 

because they are inimical to model checking. 

 Inconsistency This article shows that a theory with 

recursively enumerable theorems that can formalize its own 

provability is inconsistent. 

 Intelligent Systems. If a 1st-order theory is not consistent, 

then it is useless because each and every proposition (no 

matter how nonsensical) can be proved in the theory.  

However, Scalable Intelligent Systems must reason about 

massive amounts of pervasively-inconsistent information. 

[Hewitt and Woods assisted by Spurr 2019] Consequently, 

such systems cannot always use 1st-order theories. 

Conversational Logic [Hewitt 2016-2019] needs to be used 

to reason about inconsistent information in Scalable 

Intelligent Systems. [cf. Woods 2013] 

Consequently, Computer Science must move beyond 1st-

order logic for its foundations. 

 

III. STRONG TYPES 

Types must be strong to prevent inconsistency but flexible 

to allow all valid inference. (See appendix on how known 

paradoxes are blocked.) Although mathematics in this 
article necessarily goes beyond 1st-order logic, standard 
mathematical practice is used. Wherever possible, 
previously used notation is employed. The following notation 

is used for types: 

 The notation x:t  means that x is of type t . For example, 0:N 

expresses that 0 is of type N, which is the type of a natural 

number. Types differ from sets in that types are intensional, 

i.e., if x:t
1
 and x:t

2
 for every x does not mean that t

1
=t

2
 

where t
1
 and t

2
. are types. 

 t
2

t1 is type of all functions from t
1 

into t
2
 where 

t
1
 and t

2
. are types. A function is total and may be 

uncomputable. For example, N
N is the type all total 

functions from natural numbers into the natural 

numbers, which are uncountable. If f:NN, then f[3] is the 

value of function f on argument 3. 

 t
1
→t

2
 is type of nondeterministic computable procedures 

from t
1
 into t

1
 where t

1
 and t

2
 are types whereas t

1
→1t

2
 is 

the deterministic procedures. For example, []→Boolean 

is the type all partial nondeterministic procedures of no 

argument into the type of Boolean. If p:[]→Boolean, 

then p∎[] starts a computation by providing input [] to 

procedure p which might return True or return False. It 
might happen that p∎[] does not return a value.  

 [t 1,t
2
]  is type of pairs of  t

1
 and t

2 
where t

1
 and t

2
 are types. 

For example, [N, Boolean] is the type of pairs whose first 

is a natural number and whose second is a Boolean. 

 TypeOf  t   is the type of t where t  is a type. For example, 

N:TypeOfN  meaning that N is of type TypeOfN   
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producing an infinite hierarchy of types of types somewhat 

like the hierarchy of universes in [Martin-Löf 1998]. There 

is no type Type  thereby blocking Girard’s paradox [Girard 

1972, Martin-Löf 1998].   

 PropositionOfOrderi is type of a proposition of 

order i where i:N
+

 and N
+

 is the type of positive natural 

numbers. For example, PropositionOfOrder1 is the 

type of propositions of order 1.                                                           

o Proposition   means ∃[i:N
+
]  

                                                  :PropositionOfOrderi 

o  P predicateOn t  means  ∃[i:N
+
] 

                                                     P:PropositionOfOrderit 

 t ∋P is the type of t restricted to P where t is a type and P is 

a predicate. For example, replacement for types is 

expressed using restriction, i.e., the range of a function 

f:t
2

t1 is t
2 

∋λ[y:t
2
] ∃[x:t

1
] y=f[x]. 

Types are constructed bottom-up from types that are 

categorically axiomatized up to a unique isomorphism. Type 
checking is linear in the size of the propositon, mathematical 
term or procedural expression to be type checked.  See 

appendix for syntax of propositions, mathematical terms, and 

procedural expressions. 

IV. STANDARD THEORIES OF COMPUTER SCIENCE 

 

Cybersecurity requires that fundamental  mathematical 

structures in Computer Science must be precisely defined. 

This section shows how to precisely define natural numbers.  It 

is followed by a section on how to precisely define Actors, 

which are the fundamental abstraction of computation. 

    The mathematical theory Nat that axiomatises the Natural 

Numbers has the following axioms building on [Dedekind 

1888]: 

• 0:N                                      // 0 is of type N  
• +1:NN                                  

// +1 (successor) is of type N
N 

•  ∄[i:N] +1[i]=0
                             

// 0 is not a successor 
•  ∀[i,j:N] +1[i]=+1[j] ⇨ i=j       // +1 is 1 to 1 

In addition, Nat has the following induction axiom, which 

has uncountable instances: 

    ∀[P predicateOn N] 

                   (P⟦0⟧  ∀[i:N] P⟦j⟧⇨P⟦+1[j]⟧) ⇨ ∀[j:N] P⟦j⟧ 

 
MetaNat 

MetaNat is a meta theory of Nat for proving theorems 

about Nat, which directly expresses provability of a 

proposition  in Nat using ⊢Nat. (Gödel numbers cannot 

be used to represent propositions because there are not 
enough Gödel numbers to represent all uncountably many 
propositions that are instances of the induction and instance 
provability axioms.) 
 
Procedures of  Nat 

Evalt :[Expression t   in Environment ]→t  is a 

procedure [McCarthy et. al. 1962] that corresponds to a 

universal Turing machine [Church 1936] as follows: 

o Evalt  ∎[x:Expression t ] ≡  

                                                 Evalt ∎[x in EmptyEnvironment] 

o Evalt  ∎[x:Identifiert  in e:Environment ] ≡  

          Lookup[x in e] 

o Evalt2  ∎[operator∎operand in e:Environmment ] ≡ 

    (Evalt1→t2 ∎[operator in e])∎(Evalt1∎[operand in e]) 

          // apply the value of operator to  

                 // the value of operand 

o Evalt1→t2 ∎[(x1↦body)  in e:Environmment ] ≡ 

          [x2:t1]↦Eval∎[body in Bind∎[x1 to x2 in e]] 

                     // eval body in a new environment with x1 bound 

                            // to x2 as an extension of e 

In order to implement recursion, the lambda calculus has the 

primitive Fix such that ∀[F:Functionalt
1
,t

2
]  

                                            Fixt
1
,t

2
∎[F]= F∎[Fixt

1
,t

2
∎[F]]  

where 
Functional t

1
,t

2
 ≡ [[t

1
]→t

2
]→([t

1
]→t

2
) 

  

Proof Checkers in Nat  
A proof checker pc:ProofCheckerNat is a provably total 

boolean-valued procedure of two arguments that checks if the 

second argument is validly inferred from the first argument.   

The following notation (which is part of the theory Nat) means 

that pc is proof checker such that proposition 1 infers 

proposition 2 in Nat:  1⊢
pc

 Nat
 2 such that:  

  ∀[Proposition 1,2]  

     (1⊢Nat2) ⇔ ∃[pc:ProofCheckerNat ]  1⊢
pc

Nat 
2 

Proof checking in Nat is computationally decidable because: 

  ∀[Proposition 1,2], pc:ProofCheckerNat] 

     (1⊢
pc

Nat 
 2) ⇔ pc∎[1,2]=True 

where pc∎[1,2] means the invocation of procedure pc with 

arguments 1 and 2. For example, there is a Chaining for 

Inference checker such that if 1 is ⋀ (⊢
pc

 Nat
 ), then 

ChainingForInferenceChecker∎[1,2]=True if 2= and 

pc∎[,]=True, otherwise pc∎[1,2]=False as follows: 

    ChainingForInferenceChecker∎[1,2] ≡ 

         1 if ⊢
pc

 Nat
  then 2= and pc∎[,]=True, 

                           else False 

The proof checker for the induction axiom is as follows: 

       InductionChecker∎[,2] ≡ 

         1 if  (P⟦0⟧  ∀[i:N] P⟦i⟧⇨P⟦+1[i]⟧)  

                       then 2 = ∀[i:N] P⟦i⟧, 

                             else False 

Note that InductionChecker correctly checks uncountably many 

instances of each of the Nat induction axioms. 

    There are uncountable proof checkers in Nat which is 

made possible because proof checkers can operate on higher 

order types, e.g., they are not restricted to strings.
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For example, there are uncountable proof checkers of the form 

ForAllEliminationCheckert [c] where t  is a type and c:t such 

that 

           ForAllEliminationCheckert [c]∎[1,2] ≡ 

               1 if (∀[x:t ] P[x]) then 2=P[c], else False 

Consequently,  

         (∀[x:t ] P[x]) ⊢
ForAllEliminationChecker𝑡[c] 

Nat 
 P[c] 

Unique model up to Isomorphism of  Nat 
    The following axioms hold for TypeIn Nat (the type 

of types in Nat) because types are intensional: 

• N:TypeIn Nat 

• ∀[i:N
+

] PropositionOfOrderi:TypeIn Nat 

• ∀[t
1
,t

2
,t

3
,t

4
:TypeIn Nat]  

              [t 1,t
2
]=[t 3,t

4
] ⇨ t

1
=t

2 
⋀ t

3
=t

4
   

•  ∀[t1,t2,t3,t4:TypeIn Nat] t1t2=t3
t4

⇨ t1=t2 ⋀ t3=t4 

• ∀[t
1
,t

2
,t

3
,t

4
:TypeIn Nat]  

                t
1
→t

2
=t

3
→t

4
  ⇨ t

1
=t

2 
⋀ t

3
=t

4
   

• ∀[t
1
,t

2
:TypeIn Nat;  

     P1 predicateOnNat t
1

, P2 predicateOnNat t
2

] 

                   t
1

∋P1=t
2

∋P2 ⇨ t
1
=t

2
 ⋀ P1=P2 

• ∀[t
1
,t

2
:TypeIn Nat]  

                    TypeOf t
1
=TypeOf t

2
 ⇨ t

1
=t

2 

For example, N
N:TypeIn Nat, etc. 

    The following induction axiom holds, which has 
uncountable instances: 

   ∀[P predicateOnNat TypeIn Nat] 

       (P⟦N⟧  

            ∀[i:N
+
] P[PropositionOfOrderNati⟧  

            ∀[t
1
,t

2
:TypeIn Nat] P⟦t

1
⟧⋀P⟦t

1
⟧⇨P⟦[t 1,t

2
]⟧ 

            ∀[t
1
,t

2
:TypeIn Nat] P⟦t

1
⟧⋀P⟦t

2
⟧⇨P⟦t1

t2

⟧ 
            ∀[t

1
,t

2
:TypeIn Nat] P⟦t

1
⟧⋀P⟦t

2
⟧⇨P⟦t

1
→t

2
⟧ 

            ∀[t :TypeIn Nat, Q predicateOnNat t ] 
                                       P⟦t⟧⇨P⟦t ∋Q⟧ 
           ∀[t :TypeIn Nat ] P⟦t ⟧⇨P⟦TypeOf t ⟧) 
         ⇨ ∀[t :TypeIn Nat] P⟦t ⟧ 

    Theorem Unique categoricity of TypeIn Nat, i.e., if 

M is a type satisfying the theory Nat, then there is  a unique 

isomorphism I between TypeIn  Nat and  

TypeIn 
M
Nat defined as follows:   

• I[N] ≡ N
M

 

• I[[t 1,t
2
]] ≡ [I[t 1], I[t

2
]]

M
 

• I[t2
t1

] ≡ I[t2]I[t1]
 

• I[t
1
→t

2
] ≡ I[t

1
]→ I[t

2
] 

• I[TypeOf t ] ≡ TypeOf 

M
I[t ]    

• I[t ∋P] defined by Induction on TypeIn  Nat using the 

following cases on t: 

o N then I[t ∋P] ≡ M∋
M

[y]↦P⟦I-1[y]⟧ 

o [t 1,t
2
] then I[t ∋P] ≡ [I[t 1], I[t

2
]]

M 
∋

M
[y]↦P⟦I-1[y]⟧ 

o t1
t2

 then I[t ∋P] ≡ I[t1]I[t2]
 ] ∋

M
[y]↦P⟦I-1[y]⟧ 

o t
1
→t

2
 then I[t ∋P] ≡ I[I[t

1
]→ I[t

2
]] ∋

M
[y]↦P⟦I-1[y]⟧ 

o TypeOf t
1

  then  

             I[t ∋P] ≡ TypeOf 
M

 I-1[t
1

]∋
M

[y]↦P⟦I-1[y]⟧ 

o t
1

 ∋P1 then I[t ∋P] ≡ I[t
1

] ∋
M

[y]↦P⟦I-1[y]⟧⋀P1⟦I-1[y]⟧ 

     The following induction axiom holds for propositions of 

Nat, which has uncountable instances: 

((∀[i:N
+
, P predicateOnNat PropositionOfOrderNati] 

   (∀[t
 
:TypeIn Nat; x1,x2:t] P⟦x1=x2⟧ 

          ∀[t
1
,t

2
:TypeIn Nat; x:t

2
] P⟦x:t⟧ 

           ∀[PropositionNat ] P⟦⟧⇨P⟦⟧ 
           ∀[PropositionNat 1,2] P⟦1⟧⋀P⟦2⟧⇨P⟦1⋀2⟧ 
           ∀[t

 
:TypeIn Nat; Q predicateOnNat t  ]  

                                         (∀[x:t ] P⟦Q⟦x⟧⟧)⇨P[∀[x:t ] Q⟦x⟧])) 
        ⇨ ∀[PropositionNat] P[] 

    Theorem. Propositions of Nat are characterized up to a 

unique isomorphism.  

   Theorem [cf. Dedekind 1888].: If M be a type satisfying the 

axioms of Nat, then there is  a unique isomorphism 

I:M
ModelNat defined as follows:   

• if x:N  

o if x=0, then I[x] ≡ 0
M

 

o if x=I[+1[j]], then I[x] ≡ +1
𝑀

[I[j]] 

• if x:[t 1,t
2
], then I[x] ≡ [I[1st[x]], I[2nd[x] ]]

M
 

• if x:t2
t1

, then [y:I[t 1]] ↦ I[x[I-1[y]]] 

• if x:t
1
→t

2
, then I[x] ≡ [y:I[t 1]]↦I[x∎[I-1[y]]] 

• if x:TypeOf t , then I[x] ≡ TypeOf 

M
I[t ] 

I is a unique isomorphism because of the following; 

• I is defined on TypeIn Nat 

• I is 1-1 

• I is onto M 

• I is a homomorphism 

o I[0] = 0
M

 

o ∀[j:N] I[+1[j]] = +1
𝑀

[I[j]] 

o ∀[x:[t 1,t
2
]]  I[x] = [I[1st[x]], I[2nd[x] ]]

M
 

o ∀[x:t1
t2

] I[x] = [y:I[t 1]]↦I[x[I-1[y]]] 

o ∀[x:t
1
→t

2
] I[x] = [y:I[t 1]]↦I[x∎[I-1[y]]] 

• I-1 is a homomorphism 

• If g is an isomorphism of Model Nat with M, then g=I  

    Corollary There are no infinite numbers in models of the 

theory Nat, i.e., if M satisfies the axioms for N of Nat, then 

                       ∄[j:M] ∀[i:N] i < j 

 

Inference in Nat 
    Inferential soundness means that a theorem in Nat can be 

used in proofs in Nat.  

    Theorem: Inferential Soundness of Nat, i.e.,  

                ∀[PropositionNat ] (⊢Nat) ⇨  

   Proof.  Follows immediately from the rule TheoremUse, 

i.e.,  (⊢Nat) ⊢
TheoremUse 

Nat 
.  Also, if ⊢Nat, then  

holds in the unique up to isomorphism model of Nat. 
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A consequence of Inferential Soundness is that unrestricted 

cut-elimination does not hold for Nat. 

    Theorem: Deduction for Nat, i.e.,  

      ∀[PropositionNat ,] (⊢Nat⇨)  ⇔  (⊢Nat)  

Proof Suppose ⊢Nat⇨ and consequently ⇨ by 

Inferential Soundness.  Further suppose . Then  by 

ChainingForImplication and consequently ⊢Nat by 

InferenceIntroduction.  

    On the other hand suppose ⊢Nat.  Further suppose 

. Then  by ChainingForInference and consequently 

⊢Nat⇨ by ImplicationIntroduction. 

Theorem Inferential Adequacy, i.e.,  

          ∀[Proposition ] (⊢Nat)⇨⊢Nat⊢Nat 

 Proof: Suppose ⊢Nat. Let ⊢
pc1

Nat 
 so that 

pc1∎[]=True. Then a provably total procedure 

pc2:ProofCheckerNat can be defined such that 

pc2∎[⊢
pc1

 Nat
]=True meaning that ⊢

pc2

 Nat
⊢

pc1

Nat 
. 

Consequently, ⊢Nat⊢Nat. 

Computational and Inferential Undecidability of Provability 

in Nat 
The predicate Halt can be defined as follows on deterministic 

expressions:  

        Halt[x:Deterministic N ] ≡ ∃[y:N] y=Eval∎[x] 

    Definition.  Decidert  ≡  

                                                                                                       Total  [Deterministic  [t]→Boolean 

 

    Theorem. Halt is computationally undecidable [Church 

1935, Turing 1936], i.e., 

∄[d:DeciderDeterministic  [N]→N ] 

   ∀[x:Deterministic  N]→N ] d∎[x]=True ⇔ Halt[x] 

Proof. Suppose to obtain a contradiction that 

d:DeciderDeterministic  [N]→N  and  

∀[x:Deterministic  N] decider∎[x]=True ⇔ Halt[x]. 

Define Opposite as follows: 

      Opposite∎[ ] ≡ d∎[Opposite∎[ ]] if 

                                             True then LoopForever∎[ ]  

                                             False then 0 

Because Halt[LoopForever∎[ ]], by the definition of 

Opposite, d∎[Opposite∎[ ]]≠True because if it were True 

then d∎[Opposite∎[ ]]=False by the hypothesis for d. 

Consequently, d∎[Opposite∎[ ]]=False and therefore 

Opposite∎[ ]=0 by the definition of Opposite. Therefore 

d∎[Opposite∎[ ]]=True by the hypothesis for d, which is a 

contradiction. 

    Theorem. Whether a proposition is a theorem of  Nat is 

computationally undecidable [Church 1935, Turing 1936], i.e.,    

there does not exist decider d for propositions of Nat such 

that ∀[PropositionNat ] d∎[]=True ⇔ ⊢Nat 

Proof. Follows immediately from the computational 

undecidability of the halting problem because of the 

following:   

∀[x:Deterministic  [N]→N ] Halt[x] ⇔ ⊢Nat Halt[x] 

   Theorem.  Nat is inferentially undecidable, i.e., 

   ∃[x:Deterministic  N]  (⊬Nat Halt[x]) ⋀ ⊬NatHalt[x] 

Proof Suppose to obtain a contradiction that Nat is 

inferentially decidable and consequently 
              ∀[x:Deterministic  [N]→N ]  

                      (⊢Nat Halt[x]) ⋁ (⊢NatHalt[x]) 

Since only countably many instances of the natural 

number induction axiom could have been used in the 

above proofs, the halting problem is computationally 

decidable by computationally enumerating the 

proofs, which is a contradiction. 

Theorem. There is a proposition of Nat that is true but 

unprovable in Nat, i.e., ∃[x:Deterministic  [N]→N ]  
                                                            Halt[x] ⋀ ⊬NatHalt[x] 

Proof. By inferential undecidability let x be such that 

(⊬Nat Halt[x])⋀⊬Nat Halt[x]. Therefore  Halt[x] 

because Halt[x] ⇨ ⊢Nat Halt[x] 

    In practice, computational  and inferential undecidability 

of provability, do not impose limitations on the ability to 

prove theorems for mathematical theories of Intelligent 

Systems. 

 
Nat is algorithmically inexhaustible 

That all the theorems of a theory can be obtained by 

computationally enumerating them from axioms has long 

been a default assumption of philosophers of logic. However, 

the theory Nat violates this assumption because there are 

uncountable instances of the induction axiom. Uncountability of 

raises the following question:  What axioms of Nat can be 

expressed in text, i.e., in the theory Nat↾String, i.e., Nat 
abstracted from strings. Nat↾String has the following 

induction axiom, which has countable instances because 

strings are countable: 

         ∀[P predicateOnNat↾String
 N ] 

                           (P⟦0⟧  ∀[j:N] P⟦j⟧⇨P⟦+1[j]⟧) ⇨ ∀[j:N] P⟦j⟧ 

    Definitions.  

 Total t
1
, t

2
 ≡ (t

1
→1t2

)∋[f]↦∀[x:t
1

] ∃[y:t
2

] f∎[x]=y 

 ProvedTotal Nat↾String
t

1
, t

2
 ≡  

       (t
1

→1t2
)↾String ∋[f]↦⊢Nat↾String f:Totalt

1
,t

2
 

 Onto t
1
, t

2
 ≡ (t

1
→1t2

)∋[f]↦∀[y:t
2

] ∃[x:t
1

] f∎[x]=y 

    Theorem. Theorem Nat↾String   is computationally 

enumerable, i.e., there is a procedure Theorems such that  

Theorems:Onto [N], Theorem Nat↾String   

Corollary. ProvedTotal Nat↾String
 is computationally 

enumerable, i.e., there is a procedure ProvedTotals such that 

           ProvedTotals:Onto [N], ProvedTotal Nat↾String
. 

   Definition. Define the procedure Diagonal as follows: 

    Diagonal∎[i:N] ≡ 1+(ProvedTotals∎[i])∎[i] 

   Lemma. Diagonal:ProvedTotal Nat↾String
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Proof. Suppose i:N. Let  

f:ProvedTotal Nat↾String
=ProvedTotals∎[i] and let  

j:N=f∎[i]. Therefore Diagonal∎[i]=1+j. Consequently, 

⊢Nat↾String Diagonal:Total [N], N . 

    Lemma. Diagonal:ProvedTotal Nat↾String 

Proof. Diagonal differs from every procedure 

enumerated by ProvedTotals. 

    Theorem. Nat↾String   is inconsistent [Church 1934], i.e., 

                                                           ∃[PropositionNat ] ⊢Nat⋀  

Proof. Let =Diagonal:ProvedTotal Nat↾String
 

    The upshot is that Nat is algorithmically inexhaustible, 

i.e., nonalgorithmic creativity will be forever required to 

develop new Nat  axioms abstracted from strings thereby 

reinforcing the intuition behind [Franzén, 2004]. According 

to [Church 1934], inconsistency of Nat↾String  means that 

“there is no sound basis for supposing that there is such a thing 

as logic.” Contrary to [Church 1934], the conclusion in this 

article is to abandon the assumption that theorems of a 

theory must be computationally enumerable while retaining 

the requirement that proof checking must be 

computationally decidable. 

 

Proposed Instance Provability Axom 

Nat has the following proposed instance provability axiom [cf. 

Hilbert 1930], which has uncountable instances: 

∀[P predicateOnNat N]  (∀[i:N]  ⊢NatP⟦i⟧)  ⇨  ⊢Nat∀[j:N] P⟦j⟧ 

 

 V. ACTOR MODEL 

 

[Church 1932] and [Turing 1936] developed a model of 

computation time based on the concept of an algorithm, which 

by definition is provided an input from which it is to compute a 

value without external interaction. After physical computers 

were constructed, they soon diverged from computing only 

algorithms meaning that the Church/Turing theory of 

computation no longer applied to computation in practice 

because computer systems are highly interactive as they 

compute. Actors [Hewitt, et. al 1973] (axiomatized in this 

article) remedied the omission to provide for scalable 

computation. An Actor machine can be millions of times faster 

than any corresponding pure Logic Program or parallel 

nondeterministic  expression. Since the time of this early 

work, Actors have grown to be one of the most important 

paradigms in computing [Hewitt and Woods 2019; Milner 

1993]. 

Of course, earlier work made huge pioneering contributions. 

For example,  expressions [Church 1932] play an important 

role in programming languages. Also, Turing Machines [Turing 

1936] inspired development of the stored program sequential 

computer and Logic Programs are fundamental to Scalable 

Intelligent Systems. 

 

Computation that cannot be done by  Calculus, 
Nondeterministic Turing Machines, or pure Logic Programs 
Actor machines can perform computations that a no  

expression, nondeterministic Turing Machine or pure Logic 

Program can implement. Below is an example of a very simple 

computation that cannot be performed by a nondeterministic 

Turing Machine: 

There is an always-halting Actor machine that can compute 

an integer of unbounded size. This is accomplished using an 

Actor with a variable count that is initially 0 and a variable 

continue initially True. The computation is begun by 

concurrently sending two messages to the Actor machine: a stop 

request that will return an integer and a go message that will 

return Void. The Actor machine operates as follows: 

 When a stop message is received, return count and set 

continue to False for the next message received. 

 When a go message is received:  

o If continue is True, increment count by 1, send this 

Actor machine a go message in a hole of the region of 

mutual exclusion, and afterward return Void.  

o If continue is False, return Void. 

    Theorem. There is no  expression, nondeterministic 

Turing Machine, or pure Logic Program that implements the 

above computation.     

Proof [Plotkin 1976]: 

“Now the set of initial segments of execution sequences of 

a given nondeterministic program P, starting from a given 

state, will form a tree. The branching points will 

correspond to the choice points in the program. Since there 

are always only finitely many alternatives at each choice 

point, the branching factor of the tree is always finite. That 

is, the tree is finitary. Now König's lemma says that if every 

branch of a finitary tree is finite, then so is the tree itself. 

In the present case this means that if every execution 

sequence of P terminates, then there are only finitely many 

execution sequences. So if an output set of P is infinite, it 

must contain a nonterminating computation.” 

Initial 
State

Next
State

Next
State

Next
State

Next
State

Nondeterministic 

State Change

             

continue := False

Integer

initially: continue=True, count=0

count 

go

stop

 count := count + 1 

Resend go message until stop message received

Void

Void

go

continue? 
TrueFalse
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Limitations of 1st-order Logic for Concurrent Computation 

Theorem. It is well known that there is no 1st-order theory for 

the above Actor machine.  

Proof. Every 1st-order theory is compact meaning that every 

inconsistent set of propositions has a finite inconsistent 

subset. Consequently, to show that there is no 1st-order 

theory, it is sufficient to show that there is an inconsistent set 

of propositions such that every finite subset is consistent. Let 

Output[i] mean that i is output. Then the set of propositions  

∃[i:N]Output[i] is inconsistent but every finite subset S is 

consistent because the Actor machine output might be 

larger than any output in S. 

    Actors have fundamentally transformed the foundations and 

practice of computation since the initial conceptions of Turing 

and Church. Although 1st-order propositions can be useful (e.g. 

in testing 1st-order propositions for satisfiability), message 

passing illustrates why 1st-order logic cannot be the foundation 

for theories in Computer Science. 

 

Actors in Practice 

An interface can be defined using an interface name, 

"interface", and a list of message handler signatures, where 

message handler signature consists of a message name followed 

by argument types delimited by "[" and "]", "→", and a return 

type. For example, the interface type ReadersWriter  can be 

defined as follows: 

   ReadersWriter interface  
          read[Query]→ ReadResponse, 
       write[Update ]→ WriteResponse  

 

Holes in regions of mutual exclusion 
    Holes in regions of mutual exclusion (Swiss cheese) [Hewitt 

and Atkinson 1979; Atkinson 1980] is a generalization of 

mutual exclusion with the following goals:   

 Generality:  Conveniently program any scheduling policy 

 Performance:  Support maximum performance in 

implementation, e.g., the ability to minimize locking and to 

avoid repeatedly recalculating a condition for proceeding. 

 Understandability:  Invariants for the variables of a 

mutable Actor should hold whenever entering or leaving 

the region of mutual exclusion. 

 Modularity:  Resources requiring scheduling should be 

encapsulated so that it is impossible to use them incorrectly. 

   Coordinating activities of readers and writers in a shared 

resource is a classic problem. The fundamental constraint is that 

multiple writers are not allowed to operate concurrently and a 

writer is not allowed to operate concurrently with a reader. 

    Below is a read priority implementation of a readers/writer 

scheduler for a database in which it is forbidden for a writer to 

operate concurrently with any other activity (cf. [Hoare 1974; 

Brinch Hansen 1996]):

ReadPriority ⟦aDatabase:ReadersWriter ⟧ ↦ 
   Local(FIFO(writersQ,  readersQ), 
                                                                // queues of suspended activities 
                Crowd(reading),                     // crowd of active reading 
                AtMostOne(writing)),   // at most one writing 
   Handler(getScheduler ↦ As myScheduler,  

              upgrade[newVersion] ↦  
                            CancelAll(readersQ, writersQ, reading, writing) 
                                for Become newVersion) 
   myScheduler implements ReadersWriter Handler(  

    read[aQuery] ↦  
     Enqueue readersQ  
                       when SomeNonempty(writing, writersQ, readersQ)  

         for                                          // Require: IsEmpty(writing)  

            Permit readersQ 
                   for  aDatabase∎read[aQuery] thru reading 
 

                                afterward             // Require: IsEmpty(writing) 
 

                                    permit writersQ when IsEmpty reading  
                                                  else readersQ when  
                                                                AllEmpty(writing, writersQ) 

      write[anUpdate] ↦     
     Enqueue writersQ when SomeNonempty(reading,  
                                                           readersQ, writing, writersQ)   
          for                             // Require: IsEmpty(writing , reading)   

                  aDatabase∎write[anUpdate] thru writing 

                afterward     // Require: AllEmpty(writing , reading)  
                                       Permit readersQ else writersQ) 

             

 readersQ

theResource∎write[aQuery] thru reading

 writersQ

theResource∎write[anUpdate] thru writing 

theResource∎read[aQuery] 

theResource∎write[anUpdate] 

read[aQuery]

write[anUpdate]
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Note: 

1. At most one activity is allowed to execute in the region of 

mutual exclusion of ReadPriority.  

2. The region of mutual of exclusion has holes illustrating that 

an Actor is not a sequential process (thread) in which 

control moves sequentially through a program.  

3. An implementation, e.g. ReadPriority, differs from a 

class [Dahl and Nygaard 1967] as follows:  

4. An implementation can use multiple other 

implementations using qualified names to prevent 

ambiguity [cf. ISO 2017]. 

5. An implementation cannot be subclassed [Dahl and 

Nygaard 1967]  in order to prevent impersonation by other 

types. 

6. An invariant for an Actor must hold when it is created and 

when entering/leaving a continuous section of a region of 

mutual exclusion. 

7. Strong types are the foundation of Actor communication.  

For example, if x is of type ReadPriority, then 

x∎getSchedular means ReadPriority∎send[x, getSchedular] 

Types manage crypto without requiring programming 
by application programmers.  

    A ReadPriority implementation has the following 

invariant: 

                Nonempty[writing] ⇨ IsEmpty[reading] 
which holds because of Actor Induction as follows [Turing 

1949, Hewitt 2017-2019]: 

 The invariant holds when a ReadPriority 

implementation is created. 

 If the invariant holds in a  ReadPriority 

implementation when a communication is received, then it 

holds when leaving. 

    Starvation of activities suspended in readersQ and writersQ 

as is prevented in a ReadPriority implementation as 

follows: 

 An activity in readersQ progresses when 

1. A read to the database is started by another activity 

2. If  writersQ and writing are both empty after the read 

to the database is completed by another activity 

3. Else after the next write to the database is finished. 

 An activity in writersQ progresses when 

1. If readersQ is empty when a write to the database is 

completed by another activity 

2. Else when reading becomes smaller when reading the 

database is completed by another activity. 

    Reading throughput is maintained by permitting readersQ 

when another activity starts a read to the database. 

 

Axiomatization of Actors up to a unique isomorphism 
Let x[e] be the behavior of Actor x at local event e, Com be the 

type for a communication, and Behavior be the type for a 

procedure that maps a communication received to an outcome 

that has a finite set of created Actors, a finite set of sent 

communications, and a behavior for the next communication 

received. 

    ActorTheory categorically axiomatises Actors using the 

following axioms where ↷  (read as “precedes”) is transitive 

and irreflexive and Info[x] is the information in the Actor 

addresses of x:  

 Primitive Actors 

o ∀[i:N]  i:Actor             // natural numbers are Actors 

o ∀[x1,x2:Actor ] [x1, x2]:Actor  

                                 // a 2-tuple of Actors is an Actor 

 Event ordering 

o ∀[c:Com ] ∃1[x1:Actor, c1:Com ] c∈x1.sent[c1]] 

            // every communication was sent by an Actor 

o ∀[c:Com ] ∀[x1, x2:Actor ]  

                             Receivedx1[c]⋀Receivedx2[c] ⇨ x1=x2 

            // a communication is received at most once 

o ∀[x:Actor, c:Com ] Initialx↷Receivedx[c]↷Afterx[c] 

o ∀[x:Actor, c1,c2:Com ]   

   c1≠c2 ⇒ (Receivedx[c1]↷Receivedx[c2]  

                                  ⋁ Receivedx[c2]↷Receivedx[c1]) 

o ∀[x:Actor, c:Com ]  

    ∄[c1:Com ]  Receivedx[c]↷Receivedx[c1]↷Afterx[c] 

 An Actor’s behavior change 

o ∀[x:Actor, c:Com ]   

    (∄[c1:Com ] Receivedx[c1]↷Receivedx[c]) 

                     ⇒ x received[c] = xinitial 

o ∀[x:Actor, c1,c2:Com ]   

    (∄[c3:Com ]  

                    Afterx[c1]↷Receivedx[c3]↷Receivedx[c2]) 

            ⇒ x received[c2] = x∎after[c1] 

o ∀[x:Actor, c:Com ] Finite[Com ∋[s]↦s∈x.sent[c]] 

o ∀[x:Actor, c:Com ]  

    Info[x∎created[c]]  

            ⊑ Info[c]⊔Info[Receivedx[c2]]⊔Info[Newx[c]] 

o ∀[x, x1:Actor, c:Com ]  

  x1∈Newx[c]  

    ⇨ ⊥ = Info[x1]⊓(Info[c]⊔Info[Receivedx[c2] 

                                                                      ⊔Info[Newx[c]-x1]) 

       // info about the address of a newly created  

        // Actor does not provide any information  

       // about addresses of other Actors 

o ∀[x:Actor, c:Com ] Info[x∎created[c]] 

             Let processing = (Info[c]⊔Info[Receivedx[c2]] 

                                                     ⊔Info[x∎created[c]]) 

                      // processing is information about addresses 

                    // that is in c, available in the Actor when  

                    // c was received and in Actors created 

                    // while processing c            

                 in (Info[x∎after[c]]⊑processing  

                       ⋀ Info[x∎sent[c]]⊑processing)        
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 Actor Induction 

  ∀[x:Actor, P predicateOnActorTheory Behavior] 

      (P⟦xinitial⟧  ∀[c:Com ] P⟦xreceived[c]⟧⇨P⟦x∎after[c]⟧) 

         ⇨ ∀[c:Com ] P⟦xreceived[c]]⟧  P⟦x∎after[c]]⟧ 

 

    Note that the above axioms do not require that every 

communication sent must be received.  However, ActorScript 

[Hewitt and Woods assisted by Spurr 2015] provides that every 

request will either throw a TooLong  exception or respond 

with the response sent to its customer. 

    Theorem. Discreteness of Actors event ordering, i.e., 

             ∀[e1, e2:Event ] Finite[Event ∋[e]↦e1↷e↷e2] 

                   // There are only finitely many events  

                    // in ↷ between two events.    

    Theorem. Unique Categoricity of ActorTheory, i.e., if M 

is a type satisfying the axioms for ActorTheory, then there is  

a unique isomorphism between M and Actor. 

    Thesis: Any digital system can be directly modeled and 

implemented using Actors. 
 

In many practical applications, the parallel λ-calculus and 

pure Logic Programs can be thousands of times slower than 

Actor implementations. 

 

VI. MATHEMATICAL THEORIES OF COMPUTER SCIENCE 

 

Standard Mathematical Theories of Computer Science 

Although theorems of mathematical theories in higher order 

logic are not computationally enumerable, proof checking  is 

computationally decidable. Strong types can be used 

categorically axiomatize [Hewitt 2017-2019] up to a unique 

isomorphism a mathematical theory T for the model M for each 

of the following: Natural Numbers, Real Numbers, Ordinals, 

Computable Procedures, and Actors. Each theory T has the 

following properties: 

 T is categorical for M, i.e., if X satisfies the axioms of T, 

then is X isomorphic to M by a unique isomorphism. 

 T is not compact 

 ⊦
p

𝐓
   is computationally decidable for :PropositonT 

       and p:ProofCheckerT 

 

Information Invariance 
Information Invariance is a fundamental technical goal of logic 

consisting of the following: 

1. Soundness of inference: information is not increased by 

inference 

2. Completeness of inference: all valid inferences are 

included. 

 

Criteria for Mathematical Foundations 

Computer Science brought different concerns and a new 

perspective to mathematical foundations including the 

following requirements (building on [Maddy 2018]): 

 Practicality is providing powerful machinery so that 

arguments (proofs) can be short and understandable and  

 Generality is formalizing inference so that all of 

mathematics can take place side-by-side.  Strong types 

provide generality by formalizing theories of the natural 

numbers, reals, ordinals, set of elements of a type, groups, 

lambda calculus, and Actors side-by-side. 

 Shared Standard of what counts as legitimate mathematics 

so people can join forces and develop common techniques 

and technology. According to [Burgess 2015]: 

“To guarantee that rigor is not compromised in the 

process of transferring material from one branch of 

mathematics to another, it is essential that the starting 

points of the branches being connected ... be 

compatible. ... The only obvious way ensure 

compatibility of the starting points ... is ultimate to 

derive all branches from a common unified starting 

point.” 

    This article describes such a common unified starting 

point including natural numbers, reals, ordinals, set of 

elements of a type, groups, geometry, algebra, lambda 

calculus, and Actors that are axiomatized up to a unique 

isomorphism. 

 Abstraction so that fundamental mathematical structures 

can be characterized up to a unique isomorphism including 

natural numbers, reals, ordinals, set of elements of a type, 

groups, lambda calculus, and Actors. 

 Guidance is for practioners in their day-to-day work by 

providing relevant structures and methods free of extraneous 

factors. This article provides guidance by providing strong 

parameterized types and intuitive categorical inductive 

axiomatizations of natural numbers, ordinals, set of elements 

of a type, lambda calculus, and Actors. 

 Meta-Mathematics is the formalization of logic and rules 

of inference. The mathematical theories described in this 

article facilitate meta-mathematics because inference is 

directly on propositions without having to be coded as 

integers as in [Gödel 1931]. 

 Automation is facilitated in  this article by making type 

checking very easy and intuitive along as well as 

incorporating Jaśkowski natural deduction for building an 

inferential system that can be used in everyday work. 

 Risk Assessment is the danger of contradictions emerging 

in classical mathematical theories. This article formalizes 

long-established and well-tested mathematical practice 

while blocking all known paradoxes. (See appendix on 

paradoxes.) Confidence in the consistency of Nat and 

ActorTheory is based on the way that they are 

inductively constructed bottom-up.  

 Monsters [Lakatos 1976] are unwanted elements in 

models of classical mathematical theories. ActorTheory 
precisely characterizes what is digitally computable leaving 

no room for “monsters” in models. Having a model up to a 

unique isomorphism in classical mathematical theories is 

crucial for cybersecurity. 

   Intuitive categorical inductive axiomatizations of natural 

numbers, propositions, types, ordinals, set of elements of a type, 
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lambda calculus, and Actors promote confidence in operational 

consistency.  

     Consistent mathematical theories can be freely used in 

(inconsistent) empirical theories without introducing additional 

inconsistency. 

 

VII. CYBERSECURITY CRISIS 

    The current disastrous state of cybersecurity [Sobers 2019,  

Perlroth, Sanger and Shane 2019] cries out for a paradigm shift. 

 

Nature of Paradigm Shifts 
According to [Kuhn 2012], 

“The decision to reject one paradigm is always simultaneously 

the decision to accept another. First, the new candidate must 

seem to resolve some outstanding and generally recognized 

problem that can be met in no other way. Second, the new 

paradigm must promise to preserve a relatively large part of 

the concrete problem solving activity that has accrued to 

science through its predecessor ...  

        At the start, a new candidate for paradigm shift may have 

few supporters, and on occasions supporters’ motives may be 

suspect. Nevertheless, if they are competent, they will 

improve it, explore its possibilities, and show what it would 

be like to belong to the community guided by it. And as that 

goes on, if the paradigm is one destined to win its fight, the 

number and strength of the persuasive arguments in its favor 

will increase. More scientists will then be converted, the 

exploration of the new paradigm will go on. Gradually, the 

number of experiments, instruments, and books upon the 

paradigm will multiply... 

        Though a generation is sometimes required to effect the 

shift, scientific communities have again and again been 

converted to new paradigms. Furthermore, these conversions 

occur not despite the fact that scientists are human but 

because they are. ... Conversions will occur a few at a time 

until, after the last holdouts have died, the whole profession 

will again be practicing under a single, but now different 

paradigm.” 

 
Shifting Away from 1st-order Logic 
 Computer Science must shift from 1st-order logic as the 

foundation for mathematical theories of Computer Science 

because of the following deficiencies: 

 unwanted monsters in models of theories 

 inconsistencies in theories caused by compactness 

 being able to infer each and every proposition (including 

nonsense) from an inconsistency in an empirical theory even 

though it may not be apparant that the theory is inconsistent. 

Thus Computer Science must move beyond the consensus 

claimed by [G. H Moore 1988] as follows: “To most 
mathematical logicians working in the 1980s, first-order 
logic is the proper and natural framework for mathematics.”   

 

The necessity to give up a long-held intuitive assumption 
has often held back the development of a paradigm shift.  
For example, the Newtonian assumption of absolute space-time 

had to be given up in the theory of relativity.  Also, physical 

determinacy had to be abandoned in quantum theory. According 

to [Church 1934]:   

“Indeed, if there is no formalization of logic as a whole [i.e.  

theorems are not computationally enumerable], then there is 

no exact description of what logic is, for it in the very nature 

of an exact description that it implies a formalization. And if 

there no exact description of logic, then there is no sound 

basis for supposing that there is such a thing as logic.” 

Contrary to [Church 1934], the conclusion in this article is 

to abandon the assumption that theorems of a theory must 

be computationally enumerable while retaining the 

requirement that proof checking must be computationally 

decidable. 

 

Shifting Away from Models of Computation That Are Not 
Strongly-typed 
Influenced by Turing Machines [Turing 1936], current 
computer systems are not strongly-typed leaving them open 
to cyberattacks [Hewitt 2019].  Strongly-typed Actors can 
directly model and implement all digital computation. 
Consequently, strongly-typed architecture can be extended 
to microprocessors providing strongly-typed computation 
all the way to hardware. 
 
The Establishment has made numerous mistakes during 

paradigm shifts. 

Arthur Erich Has derived the radius of the ground state of the 

hydrogen atom [Haas 1910], anticipating Niels Bohr work by 3 

years. Yet in 1910 Haas’s article was rejected and his ideas were 

termed a “carnival joke” by Viennese physicists. [Hermann 

2008] On the other hand, Enrico Fermi received the 1938 Nobel 

prize for the discovery of the nonexistent elements “Ausonium” 

and “Hesperium”, which were actually mixtures of barium, 

krypton and other elements. [Fermi 1938] 

 

How the Computer Science cybersecurity crisis will proceed 
is indeterminate 
Possibilities going forward include the following:  

 continue to muddle along without fundamental change 

 shift to something along the lines  proposed in this article 

 shift to some other proposal that has not yet been devised 

Cybersecurity issues can provide focus and direction for 

fundamental research in Computer Science. 

 

VII. RELATED WORK 

Recent work has centered on constructive type theory which has 

type t
1
→1t

2
, which is the type of deterministic computable 

procedures t
1 

into t
2
, but does not have t

2

t1
, which is the type 

of all functions from t
1 

into t
2
. Also, constructive type theory 

relies on the premise that  is a proposition of T if an only 

if  is a theorem of T with the unfortunate consequence 

that type checking is computationally undecidable and it is 

difficult to reason about unprovable propositions.  

    Extensions of Isabelle/HOL [Gordon 2016] seem more 

suitable for formalizing classical mathematics than 

constructive type theory. 
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VIII. CONCLUSION 

This article strengthens the position of Computer Science 

cybersecurity as follows: 

 Providing usable theories of standard mathematical 

theories of computer science (e.g. Natural Numbers and 

Actors) such that there is only one model up to a unique 

isomorphism. The approach in this article is to embrace 
all of the most powerful tools of classical mathematics 
in order to provide mathematical foundations for 
Computer Science. Fortunately, these foundations are 

technically simple so they can be readily automated, 

which will enable improved collaboration between 

humans and computer systems. 

 Allowing theories to freely reason about theories 

 Providing a theory that precisely characterizes all digital 

computation as well as a strongly-typed programming 

language that can directly, efficiently, and securely 

implement every Actor computation. 

 Providing in foundation for well-defined classical 

theories of natural numbers and Actors for use in 

reasoning by theories of practice in Scalable Intelligent 

Systems that are (of necessity) pervasively inconsistent. 

Blocking known paradoxes makes classical mathematical 

theories safer for use in Scalable Intelligent Systems by 

preventing security holes. Consistent strong mathematical 

theories can be freely used without introducing additional 

inconsistent information into inconsistency robust empirical 

theories that will be the core of future Intelligent 

Applications. 

    Inconsistency Robustness [Hewitt and Woods assisted by 

Spurr 2015] is performance of information systems (including 

scientific communities) with massive pervasively-inconsistent 

information. Inconsistency Robustness of the community of 

professional mathematicians is their performance repeatedly 

repairing contradictions over the centuries. In the Inconsistency 

Robustness paradigm, deriving contradictions has been a 

progressive development and not “game stoppers.” 

Contradictions can be helpful instead of being something to be 

“swept under the rug” by denying their existence, which has 

been repeatedly attempted by dogmatic theoreticians (beginning 

with some Pythagoreans). Such denial has delayed 

mathematical development. 

    For reasons of computer security, Computer Science must 

abandon the thesis that theorems of fundamental mathematical 

theories must be computationally enumerable. This can be 

accomplished while preserving almost all previous 

mathematical work except the 1st-Order Thesis [Barwise 1985]. 

Automation of the proofs in this article is within reach of the 

state of the art which will enable better collaboration 

between humans and computer systems. 
     Having a powerful system is important because computers 

must be able to formalize all logical inferences (including 

inferences about their own inference processes) so that 

computer systems can better collaborate with humans.  
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APPENDIX: MATHEMATICAL NOTATION 

Notation for mathematical propositions, mathematical terms, 

and procedural expressions is formalized in this appendix. 

 

Mathematical Proposition is a discrimination of the 
following patterns: 

o 1, 12:PropositionOfOrderi where  

1,2:PropositionOfOrderi and i:N
+

 

o (x1=x2):PropositionOfOrder1 where  

x1,x2:Term t   and t  is a type  

o  (x:t ):PropositionOfOrder1 where t  is a type 

o P⟦x⟧:PropositionOfOrderi+1 where  

x:Term t  , t  is a type and  

P:Term Proposition it

 and i:N
+

 

o (1⊦2):PropositionOfOrderi where i:N
+
 and 

1,2:PropositionOfOrderi  

o (1├
p

 
 2):PropositionOfOrderi where  

p:Term ProofChecker, and 

1,2:PropositionOfOrderi and i:N
+
 

o s:PropositionOfOrderi (abstraction of 

   s) where s:PropositionOfOrderi↾String with no 

    free variables, and i:N
+ 

 

Mathematical Proposition from String  is a discrimination of 

the following patterns: 

o “"" s1”,“s1 "" s2”:PropositionofOrderi↾String 

where s1,s2:PropositionofOrderi↾String and i:N
+

 

o “x1"="x2”: PropositionofOrder1↾String where  

where x1,x2:Term↾String 

o “x1 ":" x2”: PropositionofOrder1↾String where 

x1,x2:Term↾String  

o “"∀[" x ":" t "]" s”:PropositionofOrderi+1↾String 

where t is a type, x:Variablet  ↾String  and 

s:PropositionofOrderi↾String 

o “P "⟦" x "⟧"”: PropositionofOrderi+1↾String 

where x:Term t
 
↾String, i:N

+
 and 

P:Term PropositionofOrder it ↾String  

o “s1"⊦"s2”: PropositionofOrderI+1↾String where  

s1,s2:PropositionofOrderi↾String,  and i:N
+

. 

o “s1 "├"
p

 
 s2”:PropositionofOrderi+1↾String where 

p:TermProofChecker ↾String, 

s1,s2:PropositionofOrderi↾String,, and i:N
+
  

o  “"" s ""”:PropositionofOrderi↾String is  

    abstraction of s where  

       s:PropositionofOrderi↾String with no free  
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     variables, and i:N
+ 

 

Mathematical Term is a discrimination of the following 

patterns: 

o Boolean :ConstantTypeOf Boolean ,  

N:ConstantTypeOf N , and  

Actor :ConstantTypeOf Actor  

o x:Term t    where x:Constantt   and t  is a type 

o x:Term t   where x:Variable t   and  

t  is a type 

o [x1, x2]:Term [t
1
, t

2
] where x1:Term t

1
,   x2:Term 

t
2
, and t

1
 and t

2
 are types 

o (x1 if True then x2 , False then x3):Term t  where 

x1:Term Boolean , x2,x3:Term t  and t  is a type 

o (λ[x:t
1 ] y):Term t

2

t1

 where x:Variablet
1
, 

y:Termt
2
 and t

1
 and t

2
 are types 

o f[x]:Term t
2
 where f:Term t

2

t1

,  

x:Term t
1
, and t

1
 and t

2
 are types 

o x :Term t   is abstraction of x where  

    x:Term t   ↾String   and t  is a type 

 

Procedural Expression is a discrimination of the following: 

o x:Expression t    where x:Constantt   and t  is a 

type 

o x:Expression t   where x:Identifier t   and  

t  is a type 

o [e1, e2]:Expression [t
1
, t

2
] where  

e1:Expression t
1
, e2:Expression t

2
, and  

t
1
 and t

2
 are types 

o (e1 if True then e2 , False then e3):Expression t  
where e1:Expression Boolean ,  

e2,e3:Expression t  and t  is a type 

o (λ[x:t
1 ] y):Expressiont

1
→t

2
 where 

x:Identifiert
1
, y:Expressiont

2
 and t

1
 and t

2
 are 

types 

o x∎m:Expression t
2
 where m:Expression t

1
, x is 

an Actor with a message handler with signature of 

type Expression t
1
→t

2
, and t

1
 and t

2
 are types 

o I⟦x1, ..., xn⟧:Expression I  where I is an Actor 

implementation and x1, ..., xn are expressions. 

o x :Expression t   is abstraction of x where  

    x:Expression t   ↾String   and t  is a type 

 
APPENDIX: MATHEMATICAL PARADOXES 

Inconsistencies in fundamental mathematical theories of 

Computer Science are dangerous because they can be used 

to create security vulnerabilities. Strong types are extremely 

important because they block all known paradoxes including 

the ones in this appendix. 

 

Russell [Russell 1902] 
o Russell’s paradox for sets is resolved as follows: the type 

of all sets restricted to ones that are not elements of 

themselves is just the type of all sets because no set is an 
element of itself. 

o Russell’s paradox for predicates is resolved as follows: 
The mapping P↦P⟦P⟧ has no fixed point because P⟦P⟧ 
has order one greater than the order of P because P is a 
predicate variable. 
 
Berry [Russell 1906] 

Berry’s Paradox can be formalized using the proposition  

Characterizei⟦s, k⟧ meaning that the string s characterizes 

the integer k as follows where i:N
+
: 

 Berryi ≡  (TermPropositionofOrderiN)↾String 

 Characterizei⟦s:Berryi,  k:N⟧  ≡ ∀[x:N] s  ⟦x⟧⇔ x=k 

    The Berry Paradox is to construct a string for the proposition 

that holds for integer n if and only if every string with length 

less than 100 does not characterize n using the following 

definition: 

   BerryString:Berryi+1 ≡ 

     “[j:N]↦∀[s:PropositionOfOrderi↾String] 

                            Length[s]<100 ⇨ Characterizei⟦s, j⟧” 

  Note that 

o Length[BerryString]<100. 

o Berryi∋[s]↦ Length[s]<100 is finite. 

o Therefore, BerryNumber  is finite where 

    BerryNumber  ≡  

             N
+

∋[j]↦∃[s:Berry i] 

                                    Length[s]<100  Characterizei⟦s, j⟧ 

o ∃[i:N
+
] i:BerryNumber  because is N

+
 is infinite. 

o LeastBerry ≡ Least[BerryNumber ]  

o  BerryString ⟦LeastBerry⟧ =   

                      ∀[s:Berryi]  

              Length[s]<100 ⇨ Characterizei⟦s, LeastBerry⟧ 

However BerryString:Berryi+1  cannot be substituted 

for s:Berryi. Consequently, the Berry Paradox as follows 

does not hold: 

          BerryString ⟦LeastBerry⟧ 

                ⇔ Characterizei⟦BerryString, LeastBerry⟧ 

 
Curry [Curry 1941]  
Curry’s Paradox is blocked because the mapping p↦p⇒Ψ 

does not have a fixed point because the order of p⇒Ψ is 

greater than the order of p since p is a propositional variable. 
 
Löb [Löb 1955]  

Löb’s Paradox is blocked because the mapping p↦((├p)⇒Ψ) 

does not have a fixed point because the order of (├p)⇒Ψ is 

greater than the order of p since p is a propositional variable. 
 
Yablo [Yablo 1985] 
Yablo’s Paradox is blocked because the mapping  

P↦[i:N]↦∀[j:N] j>i⇨P⟦j⟧ does not have a fixed point 

because the order of ∀[j:N]j>i⇨P⟦j⟧ is greater than the order 

of P since P is a predicate variable [cf. Priest 1997].
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