
HAL Id: hal-02136170
https://hal.science/hal-02136170

Submitted on 21 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

For Cybersecurity, Computer Science Must Rely on
Strongly-Typed Actors

Carl Hewitt

To cite this version:
Carl Hewitt. For Cybersecurity, Computer Science Must Rely on Strongly-Typed Actors. Inconsis-
tency Robustness, 2nd Ed., 2019. �hal-02136170�

https://hal.science/hal-02136170
https://hal.archives-ouvertes.fr

 1

Abstract—This article shows how fundamental higher-order

theories of mathematical structures of computer science (e.g.

natural numbers [Dedekind 1888] and Actors [Hewitt et. al. 1973])

are categorical meaning that they can be axiomatized up to a

unique isomorphism thereby removing any ambiguity in the

mathematical structures being axiomatized. Having these
mathematical structures precisely defined can make systems more
secure because there are fewer ambiguities and holes for
cyberattackers to exploit. For example, there are no infinite

elements in models for natural numbers to be exploited. On the

other hand, the 1st-order theories and computational systems

which are not strongly-typed necessarily provide opportunities for

cyberattack.

Cyberattackers have severely damaged national, corporate, and

individual security as well causing hundreds of billions of dollars

of economic damage. [Sobers 2019] A significant cause of the
damage is that current engineering practices are not sufficiently
grounded in theoretical principles. In the last two decades, little

new theoretical work has been done that practically impacts large

engineering projects with the result that computer systems

engineering education is insufficient in providing theoretical

grounding. If the current cybersecurity situation is not quickly

remedied, it will soon become much worse because of the projected

development of Scalable Intelligent Systems by 2025 [Hewitt

2019].

Kurt Gödel strongly advocated that the Turing Machine is the

preeminent universal model of computation. A Turing machine

formalizes an algorithm in which computation proceeds without

external interaction. However, computing is now highly

interactive, which this article proves is beyond the capability of a

Turing Machine. Instead of the Turing Machine model, this

article presents an axiomatization of a strongly-typed universal

model of digital computation (including implementation of

Scalable Intelligent Systems) up to a unique isomorphism.
Strongly-typed Actors provide the foundation for tremendous
improvements in cyberdefense.

Index Terms—categorical theories, strong types, Scalable

Intelligent Systems, Alonzo Church, Kurt Gödel, Richard

Dedekind

I. INTRODUCTION

The approach in this article is to embrace all of the most
powerful tools of classical mathematics in order to
provide mathematical foundations for Computer Science.
Fortunately, the results presented in this article are technically

simple so they can be readily automated, which will enable

better collaboration between humans and computer systems.

Mathematics in this article means the precise formulation

of standard mathematical theories that axiomatize the

†

C. Hewitt is the Board Chair of iRobust (International Society for

Inconsistency Robustness) and an emeritus professor of MIT. His homepage

is https://professorhewitt.blogspot.com/

following standard mathematical structures up to a unique

isomorphism: Booleans, natural numbers, reals, ordinals, set

of elements of a type, computable procedures, and Actors, as

well as the theories of these structures.

In a strongly typed mathematical theory, every proposition,

mathematical term, and program expression has a type where

there is no universal type Any. Types are constructed bottom

up from mathematical types that are individually categorically

axiomatized in addition to the types of a theory being

categorically axiomatized as a whole.

[Russell 1906] introduced types into mathematical
theories to block paradoxes such as The Liar which could be
constructed as a paradoxical fixed point using the mapping
p↦p, except for the requirement that each proposition
must have an order beginning with 1st-order. Since p is a
propositional variable in the mapping, p has order one
greater than the order of p. Thus because of orders on
propositions, there is no paradoxical fixed point for the
mapping p↦p which if it existed could be called I’mFalse
such that I’mFalse ⇔I’mFalse. Unfortunately in addition to
attaching orders to propositions, [Whitehead and Russell
1910-1913] also attached orders to the other mathematical
objects (such as natural numbers), which made the system
unsuitable for standard mathematical practice.

II. LIMITATIONS OF 1ST-ORDER LOGIC

Wittgenstein correctly proved that allowing the proposition

I'mUnprovable [Gödel 1931] into mathematics [Russell and

Whitehead 1910-1913] infers a contradiction as follows:

“Let us suppose [Gödel 1931] was correct and therefore] I

prove the unprovability (in Russell’s system) of [Gödel's

I'mUnprovable] P; [i.e., ⊢Russell ⊬Russell P where

P⇔⊬Russell P] then by this proof I have proved P [i.e.,

⊢Russell P because P⇔⊬Russell
P]. Now if this proof were

one in Russell’s system [i.e., ⊢Russell ⊢Russell P] — I

should in this case have proved at once that it belonged [i.e.,

⊢RussellP] and did not belong [i.e., ⊢Russell P because

P⇔⊢Russell
P] to Russell’s system. But there is a

contradiction here! [i.e., ⊢Russell P and ⊢Russell P] ...
[This] is what comes of making up such propositions.”

[emphasis added] [Wittgenstein 1978]

 Gödel made important contributions to the
metamathematics of 1st-order logic with the countable
compactness theorem and formalization of provability.
[Gödel 1930] However decades later, Gödel asserted that the

[Gödel 1931] inferential undecidability results were for a 1st-

For Cybersecurity,
Computer Science Must Rely on

Strongly-Typed Actors

Carl Hewitt†

https://professorhewitt.blogspot.com/

 2

order theory (e.g. like [Paulson 2014]) instead of the theory

Russell [Russell and Whitehead 1910-1913] as originally

stated in [Gödel 1931]. In this way, Gödel dodged the point

of Wittgenstein’s criticism.

 Technically, the result in [Gödel 1931] was as follows:

 Consistent[Russell]⇨⊢Russell ⊬Russell P

where P⇔⊬RussellP and Consistent[Russell] if an only if

there is no proposition such that ⊢Russell⋀,

However, Wittgenstein was understandably taking it as a given

that Russell is consistent because it formalized standard

mathematical practice and had been designed to block known

paradoxes (such as The Liar) using orders on propositions.

Consequently, Wittgenstein elided the result in [Gödel 1931 to

⊢Russell⊬RussellP. His point was that Russell is

consistent provided that the proposition ⊢Russell ⊬Russell P

is not added to Russell. Wittgenstein was justified because

the standard theory of natural numbers is arguably consistent

because it has a model. [Dedekind 1888]

 According to [Russell 1950]: “A new set of puzzles has
resulted from the work of Gödel, especially his article
[Gödel 1931], in which he proved that in any formal system
[with recursively enumerable theorems] it is possible to
construct sentences of which the truth [i.e., provability] or
falsehood [i.e., unprovability] cannot be decided within the
system. Here again we are faced with the essential
necessity of a hierarchy [of sentences], extending upwards
ad infinitum, and logically incapable of completion.”
[Urquhart 2016] Construction of Gödel’s I’mUnprovable is

blocked because the mapping ↦⊬Ψ does not have a fixed

point because the order of ⊬Ψ is one greater than the order of

 since is a propositional variable.

 Although 1st-order propositions can be useful (e.g. in 1st-

order proposition satisfiability testers), 1st-order theories are

unsuitable as the mathematical foundation of computer science

for the following reasons:

 Compactness Every 1st-order theory is compact [Gödel

1930] (meaning that every countable inconsistent set of

propositions has a finite inconsistent subset). Compactness

is false of the standard theory of natural numbers for the

following reason: if k is a natural number then the set of

propositions of the form i>k where i is a natural number is

inconsistent but has no finite inconsistent subset, thereby

contradicting compactness.

 Monsters Every 1st-order theory is ambiguous about

fundamental mathematical structures such as the natural

numbers, lambda expressions, and Actors [Hewitt and

Woods assisted by Spurr 2019]. For example,

o Every 1st-order axiomatization of the natural numbers

has a model with an element (which can be called ∞) for

a natural number, which is a “monster” [Lakatos 1976]

because ∞ is larger than every standard natural number.

o Every 1st-order theory T that can formalize its own

provability has a model M with a Gödelian “monster”

element that proves T inconsistent (i.e. ⊨
M

⊢T⋀)
by the following proof: According to [Gödel 1931],

⊬TConsistent[T] and consequently because of the 1st-

order model “completeness” theorem [Gödel 1930]

there must be some model of T in which Consistent[T]

is false. [cf. Artemov 2019]

Such monsters are highly undesirable in models of

standard mathematical structures in Computer Science

because they are inimical to model checking.

 Inconsistency This article shows that a theory with

recursively enumerable theorems that can formalize its own

provability is inconsistent.

 Intelligent Systems. If a 1st-order theory is not consistent,

then it is useless because each and every proposition (no

matter how nonsensical) can be proved in the theory.

However, Scalable Intelligent Systems must reason about

massive amounts of pervasively-inconsistent information.

[Hewitt and Woods assisted by Spurr 2019] Consequently,

such systems cannot always use 1st-order theories.

Conversational Logic [Hewitt 2016-2019] needs to be used

to reason about inconsistent information in Scalable

Intelligent Systems. [cf. Woods 2013]

Consequently, Computer Science must move beyond 1st-

order logic for its foundations.

III. STRONG TYPES

Types must be strong to prevent inconsistency but flexible

to allow all valid inference. (See appendix on how known

paradoxes are blocked.) Although mathematics in this
article necessarily goes beyond 1st-order logic, standard
mathematical practice is used. Wherever possible,
previously used notation is employed. The following notation

is used for types:

 The notation x:t means that x is of type t . For example, 0:N

expresses that 0 is of type N, which is the type of a natural

number. Types differ from sets in that types are intensional,

i.e., if x:t
1
 and x:t

2
 for every x does not mean that t

1
=t

2

where t
1
 and t

2
. are types.

 t
2

t1 is type of all functions from t
1

into t
2
 where

t
1
 and t

2
. are types. A function is total and may be

uncomputable. For example, N
N is the type all total

functions from natural numbers into the natural

numbers, which are uncountable. If f:NN, then f[3] is the

value of function f on argument 3.

 t
1
→t

2
 is type of nondeterministic computable procedures

from t
1
 into t

1
 where t

1
 and t

2
 are types whereas t

1
→1t

2
 is

the deterministic procedures. For example, []→Boolean

is the type all partial nondeterministic procedures of no

argument into the type of Boolean. If p:[]→Boolean,

then p∎[] starts a computation by providing input [] to

procedure p which might return True or return False. It
might happen that p∎[] does not return a value.

 [t 1,t
2
] is type of pairs of t

1
 and t

2
where t

1
 and t

2
 are types.

For example, [N, Boolean] is the type of pairs whose first

is a natural number and whose second is a Boolean.

 TypeOf t is the type of t where t is a type. For example,

N:TypeOfN meaning that N is of type TypeOfN

 3

producing an infinite hierarchy of types of types somewhat

like the hierarchy of universes in [Martin-Löf 1998]. There

is no type Type thereby blocking Girard’s paradox [Girard

1972, Martin-Löf 1998].

 PropositionOfOrderi is type of a proposition of

order i where i:N
+

 and N
+

 is the type of positive natural

numbers. For example, PropositionOfOrder1 is the

type of propositions of order 1.

o Proposition means ∃[i:N
+
]

 :PropositionOfOrderi

o P predicateOn t means ∃[i:N
+
]

 P:PropositionOfOrderit

 t ∋P is the type of t restricted to P where t is a type and P is

a predicate. For example, replacement for types is

expressed using restriction, i.e., the range of a function

f:t
2

t1 is t
2

∋λ[y:t
2
] ∃[x:t

1
] y=f[x].

Types are constructed bottom-up from types that are

categorically axiomatized up to a unique isomorphism. Type
checking is linear in the size of the propositon, mathematical
term or procedural expression to be type checked. See

appendix for syntax of propositions, mathematical terms, and

procedural expressions.

IV. STANDARD THEORIES OF COMPUTER SCIENCE

Cybersecurity requires that fundamental mathematical

structures in Computer Science must be precisely defined.

This section shows how to precisely define natural numbers. It

is followed by a section on how to precisely define Actors,

which are the fundamental abstraction of computation.

 The mathematical theory Nat that axiomatises the Natural

Numbers has the following axioms building on [Dedekind

1888]:

• 0:N // 0 is of type N
• +1:NN

// +1 (successor) is of type N
N

• ∄[i:N] +1[i]=0

// 0 is not a successor
• ∀[i,j:N] +1[i]=+1[j] ⇨ i=j // +1 is 1 to 1

In addition, Nat has the following induction axiom, which

has uncountable instances:

 ∀[P predicateOn N]

 (P⟦0⟧ ∀[i:N] P⟦j⟧⇨P⟦+1[j]⟧) ⇨ ∀[j:N] P⟦j⟧

MetaNat

MetaNat is a meta theory of Nat for proving theorems

about Nat, which directly expresses provability of a

proposition in Nat using ⊢Nat. (Gödel numbers cannot

be used to represent propositions because there are not
enough Gödel numbers to represent all uncountably many
propositions that are instances of the induction and instance
provability axioms.)

Procedures of Nat

Evalt :[Expression t in Environment]→t is a

procedure [McCarthy et. al. 1962] that corresponds to a

universal Turing machine [Church 1936] as follows:

o Evalt ∎[x:Expression t] ≡

 Evalt ∎[x in EmptyEnvironment]

o Evalt ∎[x:Identifiert in e:Environment] ≡

 Lookup[x in e]

o Evalt2 ∎[operator∎operand in e:Environmment] ≡

 (Evalt1→t2 ∎[operator in e])∎(Evalt1∎[operand in e])

 // apply the value of operator to

 // the value of operand

o Evalt1→t2 ∎[(x1↦body) in e:Environmment] ≡

 [x2:t1]↦Eval∎[body in Bind∎[x1 to x2 in e]]

 // eval body in a new environment with x1 bound

 // to x2 as an extension of e

In order to implement recursion, the lambda calculus has the

primitive Fix such that ∀[F:Functionalt
1
,t

2
]

 Fixt
1
,t

2
∎[F]= F∎[Fixt

1
,t

2
∎[F]]

where
Functional t

1
,t

2
 ≡ [[t

1
]→t

2
]→([t

1
]→t

2
)

Proof Checkers in Nat
A proof checker pc:ProofCheckerNat is a provably total

boolean-valued procedure of two arguments that checks if the

second argument is validly inferred from the first argument.

The following notation (which is part of the theory Nat) means

that pc is proof checker such that proposition 1 infers

proposition 2 in Nat: 1⊢
pc

 Nat
 2 such that:

 ∀[Proposition 1,2]

 (1⊢Nat2) ⇔ ∃[pc:ProofCheckerNat] 1⊢
pc

Nat
2

Proof checking in Nat is computationally decidable because:

 ∀[Proposition 1,2], pc:ProofCheckerNat]

 (1⊢
pc

Nat
 2) ⇔ pc∎[1,2]=True

where pc∎[1,2] means the invocation of procedure pc with

arguments 1 and 2. For example, there is a Chaining for

Inference checker such that if 1 is ⋀ (⊢
pc

 Nat
), then

ChainingForInferenceChecker∎[1,2]=True if 2= and

pc∎[,]=True, otherwise pc∎[1,2]=False as follows:

 ChainingForInferenceChecker∎[1,2] ≡

 1 if ⊢
pc

 Nat
 then 2= and pc∎[,]=True,

 else False

The proof checker for the induction axiom is as follows:

 InductionChecker∎[,2] ≡

 1 if (P⟦0⟧ ∀[i:N] P⟦i⟧⇨P⟦+1[i]⟧)

 then 2 = ∀[i:N] P⟦i⟧,

 else False

Note that InductionChecker correctly checks uncountably many

instances of each of the Nat induction axioms.

 There are uncountable proof checkers in Nat which is

made possible because proof checkers can operate on higher

order types, e.g., they are not restricted to strings.

 4

For example, there are uncountable proof checkers of the form

ForAllEliminationCheckert [c] where t is a type and c:t such

that

 ForAllEliminationCheckert [c]∎[1,2] ≡

 1 if (∀[x:t] P[x]) then 2=P[c], else False

Consequently,

 (∀[x:t] P[x]) ⊢
ForAllEliminationChecker𝑡[c]

Nat
 P[c]

Unique model up to Isomorphism of Nat
 The following axioms hold for TypeIn Nat (the type

of types in Nat) because types are intensional:

• N:TypeIn Nat

• ∀[i:N
+

] PropositionOfOrderi:TypeIn Nat

• ∀[t
1
,t

2
,t

3
,t

4
:TypeIn Nat]

 [t 1,t
2
]=[t 3,t

4
] ⇨ t

1
=t

2
⋀ t

3
=t

4

• ∀[t1,t2,t3,t4:TypeIn Nat] t1t2=t3
t4

⇨ t1=t2 ⋀ t3=t4

• ∀[t
1
,t

2
,t

3
,t

4
:TypeIn Nat]

 t
1
→t

2
=t

3
→t

4
 ⇨ t

1
=t

2
⋀ t

3
=t

4

• ∀[t
1
,t

2
:TypeIn Nat;

 P1 predicateOnNat t
1

, P2 predicateOnNat t
2

]

 t
1

∋P1=t
2

∋P2 ⇨ t
1
=t

2
 ⋀ P1=P2

• ∀[t
1
,t

2
:TypeIn Nat]

 TypeOf t
1
=TypeOf t

2
 ⇨ t

1
=t

2

For example, N
N:TypeIn Nat, etc.

 The following induction axiom holds, which has
uncountable instances:

 ∀[P predicateOnNat TypeIn Nat]

 (P⟦N⟧

 ∀[i:N
+
] P[PropositionOfOrderNati⟧

 ∀[t
1
,t

2
:TypeIn Nat] P⟦t

1
⟧⋀P⟦t

1
⟧⇨P⟦[t 1,t

2
]⟧

 ∀[t
1
,t

2
:TypeIn Nat] P⟦t

1
⟧⋀P⟦t

2
⟧⇨P⟦t1

t2

⟧
 ∀[t

1
,t

2
:TypeIn Nat] P⟦t

1
⟧⋀P⟦t

2
⟧⇨P⟦t

1
→t

2
⟧

 ∀[t :TypeIn Nat, Q predicateOnNat t]
 P⟦t⟧⇨P⟦t ∋Q⟧
 ∀[t :TypeIn Nat] P⟦t ⟧⇨P⟦TypeOf t ⟧)
 ⇨ ∀[t :TypeIn Nat] P⟦t ⟧

 Theorem Unique categoricity of TypeIn Nat, i.e., if

M is a type satisfying the theory Nat, then there is a unique

isomorphism I between TypeIn Nat and

TypeIn
M
Nat defined as follows:

• I[N] ≡ N
M

• I[[t 1,t
2
]] ≡ [I[t 1], I[t

2
]]

M

• I[t2
t1

] ≡ I[t2]I[t1]

• I[t
1
→t

2
] ≡ I[t

1
]→ I[t

2
]

• I[TypeOf t] ≡ TypeOf

M
I[t]

• I[t ∋P] defined by Induction on TypeIn Nat using the

following cases on t:

o N then I[t ∋P] ≡ M∋
M

[y]↦P⟦I-1[y]⟧

o [t 1,t
2
] then I[t ∋P] ≡ [I[t 1], I[t

2
]]

M
∋

M
[y]↦P⟦I-1[y]⟧

o t1
t2

 then I[t ∋P] ≡ I[t1]I[t2]
] ∋

M
[y]↦P⟦I-1[y]⟧

o t
1
→t

2
 then I[t ∋P] ≡ I[I[t

1
]→ I[t

2
]] ∋

M
[y]↦P⟦I-1[y]⟧

o TypeOf t
1

 then

 I[t ∋P] ≡ TypeOf
M

 I-1[t
1

]∋
M

[y]↦P⟦I-1[y]⟧

o t
1

 ∋P1 then I[t ∋P] ≡ I[t
1

] ∋
M

[y]↦P⟦I-1[y]⟧⋀P1⟦I-1[y]⟧

 The following induction axiom holds for propositions of

Nat, which has uncountable instances:

((∀[i:N
+
, P predicateOnNat PropositionOfOrderNati]

 (∀[t

:TypeIn Nat; x1,x2:t] P⟦x1=x2⟧

 ∀[t
1
,t

2
:TypeIn Nat; x:t

2
] P⟦x:t⟧

 ∀[PropositionNat] P⟦⟧⇨P⟦⟧
 ∀[PropositionNat 1,2] P⟦1⟧⋀P⟦2⟧⇨P⟦1⋀2⟧
 ∀[t

:TypeIn Nat; Q predicateOnNat t]

 (∀[x:t] P⟦Q⟦x⟧⟧)⇨P[∀[x:t] Q⟦x⟧]))
 ⇨ ∀[PropositionNat] P[]

 Theorem. Propositions of Nat are characterized up to a

unique isomorphism.

 Theorem [cf. Dedekind 1888].: If M be a type satisfying the

axioms of Nat, then there is a unique isomorphism

I:M
ModelNat defined as follows:

• if x:N

o if x=0, then I[x] ≡ 0
M

o if x=I[+1[j]], then I[x] ≡ +1
𝑀

[I[j]]

• if x:[t 1,t
2
], then I[x] ≡ [I[1st[x]], I[2nd[x]]]

M

• if x:t2
t1

, then [y:I[t 1]] ↦ I[x[I-1[y]]]

• if x:t
1
→t

2
, then I[x] ≡ [y:I[t 1]]↦I[x∎[I-1[y]]]

• if x:TypeOf t , then I[x] ≡ TypeOf

M
I[t]

I is a unique isomorphism because of the following;

• I is defined on TypeIn Nat

• I is 1-1

• I is onto M

• I is a homomorphism

o I[0] = 0
M

o ∀[j:N] I[+1[j]] = +1
𝑀

[I[j]]

o ∀[x:[t 1,t
2
]] I[x] = [I[1st[x]], I[2nd[x]]]

M

o ∀[x:t1
t2

] I[x] = [y:I[t 1]]↦I[x[I-1[y]]]

o ∀[x:t
1
→t

2
] I[x] = [y:I[t 1]]↦I[x∎[I-1[y]]]

• I-1 is a homomorphism

• If g is an isomorphism of Model Nat with M, then g=I

 Corollary There are no infinite numbers in models of the

theory Nat, i.e., if M satisfies the axioms for N of Nat, then

 ∄[j:M] ∀[i:N] i < j

Inference in Nat
 Inferential soundness means that a theorem in Nat can be

used in proofs in Nat.

 Theorem: Inferential Soundness of Nat, i.e.,

 ∀[PropositionNat] (⊢Nat) ⇨

 Proof. Follows immediately from the rule TheoremUse,

i.e., (⊢Nat) ⊢
TheoremUse

Nat
. Also, if ⊢Nat, then

holds in the unique up to isomorphism model of Nat.

 5

A consequence of Inferential Soundness is that unrestricted

cut-elimination does not hold for Nat.

 Theorem: Deduction for Nat, i.e.,

 ∀[PropositionNat ,] (⊢Nat⇨) ⇔ (⊢Nat)

Proof Suppose ⊢Nat⇨ and consequently ⇨ by

Inferential Soundness. Further suppose . Then by

ChainingForImplication and consequently ⊢Nat by

InferenceIntroduction.

 On the other hand suppose ⊢Nat. Further suppose

. Then by ChainingForInference and consequently

⊢Nat⇨ by ImplicationIntroduction.

Theorem Inferential Adequacy, i.e.,

 ∀[Proposition] (⊢Nat)⇨⊢Nat⊢Nat

 Proof: Suppose ⊢Nat. Let ⊢
pc1

Nat
 so that

pc1∎[]=True. Then a provably total procedure

pc2:ProofCheckerNat can be defined such that

pc2∎[⊢
pc1

 Nat
]=True meaning that ⊢

pc2

 Nat
⊢

pc1

Nat
.

Consequently, ⊢Nat⊢Nat.

Computational and Inferential Undecidability of Provability

in Nat
The predicate Halt can be defined as follows on deterministic

expressions:

 Halt[x:Deterministic N] ≡ ∃[y:N] y=Eval∎[x]

 Definition. Decidert ≡

 Total [Deterministic [t]→Boolean

 Theorem. Halt is computationally undecidable [Church

1935, Turing 1936], i.e.,

∄[d:DeciderDeterministic [N]→N]

 ∀[x:Deterministic N]→N] d∎[x]=True ⇔ Halt[x]

Proof. Suppose to obtain a contradiction that

d:DeciderDeterministic [N]→N and

∀[x:Deterministic N] decider∎[x]=True ⇔ Halt[x].

Define Opposite as follows:

 Opposite∎[] ≡ d∎[Opposite∎[]] if

 True then LoopForever∎[]

 False then 0

Because Halt[LoopForever∎[]], by the definition of

Opposite, d∎[Opposite∎[]]≠True because if it were True

then d∎[Opposite∎[]]=False by the hypothesis for d.

Consequently, d∎[Opposite∎[]]=False and therefore

Opposite∎[]=0 by the definition of Opposite. Therefore

d∎[Opposite∎[]]=True by the hypothesis for d, which is a

contradiction.

 Theorem. Whether a proposition is a theorem of Nat is

computationally undecidable [Church 1935, Turing 1936], i.e.,

there does not exist decider d for propositions of Nat such

that ∀[PropositionNat] d∎[]=True ⇔ ⊢Nat

Proof. Follows immediately from the computational

undecidability of the halting problem because of the

following:

∀[x:Deterministic [N]→N] Halt[x] ⇔ ⊢Nat Halt[x]

 Theorem. Nat is inferentially undecidable, i.e.,

 ∃[x:Deterministic N] (⊬Nat Halt[x]) ⋀ ⊬NatHalt[x]

Proof Suppose to obtain a contradiction that Nat is

inferentially decidable and consequently
 ∀[x:Deterministic [N]→N]

 (⊢Nat Halt[x]) ⋁ (⊢NatHalt[x])

Since only countably many instances of the natural

number induction axiom could have been used in the

above proofs, the halting problem is computationally

decidable by computationally enumerating the

proofs, which is a contradiction.

Theorem. There is a proposition of Nat that is true but

unprovable in Nat, i.e., ∃[x:Deterministic [N]→N]
 Halt[x] ⋀ ⊬NatHalt[x]

Proof. By inferential undecidability let x be such that

(⊬Nat Halt[x])⋀⊬Nat Halt[x]. Therefore Halt[x]

because Halt[x] ⇨ ⊢Nat Halt[x]

 In practice, computational and inferential undecidability

of provability, do not impose limitations on the ability to

prove theorems for mathematical theories of Intelligent

Systems.

Nat is algorithmically inexhaustible

That all the theorems of a theory can be obtained by

computationally enumerating them from axioms has long

been a default assumption of philosophers of logic. However,

the theory Nat violates this assumption because there are

uncountable instances of the induction axiom. Uncountability of

raises the following question: What axioms of Nat can be

expressed in text, i.e., in the theory Nat↾String, i.e., Nat
abstracted from strings. Nat↾String has the following

induction axiom, which has countable instances because

strings are countable:

 ∀[P predicateOnNat↾String
 N]

 (P⟦0⟧ ∀[j:N] P⟦j⟧⇨P⟦+1[j]⟧) ⇨ ∀[j:N] P⟦j⟧

 Definitions.

 Total t
1
, t

2
 ≡ (t

1
→1t2

)∋[f]↦∀[x:t
1

] ∃[y:t
2

] f∎[x]=y

 ProvedTotal Nat↾String
t

1
, t

2
 ≡

 (t
1

→1t2
)↾String ∋[f]↦⊢Nat↾String f:Totalt

1
,t

2

 Onto t
1
, t

2
 ≡ (t

1
→1t2

)∋[f]↦∀[y:t
2

] ∃[x:t
1

] f∎[x]=y

 Theorem. Theorem Nat↾String is computationally

enumerable, i.e., there is a procedure Theorems such that

Theorems:Onto [N], Theorem Nat↾String

Corollary. ProvedTotal Nat↾String
 is computationally

enumerable, i.e., there is a procedure ProvedTotals such that

 ProvedTotals:Onto [N], ProvedTotal Nat↾String
.

 Definition. Define the procedure Diagonal as follows:

 Diagonal∎[i:N] ≡ 1+(ProvedTotals∎[i])∎[i]

 Lemma. Diagonal:ProvedTotal Nat↾String

 6

Proof. Suppose i:N. Let

f:ProvedTotal Nat↾String
=ProvedTotals∎[i] and let

j:N=f∎[i]. Therefore Diagonal∎[i]=1+j. Consequently,

⊢Nat↾String Diagonal:Total [N], N .

 Lemma. Diagonal:ProvedTotal Nat↾String

Proof. Diagonal differs from every procedure

enumerated by ProvedTotals.

 Theorem. Nat↾String is inconsistent [Church 1934], i.e.,

 ∃[PropositionNat] ⊢Nat⋀

Proof. Let =Diagonal:ProvedTotal Nat↾String

 The upshot is that Nat is algorithmically inexhaustible,

i.e., nonalgorithmic creativity will be forever required to

develop new Nat axioms abstracted from strings thereby

reinforcing the intuition behind [Franzén, 2004]. According

to [Church 1934], inconsistency of Nat↾String means that

“there is no sound basis for supposing that there is such a thing

as logic.” Contrary to [Church 1934], the conclusion in this

article is to abandon the assumption that theorems of a

theory must be computationally enumerable while retaining

the requirement that proof checking must be

computationally decidable.

Proposed Instance Provability Axom

Nat has the following proposed instance provability axiom [cf.

Hilbert 1930], which has uncountable instances:

∀[P predicateOnNat N] (∀[i:N] ⊢NatP⟦i⟧) ⇨ ⊢Nat∀[j:N] P⟦j⟧

 V. ACTOR MODEL

[Church 1932] and [Turing 1936] developed a model of

computation time based on the concept of an algorithm, which

by definition is provided an input from which it is to compute a

value without external interaction. After physical computers

were constructed, they soon diverged from computing only

algorithms meaning that the Church/Turing theory of

computation no longer applied to computation in practice

because computer systems are highly interactive as they

compute. Actors [Hewitt, et. al 1973] (axiomatized in this

article) remedied the omission to provide for scalable

computation. An Actor machine can be millions of times faster

than any corresponding pure Logic Program or parallel

nondeterministic expression. Since the time of this early

work, Actors have grown to be one of the most important

paradigms in computing [Hewitt and Woods 2019; Milner

1993].

Of course, earlier work made huge pioneering contributions.

For example, expressions [Church 1932] play an important

role in programming languages. Also, Turing Machines [Turing

1936] inspired development of the stored program sequential

computer and Logic Programs are fundamental to Scalable

Intelligent Systems.

Computation that cannot be done by Calculus,
Nondeterministic Turing Machines, or pure Logic Programs
Actor machines can perform computations that a no

expression, nondeterministic Turing Machine or pure Logic

Program can implement. Below is an example of a very simple

computation that cannot be performed by a nondeterministic

Turing Machine:

There is an always-halting Actor machine that can compute

an integer of unbounded size. This is accomplished using an

Actor with a variable count that is initially 0 and a variable

continue initially True. The computation is begun by

concurrently sending two messages to the Actor machine: a stop

request that will return an integer and a go message that will

return Void. The Actor machine operates as follows:

 When a stop message is received, return count and set

continue to False for the next message received.

 When a go message is received:

o If continue is True, increment count by 1, send this

Actor machine a go message in a hole of the region of

mutual exclusion, and afterward return Void.

o If continue is False, return Void.

 Theorem. There is no expression, nondeterministic

Turing Machine, or pure Logic Program that implements the

above computation.

Proof [Plotkin 1976]:

“Now the set of initial segments of execution sequences of

a given nondeterministic program P, starting from a given

state, will form a tree. The branching points will

correspond to the choice points in the program. Since there

are always only finitely many alternatives at each choice

point, the branching factor of the tree is always finite. That

is, the tree is finitary. Now König's lemma says that if every

branch of a finitary tree is finite, then so is the tree itself.

In the present case this means that if every execution

sequence of P terminates, then there are only finitely many

execution sequences. So if an output set of P is infinite, it

must contain a nonterminating computation.”

Initial
State

Next
State

Next
State

Next
State

Next
State

Nondeterministic

State Change

continue := False

Integer

initially: continue=True, count=0

count

go

stop

 count := count + 1

Resend go message until stop message received

Void

Void

go

continue?
TrueFalse

 7

Limitations of 1st-order Logic for Concurrent Computation

Theorem. It is well known that there is no 1st-order theory for

the above Actor machine.

Proof. Every 1st-order theory is compact meaning that every

inconsistent set of propositions has a finite inconsistent

subset. Consequently, to show that there is no 1st-order

theory, it is sufficient to show that there is an inconsistent set

of propositions such that every finite subset is consistent. Let

Output[i] mean that i is output. Then the set of propositions

∃[i:N]Output[i] is inconsistent but every finite subset S is

consistent because the Actor machine output might be

larger than any output in S.

 Actors have fundamentally transformed the foundations and

practice of computation since the initial conceptions of Turing

and Church. Although 1st-order propositions can be useful (e.g.

in testing 1st-order propositions for satisfiability), message

passing illustrates why 1st-order logic cannot be the foundation

for theories in Computer Science.

Actors in Practice

An interface can be defined using an interface name,

"interface", and a list of message handler signatures, where

message handler signature consists of a message name followed

by argument types delimited by "[" and "]", "→", and a return

type. For example, the interface type ReadersWriter can be

defined as follows:

 ReadersWriter interface
 read[Query]→ ReadResponse,
 write[Update]→ WriteResponse

Holes in regions of mutual exclusion
 Holes in regions of mutual exclusion (Swiss cheese) [Hewitt

and Atkinson 1979; Atkinson 1980] is a generalization of

mutual exclusion with the following goals:

 Generality: Conveniently program any scheduling policy

 Performance: Support maximum performance in

implementation, e.g., the ability to minimize locking and to

avoid repeatedly recalculating a condition for proceeding.

 Understandability: Invariants for the variables of a

mutable Actor should hold whenever entering or leaving

the region of mutual exclusion.

 Modularity: Resources requiring scheduling should be

encapsulated so that it is impossible to use them incorrectly.

 Coordinating activities of readers and writers in a shared

resource is a classic problem. The fundamental constraint is that

multiple writers are not allowed to operate concurrently and a

writer is not allowed to operate concurrently with a reader.

 Below is a read priority implementation of a readers/writer

scheduler for a database in which it is forbidden for a writer to

operate concurrently with any other activity (cf. [Hoare 1974;

Brinch Hansen 1996]):

ReadPriority ⟦aDatabase:ReadersWriter ⟧ ↦
 Local(FIFO(writersQ, readersQ),
 // queues of suspended activities
 Crowd(reading), // crowd of active reading
 AtMostOne(writing)), // at most one writing
 Handler(getScheduler ↦ As myScheduler,

 upgrade[newVersion] ↦
 CancelAll(readersQ, writersQ, reading, writing)
 for Become newVersion)
 myScheduler implements ReadersWriter Handler(

 read[aQuery] ↦
 Enqueue readersQ
 when SomeNonempty(writing, writersQ, readersQ)

 for // Require: IsEmpty(writing)

 Permit readersQ
 for aDatabase∎read[aQuery] thru reading

 afterward // Require: IsEmpty(writing)

 permit writersQ when IsEmpty reading
 else readersQ when
 AllEmpty(writing, writersQ)

 write[anUpdate] ↦
 Enqueue writersQ when SomeNonempty(reading,
 readersQ, writing, writersQ)
 for // Require: IsEmpty(writing , reading)

 aDatabase∎write[anUpdate] thru writing

 afterward // Require: AllEmpty(writing , reading)
 Permit readersQ else writersQ)

 readersQ

theResource∎write[aQuery] thru reading

 writersQ

theResource∎write[anUpdate] thru writing

theResource∎read[aQuery]

theResource∎write[anUpdate]

read[aQuery]

write[anUpdate]

 8

Note:

1. At most one activity is allowed to execute in the region of

mutual exclusion of ReadPriority.

2. The region of mutual of exclusion has holes illustrating that

an Actor is not a sequential process (thread) in which

control moves sequentially through a program.

3. An implementation, e.g. ReadPriority, differs from a

class [Dahl and Nygaard 1967] as follows:

4. An implementation can use multiple other

implementations using qualified names to prevent

ambiguity [cf. ISO 2017].

5. An implementation cannot be subclassed [Dahl and

Nygaard 1967] in order to prevent impersonation by other

types.

6. An invariant for an Actor must hold when it is created and

when entering/leaving a continuous section of a region of

mutual exclusion.

7. Strong types are the foundation of Actor communication.

For example, if x is of type ReadPriority, then

x∎getSchedular means ReadPriority∎send[x, getSchedular]

Types manage crypto without requiring programming
by application programmers.

 A ReadPriority implementation has the following

invariant:

 Nonempty[writing] ⇨ IsEmpty[reading]
which holds because of Actor Induction as follows [Turing

1949, Hewitt 2017-2019]:

 The invariant holds when a ReadPriority

implementation is created.

 If the invariant holds in a ReadPriority

implementation when a communication is received, then it

holds when leaving.

 Starvation of activities suspended in readersQ and writersQ

as is prevented in a ReadPriority implementation as

follows:

 An activity in readersQ progresses when

1. A read to the database is started by another activity

2. If writersQ and writing are both empty after the read

to the database is completed by another activity

3. Else after the next write to the database is finished.

 An activity in writersQ progresses when

1. If readersQ is empty when a write to the database is

completed by another activity

2. Else when reading becomes smaller when reading the

database is completed by another activity.

 Reading throughput is maintained by permitting readersQ

when another activity starts a read to the database.

Axiomatization of Actors up to a unique isomorphism
Let x[e] be the behavior of Actor x at local event e, Com be the

type for a communication, and Behavior be the type for a

procedure that maps a communication received to an outcome

that has a finite set of created Actors, a finite set of sent

communications, and a behavior for the next communication

received.

 ActorTheory categorically axiomatises Actors using the

following axioms where ↷ (read as “precedes”) is transitive

and irreflexive and Info[x] is the information in the Actor

addresses of x:

 Primitive Actors

o ∀[i:N] i:Actor // natural numbers are Actors

o ∀[x1,x2:Actor] [x1, x2]:Actor

 // a 2-tuple of Actors is an Actor

 Event ordering

o ∀[c:Com] ∃1[x1:Actor, c1:Com] c∈x1.sent[c1]]

 // every communication was sent by an Actor

o ∀[c:Com] ∀[x1, x2:Actor]

 Receivedx1[c]⋀Receivedx2[c] ⇨ x1=x2

 // a communication is received at most once

o ∀[x:Actor, c:Com] Initialx↷Receivedx[c]↷Afterx[c]

o ∀[x:Actor, c1,c2:Com]

 c1≠c2 ⇒ (Receivedx[c1]↷Receivedx[c2]

 ⋁ Receivedx[c2]↷Receivedx[c1])

o ∀[x:Actor, c:Com]

 ∄[c1:Com] Receivedx[c]↷Receivedx[c1]↷Afterx[c]

 An Actor’s behavior change

o ∀[x:Actor, c:Com]

 (∄[c1:Com] Receivedx[c1]↷Receivedx[c])

 ⇒ x received[c] = xinitial

o ∀[x:Actor, c1,c2:Com]

 (∄[c3:Com]

 Afterx[c1]↷Receivedx[c3]↷Receivedx[c2])

 ⇒ x received[c2] = x∎after[c1]

o ∀[x:Actor, c:Com] Finite[Com ∋[s]↦s∈x.sent[c]]

o ∀[x:Actor, c:Com]

 Info[x∎created[c]]

 ⊑ Info[c]⊔Info[Receivedx[c2]]⊔Info[Newx[c]]

o ∀[x, x1:Actor, c:Com]

 x1∈Newx[c]

 ⇨ ⊥ = Info[x1]⊓(Info[c]⊔Info[Receivedx[c2]

 ⊔Info[Newx[c]-x1])

 // info about the address of a newly created

 // Actor does not provide any information

 // about addresses of other Actors

o ∀[x:Actor, c:Com] Info[x∎created[c]]

 Let processing = (Info[c]⊔Info[Receivedx[c2]]

 ⊔Info[x∎created[c]])

 // processing is information about addresses

 // that is in c, available in the Actor when

 // c was received and in Actors created

 // while processing c

 in (Info[x∎after[c]]⊑processing

 ⋀ Info[x∎sent[c]]⊑processing)

 9

 Actor Induction

 ∀[x:Actor, P predicateOnActorTheory Behavior]

 (P⟦xinitial⟧ ∀[c:Com] P⟦xreceived[c]⟧⇨P⟦x∎after[c]⟧)

 ⇨ ∀[c:Com] P⟦xreceived[c]]⟧ P⟦x∎after[c]]⟧

 Note that the above axioms do not require that every

communication sent must be received. However, ActorScript

[Hewitt and Woods assisted by Spurr 2015] provides that every

request will either throw a TooLong exception or respond

with the response sent to its customer.

 Theorem. Discreteness of Actors event ordering, i.e.,

 ∀[e1, e2:Event] Finite[Event ∋[e]↦e1↷e↷e2]

 // There are only finitely many events

 // in ↷ between two events.

 Theorem. Unique Categoricity of ActorTheory, i.e., if M

is a type satisfying the axioms for ActorTheory, then there is

a unique isomorphism between M and Actor.

 Thesis: Any digital system can be directly modeled and

implemented using Actors.

In many practical applications, the parallel λ-calculus and

pure Logic Programs can be thousands of times slower than

Actor implementations.

VI. MATHEMATICAL THEORIES OF COMPUTER SCIENCE

Standard Mathematical Theories of Computer Science

Although theorems of mathematical theories in higher order

logic are not computationally enumerable, proof checking is

computationally decidable. Strong types can be used

categorically axiomatize [Hewitt 2017-2019] up to a unique

isomorphism a mathematical theory T for the model M for each

of the following: Natural Numbers, Real Numbers, Ordinals,

Computable Procedures, and Actors. Each theory T has the

following properties:

 T is categorical for M, i.e., if X satisfies the axioms of T,

then is X isomorphic to M by a unique isomorphism.

 T is not compact

 ⊦
p

𝐓
 is computationally decidable for :PropositonT

 and p:ProofCheckerT

Information Invariance
Information Invariance is a fundamental technical goal of logic

consisting of the following:

1. Soundness of inference: information is not increased by

inference

2. Completeness of inference: all valid inferences are

included.

Criteria for Mathematical Foundations

Computer Science brought different concerns and a new

perspective to mathematical foundations including the

following requirements (building on [Maddy 2018]):

 Practicality is providing powerful machinery so that

arguments (proofs) can be short and understandable and

 Generality is formalizing inference so that all of

mathematics can take place side-by-side. Strong types

provide generality by formalizing theories of the natural

numbers, reals, ordinals, set of elements of a type, groups,

lambda calculus, and Actors side-by-side.

 Shared Standard of what counts as legitimate mathematics

so people can join forces and develop common techniques

and technology. According to [Burgess 2015]:

“To guarantee that rigor is not compromised in the

process of transferring material from one branch of

mathematics to another, it is essential that the starting

points of the branches being connected ... be

compatible. ... The only obvious way ensure

compatibility of the starting points ... is ultimate to

derive all branches from a common unified starting

point.”

 This article describes such a common unified starting

point including natural numbers, reals, ordinals, set of

elements of a type, groups, geometry, algebra, lambda

calculus, and Actors that are axiomatized up to a unique

isomorphism.

 Abstraction so that fundamental mathematical structures

can be characterized up to a unique isomorphism including

natural numbers, reals, ordinals, set of elements of a type,

groups, lambda calculus, and Actors.

 Guidance is for practioners in their day-to-day work by

providing relevant structures and methods free of extraneous

factors. This article provides guidance by providing strong

parameterized types and intuitive categorical inductive

axiomatizations of natural numbers, ordinals, set of elements

of a type, lambda calculus, and Actors.

 Meta-Mathematics is the formalization of logic and rules

of inference. The mathematical theories described in this

article facilitate meta-mathematics because inference is

directly on propositions without having to be coded as

integers as in [Gödel 1931].

 Automation is facilitated in this article by making type

checking very easy and intuitive along as well as

incorporating Jaśkowski natural deduction for building an

inferential system that can be used in everyday work.

 Risk Assessment is the danger of contradictions emerging

in classical mathematical theories. This article formalizes

long-established and well-tested mathematical practice

while blocking all known paradoxes. (See appendix on

paradoxes.) Confidence in the consistency of Nat and

ActorTheory is based on the way that they are

inductively constructed bottom-up.

 Monsters [Lakatos 1976] are unwanted elements in

models of classical mathematical theories. ActorTheory
precisely characterizes what is digitally computable leaving

no room for “monsters” in models. Having a model up to a

unique isomorphism in classical mathematical theories is

crucial for cybersecurity.

 Intuitive categorical inductive axiomatizations of natural

numbers, propositions, types, ordinals, set of elements of a type,

 10

lambda calculus, and Actors promote confidence in operational

consistency.

 Consistent mathematical theories can be freely used in

(inconsistent) empirical theories without introducing additional

inconsistency.

VII. CYBERSECURITY CRISIS

 The current disastrous state of cybersecurity [Sobers 2019,

Perlroth, Sanger and Shane 2019] cries out for a paradigm shift.

Nature of Paradigm Shifts
According to [Kuhn 2012],

“The decision to reject one paradigm is always simultaneously

the decision to accept another. First, the new candidate must

seem to resolve some outstanding and generally recognized

problem that can be met in no other way. Second, the new

paradigm must promise to preserve a relatively large part of

the concrete problem solving activity that has accrued to

science through its predecessor ...

 At the start, a new candidate for paradigm shift may have

few supporters, and on occasions supporters’ motives may be

suspect. Nevertheless, if they are competent, they will

improve it, explore its possibilities, and show what it would

be like to belong to the community guided by it. And as that

goes on, if the paradigm is one destined to win its fight, the

number and strength of the persuasive arguments in its favor

will increase. More scientists will then be converted, the

exploration of the new paradigm will go on. Gradually, the

number of experiments, instruments, and books upon the

paradigm will multiply...

 Though a generation is sometimes required to effect the

shift, scientific communities have again and again been

converted to new paradigms. Furthermore, these conversions

occur not despite the fact that scientists are human but

because they are. ... Conversions will occur a few at a time

until, after the last holdouts have died, the whole profession

will again be practicing under a single, but now different

paradigm.”

Shifting Away from 1st-order Logic
 Computer Science must shift from 1st-order logic as the

foundation for mathematical theories of Computer Science

because of the following deficiencies:

 unwanted monsters in models of theories

 inconsistencies in theories caused by compactness

 being able to infer each and every proposition (including

nonsense) from an inconsistency in an empirical theory even

though it may not be apparant that the theory is inconsistent.

Thus Computer Science must move beyond the consensus

claimed by [G. H Moore 1988] as follows: “To most
mathematical logicians working in the 1980s, first-order
logic is the proper and natural framework for mathematics.”

The necessity to give up a long-held intuitive assumption
has often held back the development of a paradigm shift.
For example, the Newtonian assumption of absolute space-time

had to be given up in the theory of relativity. Also, physical

determinacy had to be abandoned in quantum theory. According

to [Church 1934]:

“Indeed, if there is no formalization of logic as a whole [i.e.

theorems are not computationally enumerable], then there is

no exact description of what logic is, for it in the very nature

of an exact description that it implies a formalization. And if

there no exact description of logic, then there is no sound

basis for supposing that there is such a thing as logic.”

Contrary to [Church 1934], the conclusion in this article is

to abandon the assumption that theorems of a theory must

be computationally enumerable while retaining the

requirement that proof checking must be computationally

decidable.

Shifting Away from Models of Computation That Are Not
Strongly-typed
Influenced by Turing Machines [Turing 1936], current
computer systems are not strongly-typed leaving them open
to cyberattacks [Hewitt 2019]. Strongly-typed Actors can
directly model and implement all digital computation.
Consequently, strongly-typed architecture can be extended
to microprocessors providing strongly-typed computation
all the way to hardware.

The Establishment has made numerous mistakes during

paradigm shifts.

Arthur Erich Has derived the radius of the ground state of the

hydrogen atom [Haas 1910], anticipating Niels Bohr work by 3

years. Yet in 1910 Haas’s article was rejected and his ideas were

termed a “carnival joke” by Viennese physicists. [Hermann

2008] On the other hand, Enrico Fermi received the 1938 Nobel

prize for the discovery of the nonexistent elements “Ausonium”

and “Hesperium”, which were actually mixtures of barium,

krypton and other elements. [Fermi 1938]

How the Computer Science cybersecurity crisis will proceed
is indeterminate
Possibilities going forward include the following:

 continue to muddle along without fundamental change

 shift to something along the lines proposed in this article

 shift to some other proposal that has not yet been devised

Cybersecurity issues can provide focus and direction for

fundamental research in Computer Science.

VII. RELATED WORK

Recent work has centered on constructive type theory which has

type t
1
→1t

2
, which is the type of deterministic computable

procedures t
1

into t
2
, but does not have t

2

t1
, which is the type

of all functions from t
1

into t
2
. Also, constructive type theory

relies on the premise that is a proposition of T if an only

if is a theorem of T with the unfortunate consequence

that type checking is computationally undecidable and it is

difficult to reason about unprovable propositions.

 Extensions of Isabelle/HOL [Gordon 2016] seem more

suitable for formalizing classical mathematics than

constructive type theory.

 11

VIII. CONCLUSION

This article strengthens the position of Computer Science

cybersecurity as follows:

 Providing usable theories of standard mathematical

theories of computer science (e.g. Natural Numbers and

Actors) such that there is only one model up to a unique

isomorphism. The approach in this article is to embrace
all of the most powerful tools of classical mathematics
in order to provide mathematical foundations for
Computer Science. Fortunately, these foundations are

technically simple so they can be readily automated,

which will enable improved collaboration between

humans and computer systems.

 Allowing theories to freely reason about theories

 Providing a theory that precisely characterizes all digital

computation as well as a strongly-typed programming

language that can directly, efficiently, and securely

implement every Actor computation.

 Providing in foundation for well-defined classical

theories of natural numbers and Actors for use in

reasoning by theories of practice in Scalable Intelligent

Systems that are (of necessity) pervasively inconsistent.

Blocking known paradoxes makes classical mathematical

theories safer for use in Scalable Intelligent Systems by

preventing security holes. Consistent strong mathematical

theories can be freely used without introducing additional

inconsistent information into inconsistency robust empirical

theories that will be the core of future Intelligent

Applications.

 Inconsistency Robustness [Hewitt and Woods assisted by

Spurr 2015] is performance of information systems (including

scientific communities) with massive pervasively-inconsistent

information. Inconsistency Robustness of the community of

professional mathematicians is their performance repeatedly

repairing contradictions over the centuries. In the Inconsistency

Robustness paradigm, deriving contradictions has been a

progressive development and not “game stoppers.”

Contradictions can be helpful instead of being something to be

“swept under the rug” by denying their existence, which has

been repeatedly attempted by dogmatic theoreticians (beginning

with some Pythagoreans). Such denial has delayed

mathematical development.

 For reasons of computer security, Computer Science must

abandon the thesis that theorems of fundamental mathematical

theories must be computationally enumerable. This can be

accomplished while preserving almost all previous

mathematical work except the 1st-Order Thesis [Barwise 1985].

Automation of the proofs in this article is within reach of the

state of the art which will enable better collaboration

between humans and computer systems.
 Having a powerful system is important because computers

must be able to formalize all logical inferences (including

inferences about their own inference processes) so that

computer systems can better collaborate with humans.

ACKNOWLEDGMENT

Extensive conversations with Dan Flickinger, Fanya Montalvo,

and Gordon Plotkin and were extremely helpful in developing

ideas in this article. Richard Waldinger made very helpful

comments. Natarajan Shankar and David Israel pointed out that

the article needed to be more explicit on the relationship of

Wittgenstein’s proof to [Gödel 1931]. Kevin Hammond

suggested including the section on related work. Dan Flickinger

suggested improvements in the section on paradigm shifts. John

Perry provided extensive comments throughout the article. John

Woods suggested an improved title.

APPENDIX: MATHEMATICAL NOTATION

Notation for mathematical propositions, mathematical terms,

and procedural expressions is formalized in this appendix.

Mathematical Proposition is a discrimination of the
following patterns:

o 1, 12:PropositionOfOrderi where

1,2:PropositionOfOrderi and i:N
+

o (x1=x2):PropositionOfOrder1 where

x1,x2:Term t and t is a type

o (x:t):PropositionOfOrder1 where t is a type

o P⟦x⟧:PropositionOfOrderi+1 where

x:Term t , t is a type and

P:Term Proposition it

 and i:N
+

o (1⊦2):PropositionOfOrderi where i:N
+
 and

1,2:PropositionOfOrderi

o (1├
p

 2):PropositionOfOrderi where

p:Term ProofChecker, and

1,2:PropositionOfOrderi and i:N
+

o s:PropositionOfOrderi (abstraction of

 s) where s:PropositionOfOrderi↾String with no

 free variables, and i:N
+

Mathematical Proposition from String is a discrimination of

the following patterns:

o “"" s1”,“s1 "" s2”:PropositionofOrderi↾String

where s1,s2:PropositionofOrderi↾String and i:N
+

o “x1"="x2”: PropositionofOrder1↾String where

where x1,x2:Term↾String

o “x1 ":" x2”: PropositionofOrder1↾String where

x1,x2:Term↾String

o “"∀[" x ":" t "]" s”:PropositionofOrderi+1↾String

where t is a type, x:Variablet ↾String and

s:PropositionofOrderi↾String

o “P "⟦" x "⟧"”: PropositionofOrderi+1↾String

where x:Term t

↾String, i:N

+
 and

P:Term PropositionofOrder it ↾String

o “s1"⊦"s2”: PropositionofOrderI+1↾String where

s1,s2:PropositionofOrderi↾String, and i:N
+

.

o “s1 "├"
p

 s2”:PropositionofOrderi+1↾String where

p:TermProofChecker ↾String,

s1,s2:PropositionofOrderi↾String,, and i:N
+

o “"" s ""”:PropositionofOrderi↾String is

 abstraction of s where

 s:PropositionofOrderi↾String with no free

 12

 variables, and i:N
+

Mathematical Term is a discrimination of the following

patterns:

o Boolean :ConstantTypeOf Boolean ,

N:ConstantTypeOf N , and

Actor :ConstantTypeOf Actor

o x:Term t where x:Constantt and t is a type

o x:Term t where x:Variable t and

t is a type

o [x1, x2]:Term [t
1
, t

2
] where x1:Term t

1
, x2:Term

t
2
, and t

1
 and t

2
 are types

o (x1 if True then x2 , False then x3):Term t where

x1:Term Boolean , x2,x3:Term t and t is a type

o (λ[x:t
1] y):Term t

2

t1

 where x:Variablet
1
,

y:Termt
2
 and t

1
 and t

2
 are types

o f[x]:Term t
2
 where f:Term t

2

t1

,

x:Term t
1
, and t

1
 and t

2
 are types

o x :Term t is abstraction of x where

 x:Term t ↾String and t is a type

Procedural Expression is a discrimination of the following:

o x:Expression t where x:Constantt and t is a

type

o x:Expression t where x:Identifier t and

t is a type

o [e1, e2]:Expression [t
1
, t

2
] where

e1:Expression t
1
, e2:Expression t

2
, and

t
1
 and t

2
 are types

o (e1 if True then e2 , False then e3):Expression t
where e1:Expression Boolean ,

e2,e3:Expression t and t is a type

o (λ[x:t
1] y):Expressiont

1
→t

2
 where

x:Identifiert
1
, y:Expressiont

2
 and t

1
 and t

2
 are

types

o x∎m:Expression t
2
 where m:Expression t

1
, x is

an Actor with a message handler with signature of

type Expression t
1
→t

2
, and t

1
 and t

2
 are types

o I⟦x1, ..., xn⟧:Expression I where I is an Actor

implementation and x1, ..., xn are expressions.

o x :Expression t is abstraction of x where

 x:Expression t ↾String and t is a type

APPENDIX: MATHEMATICAL PARADOXES

Inconsistencies in fundamental mathematical theories of

Computer Science are dangerous because they can be used

to create security vulnerabilities. Strong types are extremely

important because they block all known paradoxes including

the ones in this appendix.

Russell [Russell 1902]
o Russell’s paradox for sets is resolved as follows: the type

of all sets restricted to ones that are not elements of

themselves is just the type of all sets because no set is an
element of itself.

o Russell’s paradox for predicates is resolved as follows:
The mapping P↦P⟦P⟧ has no fixed point because P⟦P⟧
has order one greater than the order of P because P is a
predicate variable.

Berry [Russell 1906]

Berry’s Paradox can be formalized using the proposition

Characterizei⟦s, k⟧ meaning that the string s characterizes

the integer k as follows where i:N
+
:

 Berryi ≡ (TermPropositionofOrderiN)↾String

 Characterizei⟦s:Berryi, k:N⟧ ≡ ∀[x:N] s ⟦x⟧⇔ x=k

 The Berry Paradox is to construct a string for the proposition

that holds for integer n if and only if every string with length

less than 100 does not characterize n using the following

definition:

 BerryString:Berryi+1 ≡

 “[j:N]↦∀[s:PropositionOfOrderi↾String]

 Length[s]<100 ⇨ Characterizei⟦s, j⟧”

 Note that

o Length[BerryString]<100.

o Berryi∋[s]↦ Length[s]<100 is finite.

o Therefore, BerryNumber is finite where

 BerryNumber ≡

 N
+

∋[j]↦∃[s:Berry i]

 Length[s]<100 Characterizei⟦s, j⟧

o ∃[i:N
+
] i:BerryNumber because is N

+
 is infinite.

o LeastBerry ≡ Least[BerryNumber]

o BerryString ⟦LeastBerry⟧ =

 ∀[s:Berryi]

 Length[s]<100 ⇨ Characterizei⟦s, LeastBerry⟧

However BerryString:Berryi+1 cannot be substituted

for s:Berryi. Consequently, the Berry Paradox as follows

does not hold:

 BerryString ⟦LeastBerry⟧

 ⇔ Characterizei⟦BerryString, LeastBerry⟧

Curry [Curry 1941]
Curry’s Paradox is blocked because the mapping p↦p⇒Ψ

does not have a fixed point because the order of p⇒Ψ is

greater than the order of p since p is a propositional variable.

Löb [Löb 1955]

Löb’s Paradox is blocked because the mapping p↦((├p)⇒Ψ)

does not have a fixed point because the order of (├p)⇒Ψ is

greater than the order of p since p is a propositional variable.

Yablo [Yablo 1985]
Yablo’s Paradox is blocked because the mapping

P↦[i:N]↦∀[j:N] j>i⇨P⟦j⟧ does not have a fixed point

because the order of ∀[j:N]j>i⇨P⟦j⟧ is greater than the order

of P since P is a predicate variable [cf. Priest 1997].

 13

REFERENCES

S. Artemov. The Provability of Consistency ArXiv. March 18, 2019.

J. Avigad, G. Ebner, and S. Ullrich. The Lean Reference Manual: Release

3.3.0. September 6. 2018.
R. Atkinson. Automatic Verification of Serializers MIT Doctoral Dissertation.

June, 1980.

S. Awodey and E. Reck. Completeness and Categoricity. Parts I and II:
Nineteenth-century Axiomatics to Twentieth-century Metalogic. History

and Philosophy of Logic. Vol. 23. 2002.

J. Barwise. Model-Theoretic Logics: Background and Aims Model Theoretic
Logics. Springer-Verlag. 1985.

C. Benzmüller, N. Sultana, L. Paulson and F. Theiß. The Higher-Order Prover

Leo-II Journal of Automated Reasoning. Vol. 55. Issue 4. December
2015.

P. Brinch Hansen. Monitors and Concurrent Pascal: A Personal History

SIGPLAN Notices. March 1993.
C. Burali-Forti. Una questione sui numeri transfiniti Rendiconti del Circolo

Matematico di Palermo. 1897

J. Burgess. Rigor and Structure Oxford University Press. 2015.
A. Church. A set of postulates for the foundation of logic Annals of

Mathematics. Series 2. 33 (2). 1932.

A. Church. The Richard Paradox. Proceedings of American Mathematical
Society. Vol. 41. No. 6. 1934.

T. Coquand and G. Huet. The calculus of constructions. Technical Report 530,

INRIA, Centre de Rocquencourt, 1986.
H. Curry. Some Aspects of the Problem of Mathematical Rigor Bulletin of the

American Mathematical Society Vol. 4. 1941.

O. Dahl and K. Nygaard. Class and subclass declarations IFIP TC2
Conference on Simulation Programming Languages. May 1967.

R. Dedekind. What are and what should the numbers be? Friedr. Vieweg &

Sohn, 1888. Translated by David E. Joyce, Clark University, Dec. 2005;
https://mathcs.clarku.edu/~djoyce/numbers/dedekind.pdf

E. Fermi. Artificial radioactivity produced by neutron bombardment Nobel

Lecture. December 12, 1938.
J. Girard. Interprétation fonctionnelle et Élimination des coupure de

l'arithmétique d'ordre supérieur 1972.

K. Gödel. The completeness of the axioms of the functional calculus of logic
Monatshefte für Mathematik und Physik 3. 1930

K. Gödel. On formally undecidable propositions of Principia Mathematica

Monatshefte für Mathematik und Physik. 1931. Translation in From Frege
to Gödel: A Source Book in Mathematical Logic. Harvard University Press.

M. Gordon. Isabelle and HOL Cambridge Automated Reasoning. 2016.

A. E. Haas. Uber die elektrodynamische Bedeutung des Planckschen
Strahlungsgesetzes und uber eine neue Bestimmung des elektrischen

Elementarquantums und der dimension des wasserstoffatoms.

Sitzungsberichte der kaiserlichen Akademie der Wissenschaften in Wien.
1910.

C. Hewitt. Planner: A Language for Proving Theorems in Robots IJCAI. 1969.

C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism
for Artificial Intelligence IJCAI. 1973.

C. Hewitt and R. Atkinson. Specification and Proof Techniques for Serializers
IEEE Journal on Software Engineering. January 1979.

C. Hewitt. Strong Types for Direct Logic. HAL Archive; 2017-2019.

https://hal.archives-ouvertes.fr/hal-01566393

C. Hewitt. Citadels provide performance and security for citizens and

companies alike: Verifiably ending use of sensitive citizen information for

mass surveillance can foster (international) commerce and law enforcement
Social Science Research Network. Working Paper 2836282. 2016-2019.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2836282

C. Hewitt. Building and Deploying Scalable Intelligent Systems by 2025 Video
of Stanford University EE380 Colloquium on January 23, 2019.

http://web.stanford.edu/ class/ee380/Abstracts/190123.html

C. Hewitt and J. Woods assisted by Jane Spurr. Inconsistency Robustness, 2nd
Edition Studies in Logic. 2019.

A. Hermann. Arthur Erich Haas The Columbia Encyclopedia, 6th ed. 2008.

D. Hilbert. Die Grundlegung der elementahren Zahlenlehre Mathematische
Annalen. 104. 1930.

T. Hoare Monitors: An Operating System Structuring Concept CACM.

October 1974.
ISO. Programming languages -- C++ ISO/IEC 14882:2017. December 2017.

T. Kuhn. The Structure of Scientific Revolutions. 50th anniversary edition

University of Chicago Press. 2012.

I. Lakatos. Proofs and Refutations. Cambridge University Press. 1976.

M. Löb. Solution of a problem of Leon Henkin Journal of Symbolic Logic.
Vol. 20. 1955.

P. Maddy. What do we want a foundation to do? Comparing set-theoretic,

category-theoretic, and univalent approaches Reflections on
Foundations: Univalent Foundations, Set Theory and General Thoughts.

2018.

P. Martin-Löf. An intuitionistic theory of types in Twenty-Five Years of
Constructive Type Theory Oxford University Press. 1998.

J. McCarthy, P. Abrahams, D. Edwards, T. Hart, and M. Levin, LISP 1.5

Programmer's Manual 1962.
R. Milner. Elements of interaction: Turing award lecture CACM. January

1993.

G. H. Moore. The Emergence of First-Order Logic History and
Philosophy of Modern Mathematics. Minnesota Studies in the Philosophy

of Science. Volume XI. 1988.

L. Paulson. A machine-assisted proof of Gödel’s incompleteness theorems for
the theory of hereditarily finite sets. Review of Symbolic Logic 7 3. 2014.

G. Plotkin. A powerdomain construction SIAM Journal of Computing.

September 1976.
N. Perlroth, D. Sanger and S. Shane. How Chinese Spies Got the N.S.A.’s

Hacking Tools, and Used Them for Attacks. New York Times. May 6,

2019.
G. Priest. Yablo's Paradox Analysis 57. 1997.

B. Russell. Les paradoxes de la logique Revue de métaphysique et de morale.

1906.
B. Russell. Mathematical Logic as Based on the Theory of Types American

Journal of Mathematics. 30 (3). 1908.
B. Russell. Logical positivism Revue internationale de philosophie. Vol. 4.

1950.

R. Sobers. 60 Must-Know Cybersecurity Statistics for 2019. Varonis. April 17,
2019.

A. Turing. On Computable Numbers, with an Application to the

Entscheidungsproblem Proceedings of the London Mathematical Society.
2. 42. 1936.

A Urquhart. Russell and Gödel Bulletin of Symbolic Logic. Volume 22,

Number 4, December 2016.
A. N, Whitehead and B. Russell. Principia Mathematica, Cambridge

University Press 1910-1913.

L. Wittgenstein. Remarks on the Foundations of Mathematics, Revised Edition
Basil Blackwell. 1978.

J. Woods. Errors of Reasoning. Naturalizing the Logic of Inference Studies in

Logic. 2013.
J. Woods. How paradox fares in Inconsistency Robust Logic and beyond:

Computational and naturalized approaches Inconsistency Robustness, 2nd

Edition. Studies in Logic. 2019.
S. Yablo. Truth and reflection Journal of Philosophical Logic. 14 (2). 1985.

https://mathcs.clarku.edu/~djoyce/numbers/dedekind.pdf
https://hal.archives-ouvertes.fr/hal-01566393
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2836282

