Carl Hewitt

For Cybersecurity, Computer Science Must Rely on Strongly-Typed Actors

Keywords: categorical theories, strong types, Scalable Intelligent Systems, Alonzo Church, Kurt Gödel, Richard Dedekind

) are categorical meaning that they can be axiomatized up to a unique isomorphism thereby removing any ambiguity in the mathematical structures being axiomatized. Having these mathematical structures precisely defined can make systems more secure because there are fewer ambiguities and holes for cyberattackers to exploit. For example, there are no infinite elements in models for natural numbers to be exploited. On the other hand, the 1 st -order theories and computational systems which are not strongly-typed necessarily provide opportunities for cyberattack.

Cyberattackers have severely damaged national, corporate, and individual security as well causing hundreds of billions of dollars of economic damage. [Sobers 2019] A significant cause of the damage is that current engineering practices are not sufficiently grounded in theoretical principles. In the last two decades, little new theoretical work has been done that practically impacts large engineering projects with the result that computer systems engineering education is insufficient in providing theoretical grounding. If the current cybersecurity situation is not quickly remedied, it will soon become much worse because of the projected development of Scalable Intelligent Systems by 2025 [Hewitt 2019]. Kurt Gödel strongly advocated that the Turing Machine is the preeminent universal model of computation. A Turing machine formalizes an algorithm in which computation proceeds without external interaction. However, computing is now highly interactive, which this article proves is beyond the capability of a Turing Machine. Instead of the Turing Machine model, this article presents an axiomatization of a strongly-typed universal model of digital computation (including implementation of Scalable Intelligent Systems) up to a unique isomorphism.

Strongly-typed Actors provide the foundation for tremendous improvements in cyberdefense.

I. INTRODUCTION

The approach in this article is to embrace all of the most powerful tools of classical mathematics in order to provide mathematical foundations for Computer Science. Fortunately, the results presented in this article are technically simple so they can be readily automated, which will enable better collaboration between humans and computer systems.

Mathematics in this article means the precise formulation of standard mathematical theories that axiomatize the † C. Hewitt is the Board Chair of iRobust (International Society for Inconsistency Robustness) and an emeritus professor of MIT. His homepage is https://professorhewitt.blogspot.com/ following standard mathematical structures up to a unique isomorphism: Booleans, natural numbers, reals, ordinals, set of elements of a type, computable procedures, and Actors, as well as the theories of these structures.

In a strongly typed mathematical theory, every proposition, mathematical term, and program expression has a type where there is no universal type Any. Types are constructed bottom up from mathematical types that are individually categorically axiomatized in addition to the types of a theory being categorically axiomatized as a whole.

[[START_REF] Russell | Les paradoxes de la logique Revue de métaphysique et de morale[END_REF]] introduced types into mathematical theories to block paradoxes such as The Liar which could be constructed as a paradoxical fixed point using the mapping p↦p, except for the requirement that each proposition must have an order beginning with 1 st -order. Since p is a propositional variable in the mapping, p has order one greater than the order of p. Thus because of orders on propositions, there is no paradoxical fixed point for the mapping p↦p which if it existed could be called I'mFalse such that I'mFalse ⇔I'mFalse. Unfortunately in addition to attaching orders to propositions, [START_REF] Whitehead | Principia Mathematica[END_REF][START_REF] Whitehead | Principia Mathematica[END_REF] also attached orders to the other mathematical objects (such as natural numbers), which made the system unsuitable for standard mathematical practice.

II. LIMITATIONS OF 1 ST -ORDER LOGIC

Wittgenstein correctly proved that allowing the proposition I'mUnprovable [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF]] into mathematics [Russell and[START_REF] Whitehead | Principia Mathematica[END_REF] infers a contradiction as follows:

"Let us suppose [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF]] was correct and therefore] I prove the unprovability (in Russell's system) of [Gödel' Gödel made important contributions to the metamathematics of 1 st -order logic with the countable compactness theorem and formalization of provability.

order theory (e.g. like [START_REF] Paulson | A machine-assisted proof of Gödel's incompleteness theorems for the theory of hereditarily finite sets[END_REF]) instead of the theory Russell [Russell and[START_REF] Whitehead | Principia Mathematica[END_REF] as originally stated in [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF]]. In this way, Gödel dodged the point of Wittgenstein's criticism.

Technically, the result in [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF]] was as follows:

Consistent [Russell]⇨⊢ Russell ⊬ Russell P where P⇔⊬ Russell P and Consistent [Russell] if an only if there is no proposition  such that ⊢ Russell ⋀, However, Wittgenstein was understandably taking it as a given that Russell is consistent because it formalized standard mathematical practice and had been designed to block known paradoxes (such as The Liar) using orders on propositions.

Consequently, Wittgenstein elided the result in [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF] to ⊢ Russell ⊬ Russell P. His point was that Russell is consistent provided that the proposition ⊢ Russell ⊬ Russell P is not added to Russell. Wittgenstein was justified because the standard theory of natural numbers is arguably consistent because it has a model. [START_REF] Dedekind | What are and what should the numbers be? Friedr[END_REF] According to [START_REF] Russell | Logical positivism Revue internationale de philosophie[END_REF]]: "A new set of puzzles has resulted from the work of Gödel, especially his article [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF]], in which he proved that in any formal system [with recursively enumerable theorems] it is possible to construct sentences of which the truth [i.e., provability] or falsehood [i.e., unprovability] cannot be decided within the system. Here again we are faced with the essential necessity of a hierarchy [of sentences], extending upwards ad infinitum, and logically incapable of completion." [START_REF] Urquhart | Russell and Gödel[END_REF]] Construction of Gödel's I'mUnprovable is blocked because the mapping ↦⊬Ψ does not have a fixed point because the order of ⊬Ψ is one greater than the order of  since  is a propositional variable.

Although 1 st -order propositions can be useful (e.g. in 1 storder proposition satisfiability testers), 1 st -order theories are unsuitable as the mathematical foundation of computer science for the following reasons:  Compactness Every 1 st -order theory is compact [START_REF] Gödel | The completeness of the axioms of the functional calculus of logic[END_REF]] (meaning that every countable inconsistent set of propositions has a finite inconsistent subset). Compactness is false of the standard theory of natural numbers for the following reason: if k is a natural number then the set of propositions of the form i>k where i is a natural number is inconsistent but has no finite inconsistent subset, thereby contradicting compactness.  Monsters Every 1 st -order theory is ambiguous about fundamental mathematical structures such as the natural numbers, lambda expressions, and Actors [START_REF] Hewitt | Inconsistency Robustness, 2nd Edition Studies in Logic[END_REF]. For example, o Every 1 st -order axiomatization of the natural numbers has a model with an element (which can be called ∞) for a natural number, which is a "monster" [START_REF] Lakatos | Proofs and Refutations[END_REF]] because ∞ is larger than every standard natural number.

o Every 1 st -order theory T that can formalize its own provability has a model M with a Gödelian "monster" element  that proves T inconsistent (i.e. ⊨ M ⊢ T ⋀)

by the following proof: According to [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF]],

⊬ T Consistent[T] and consequently because of the 1 storder model "completeness" theorem [START_REF] Gödel | The completeness of the axioms of the functional calculus of logic[END_REF] there must be some model of

IV. STANDARD THEORIES OF COMPUTER SCIENCE

Cybersecurity requires that fundamental mathematical structures in Computer Science must be precisely defined. This section shows how to precisely define natural numbers. It is followed by a section on how to precisely define Actors, which are the fundamental abstraction of computation.

The mathematical theory Nat that axiomatises the Natural Numbers has the following axioms building on [START_REF] Dedekind | What are and what should the numbers be? Friedr[END_REF]]:

• 0:N // 0 is of type N • +1:N N // +1 (successor) is of type N N • ∄[i:N] +1[i]=0 // 0 is not a successor • ∀[i,j:N] +1[i]=+1[j] ⇨ i=j // +1 is 1 to 1
In addition, Nat has the following induction axiom, which has uncountable instances:

∀[P predicateOn N] (P⟦0⟧  ∀[i:N] P⟦j⟧⇨P⟦+1[j]⟧) ⇨ ∀[j:N] P⟦j⟧
(∀[x:t] P[x]) ⊢ ForAllEliminationChecker𝑡[c] Nat P[c]
Unique model up to Isomorphism of Nat

The following axioms hold for TypeIn Nat (the type of types in Nat) because types are intensional:

• N:TypeIn Nat • ∀[i:N +] PropositionOfOrderi:TypeIn Nat • ∀[t 1 ,t 2 ,t 3 ,t 4 :TypeIn Nat] [t 1 ,t 2]=[t 3 ,t 4] ⇨ t 1 =t 2 ⋀ t 3 =t 4 • ∀[t1,t2,t3,t4:TypeIn Nat] t1 t2 =t3 t4 ⇨ t1=t2 ⋀ t3=t4 • ∀[t 1 ,t 2 ,t 3 ,t 4 :TypeIn Nat] t 1 →t 2 =t 3 →t 4 ⇨ t 1 =t 2 ⋀ t 3 =t 4 • ∀[t 1 ,t 2 :TypeIn Nat; P1 predicateOn Nat t 1 , P2 predicateOn Nat t 2] t 1 ∋P1=t 2 ∋P2 ⇨ t 1 =t 2 ⋀ P1=P2 • ∀[t 1 ,t 2 :TypeIn Nat] TypeOf t 1 =TypeOf t 2  ⇨ t 1 =t 2 For example, N N :TypeIn Nat, etc.
The following induction axiom holds, which has uncountable instances:

∀[P predicateOn Nat TypeIn Nat] (P⟦N⟧  ∀[i:N +] P[PropositionOfOrder Nat i⟧  ∀[t 1 ,t 2 :TypeIn Nat] P⟦t 1 ⟧⋀P⟦t 1 ⟧⇨P⟦[t 1 ,t 2]⟧  ∀[t 1 ,t 2 :TypeIn Nat] P⟦t 1 ⟧⋀P⟦t 2 ⟧⇨P⟦t1 t2 ⟧  ∀[t 1 ,t 2 :TypeIn Nat] P⟦t 1 ⟧⋀P⟦t 2 ⟧⇨P⟦t 1 →t 2 ⟧  ∀[t :TypeIn Nat, Q predicateOn Nat t] P⟦t⟧⇨P⟦t ∋Q⟧  ∀[t :TypeIn Nat] P⟦t ⟧⇨P⟦TypeOf t ⟧) ⇨ ∀[t :TypeIn Nat] P⟦t ⟧ Theorem Unique categoricity of TypeIn Nat, i.e., if
M is a type satisfying the theory Nat, then there is a unique isomorphism I between TypeIn Nat and TypeIn M Nat defined as follows:

• I[N] ≡ N M • I[[t 1 ,t 2]] ≡ [I[t 1], I[t 2]] M • I[t2 t1] ≡ I[t2] I [t1] • I[t 1 →t 2] ≡ I[t 1]→ I[t 2] • I[TypeOf t ] ≡ TypeOf M I[t] • I[t ∋P]
defined by Induction on TypeIn Nat using the following cases on t:

o N then I[t ∋P] ≡ M∋ M [y]↦P⟦I -1 [y]⟧ o [t 1 ,t 2] then I[t ∋P] ≡ [I[t 1], I[t 2]] M ∋ M [y]↦P⟦I -1 [y]⟧ o t1 t2 then I[t ∋P] ≡ I[t1] I [t2]] ∋ M [y]↦P⟦I -1 [y]⟧ o t 1 →t 2 then I[t ∋P] ≡ I[I[t 1]→ I[t 2]] ∋ M [y]↦P⟦I -1 [y]⟧ o TypeOf t 1  then I[t ∋P] ≡ TypeOf M I -1 [t 1]∋ M [y]↦P⟦I -1 [y]⟧ o t 1 ∋P1 then I[t ∋P] ≡ I[t 1] ∋ M [y]↦P⟦I -1 [y]⟧⋀P1⟦I -1 [y]⟧
The following induction axiom holds for propositions of Nat, which has uncountable instances:

((∀[i:N + , P predicateOn Nat PropositionOfOrder Nat i]  (∀[t :TypeIn Nat; x1,x2:t] P⟦x1=x2⟧ ∀[t 1 ,t 2 :TypeIn Nat; x:t 2] P⟦x:t⟧  ∀[Proposition Nat ] P⟦⟧⇨P⟦⟧  ∀[Proposition Nat 1,2] P⟦1⟧⋀P⟦2⟧⇨P⟦1⋀2⟧  ∀[t :TypeIn Nat; Q predicateOn Nat t] (∀[x:t] P⟦Q⟦x⟧⟧)⇨P[∀[x:t] Q⟦x⟧])) ⇨ ∀[Proposition Nat ] P[]
Theorem. Propositions of Nat are characterized up to a unique isomorphism.

Theorem [cf. [START_REF] Dedekind | What are and what should the numbers be? Friedr[END_REF].: If M be a type satisfying the axioms of Nat, then there is a unique isomorphism I:M ModelNat defined as follows:

•

if x:N o if x=0, then I[x] ≡ 0 M o if x=I[+1[j]], then I[x] ≡ + 1 𝑀 [I[j]] • if x:[t 1 ,t 2], then I[x] ≡ [I[1 st [x]], I[2 nd [x]]] M • if x:t2 t1 , then [y:I[t 1]] ↦ I[x[I -1 [y]]] • if x:t 1 →t 2 , then I[x] ≡ [y:I[t 1]]↦I[x∎[I -1 [y]]] • if x:TypeOf t , then I[x] ≡ TypeOf M I[t] I is a unique isomorphism because of the following; • I is defined on TypeIn Nat • I is 1-1 • I is onto M • I is a homomorphism o I[0] = 0 M o ∀[j:N] I[+1[j]] = + 1 𝑀 [I[j]] o ∀[x:[t 1 ,t 2]] I[x] = [I[1 st [x]], I[2 nd [x]]] M o ∀[x:t1 t2] I[x] = [y:I[t 1]]↦I[x[I -1 [y]]] o ∀[x:t 1 →t 2] I[x] = [y:I[t 1]]↦I[x∎[I -1 [y]]] • I -1 is a homomorphism • If g is an isomorphism of Model Nat with M, then g=I
Corollary There are no infinite numbers in models of the theory Nat, i.e., if M satisfies the axioms for N of Nat, then

∄[j:M] ∀[i:N] i < j
Inference in Nat Inferential soundness means that a theorem in Nat can be used in proofs in Nat.

Theorem: Inferential Soundness of Nat, i.e.,

∀[Proposition Nat ] (⊢ Nat ) ⇨ 
Proof. Follows immediately from the rule TheoremUse, i.e., (⊢ Nat ) ⊢ TheoremUse Nat . Also, if ⊢ Nat , then  holds in the unique up to isomorphism model of Nat.

A consequence of Inferential Soundness is that unrestricted cut-elimination does not hold for Nat.

Theorem: Deduction for Nat, i.e., Theorem Inferential Adequacy, i.e.,

∀[Proposition Nat ,] (⊢ Nat ⇨) ⇔ (⊢ Nat ) Proof Suppose ⊢ Nat
∀[Proposition ] (⊢ Nat )⇨⊢ Nat ⊢ Nat  Proof: Suppose ⊢ Nat . Let ⊢ pc1 Nat  so that pc1∎[]=True. Then a provably total procedure pc2:ProofCheckerNat can be defined such that pc2∎[⊢ pc1 Nat ]=True meaning that ⊢ pc2 Nat ⊢ pc1 Nat .
Consequently, ⊢ Nat ⊢ Nat .

Computational and Inferential Undecidability of Provability in Nat

The predicate Halt can be defined as follows on deterministic expressions:

Halt[x:Deterministic N ] ≡ ∃[y:N] y=Eval∎[x] Definition. Decidert  ≡ Total [Deterministic [t]→Boolean  Theorem.
Halt is computationally undecidable [Church 1935[START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF], i.e.,

∄[d:DeciderDeterministic

[N]→N ] ∀[x:Deterministic N]→N ] d∎[x]=True ⇔ Halt[x]
Proof. Suppose to obtain a contradiction that d:DeciderDeterministic Theorem. Whether a proposition is a theorem of Nat is computationally undecidable [Church 1935[START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF], i.e., there does not exist decider d for propositions of Nat

such that ∀[Proposition Nat ] d∎[]=True ⇔ ⊢ Nat 
Proof. Follows immediately from the computational undecidability of the halting problem because of the following:

∀[x:Deterministic [N]→N ] Halt[x] ⇔ ⊢ Nat Halt[x]
Theorem. Nat is inferentially undecidable, i.e.,

∃[x:Deterministic

N] (⊬ Nat Halt[x]) ⋀ ⊬ Nat Halt[x]
Proof Suppose to obtain a contradiction that Nat is inferentially decidable and consequently

∀[x:Deterministic [N]→N ] (⊢ Nat Halt[x]) ⋁ (⊢ Nat Halt[x])
Since only countably many instances of the natural number induction axiom could have been used in the above proofs, the halting problem is computationally decidable by computationally enumerating the proofs, which is a contradiction.

Theorem. There is a proposition of Nat that is true but unprovable in Nat, i.e., ∃[x:

Deterministic [N]→N ] Halt[x] ⋀ ⊬ Nat Halt[x]
Proof. By inferential undecidability let x be such that

(⊬ Nat Halt[x])⋀⊬ Nat Halt[x]. Therefore Halt[x] because Halt[x] ⇨ ⊢ Nat Halt[x]
In practice, computational and inferential undecidability of provability, do not impose limitations on the ability to prove theorems for mathematical theories of Intelligent Systems.

Nat is algorithmically inexhaustible

That all the theorems of a theory can be obtained by computationally enumerating them from axioms has long been a default assumption of philosophers of logic. However, the theory Nat violates this assumption because there are uncountable instances of the induction axiom. Uncountability of raises the following question: What axioms of Nat can be expressed in text, i.e., in the theory Nat↾String, i.e., Nat abstracted from strings. Nat↾String has the following induction axiom, which has countable instances because strings are countable:

∀[P predicateOn Nat ↾ String N] (P⟦0⟧  ∀[j:N] P⟦j⟧⇨P⟦+1[j]⟧) ⇨ ∀[j:N] P⟦j⟧ Definitions.  Total t 1 , t 2  ≡ (t 1 →1t 2)∋[f]↦∀[x:t 1] ∃[y:t 2] f∎[x]=y  ProvedTotal Nat ↾ String t 1 , t 2  ≡ (t 1 →1t 2)↾String ∋[f]↦⊢ Nat ↾ String f:Totalt 1 ,t 2   Onto t 1 , t 2  ≡ (t 1 →1t 2)∋[f]↦∀[y:t 2] ∃[x:t 1] f∎[x]=y
Theorem. Theorem. Nat↾String is inconsistent [START_REF] Church | The Richard Paradox[END_REF]], i.e.,

∃[Proposition

Nat ] ⊢ Nat ⋀ Proof. Let =Diagonal:ProvedTotal Nat ↾ String
The upshot is that Nat is algorithmically inexhaustible, i.e., nonalgorithmic creativity will be forever required to develop new Nat axioms abstracted from strings thereby reinforcing the intuition behind [Franzén, 2004]. According to [START_REF] Church | The Richard Paradox[END_REF]], inconsistency of Nat↾String means that "there is no sound basis for supposing that there is such a thing as logic." Contrary to [START_REF] Church | The Richard Paradox[END_REF]], the conclusion in this article is to abandon the assumption that theorems of a theory must be computationally enumerable while retaining the requirement that proof checking must be computationally decidable.

Proposed Instance Provability Axom

Nat has the following proposed instance provability axiom [cf.

Hilbert 1930], which has uncountable instances:

∀[P predicateOn Nat N] (∀[i:N] ⊢ Nat P⟦i⟧) ⇨ ⊢ Nat ∀[j:N] P⟦j⟧
V. ACTOR MODEL [START_REF] Church | A set of postulates for the foundation of logic Annals of Mathematics[END_REF]] and [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]] developed a model of computation time based on the concept of an algorithm, which by definition is provided an input from which it is to compute a value without external interaction. After physical computers were constructed, they soon diverged from computing only algorithms meaning that the Church/Turing theory of computation no longer applied to computation in practice because computer systems are highly interactive as they compute. Actors [START_REF] Hewitt | A Universal Modular Actor Formalism for Artificial Intelligence IJCAI[END_REF] (axiomatized in this article) remedied the omission to provide for scalable computation. An Actor machine can be millions of times faster than any corresponding pure Logic Program or parallel nondeterministic  expression. Since the time of this early work, Actors have grown to be one of the most important paradigms in computing [START_REF] Hewitt | Inconsistency Robustness, 2nd Edition Studies in Logic[END_REF][START_REF] Milner | Elements of interaction: Turing award lecture CACM[END_REF].

Of course, earlier work made huge pioneering contributions. For example,  expressions [START_REF] Church | A set of postulates for the foundation of logic Annals of Mathematics[END_REF]] play an important role in programming languages. Also, Turing Machines [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]] inspired development of the stored program sequential computer and Logic Programs are fundamental to Scalable Intelligent Systems.

Computation that cannot be done by  Calculus, Nondeterministic Turing Machines, or pure Logic Programs

Actor machines can perform computations that a no  expression, nondeterministic Turing Machine or pure Logic Program can implement. Below is an example of a very simple computation that cannot be performed by a nondeterministic Turing Machine:

There is an always-halting Actor machine that can compute an integer of unbounded size. This is accomplished using an Actor with a variable count that is initially 0 and a variable continue initially True. The computation is begun by concurrently sending two messages to the Actor machine: a stop request that will return an integer and a go message that will return Void. The Actor machine operates as follows:

 When a stop message is received, return count and set continue to False for the next message received.

 When a go message is received:

o If continue is True, increment count by 1, send this
Actor machine a go message in a hole of the region of mutual exclusion, and afterward return Void.

o If continue is False, return Void.

Theorem. There is no  expression, nondeterministic Turing Machine, or pure Logic Program that implements the above computation.

Proof [START_REF] Plotkin | A powerdomain construction SIAM Journal of Computing[END_REF]]: "Now the set of initial segments of execution sequences of a given nondeterministic program P, starting from a given state, will form a tree. The branching points will correspond to the choice points in the program. Since there are always only finitely many alternatives at each choice point, the branching factor of the tree is always finite. That is, the tree is finitary. Now König's lemma says that if every branch of a finitary tree is finite, then so is the tree itself.

In the present case this means that if every execution sequence of P terminates, then there are only finitely many execution sequences. So if an output set of P is infinite, it must contain a nonterminating computation."

True False

Limitations of 1 st -order Logic for Concurrent Computation Theorem. It is well known that there is no 1 st -order theory for the above Actor machine.

Proof. Every 1 st -order theory is compact meaning that every inconsistent set of propositions has a finite inconsistent subset. Consequently, to show that there is no 1 st -order theory, it is sufficient to show that there is an inconsistent set of propositions such that every finite subset is consistent. Let Output[i] mean that i is output. Then the set of propositions ∃[i:N]Output[i] is inconsistent but every finite subset S is consistent because the Actor machine output might be larger than any output in S. Actors have fundamentally transformed the foundations and practice of computation since the initial conceptions of Turing and Church. Although 1 st -order propositions can be useful (e.g. in testing 1 st -order propositions for satisfiability), message passing illustrates why 1 st -order logic cannot be the foundation for theories in Computer Science.

Actors in Practice

An interface can be defined using an interface name, "interface", and a list of message handler signatures, where message handler signature consists of a message name followed by argument types delimited by "[" and "]", "→", and a return type. For example, the interface type ReadersWriter can be defined as follows:

ReadersWriter interface read[Query]→ ReadResponse, write[Update]→ WriteResponse

Holes in regions of mutual exclusion

Holes in regions of mutual exclusion (Swiss cheese) [START_REF] Hewitt | Specification and Proof Techniques for Serializers[END_REF][START_REF] Atkinson | Automatic Verification of Serializers MIT Doctoral Dissertation[END_REF]] is a generalization of mutual exclusion with the following goals:

 Generality: Conveniently program any scheduling policy  Performance: Support maximum performance in implementation, e.g., the ability to minimize locking and to avoid repeatedly recalculating a condition for proceeding.  Understandability: Invariants for the variables of a mutable Actor should hold whenever entering or leaving the region of mutual exclusion.  Modularity: Resources requiring scheduling should be encapsulated so that it is impossible to use them incorrectly. Coordinating activities of readers and writers in a shared resource is a classic problem. The fundamental constraint is that multiple writers are not allowed to operate concurrently and a writer is not allowed to operate concurrently with a reader.

Below is a read priority implementation of a readers/writer scheduler for a database in which it is forbidden for a writer to operate concurrently with any other activity (cf. [START_REF] Hoare | Monitors: An Operating System Structuring Concept CACM[END_REF]Brinch Hansen 1996 Note:

1. At most one activity is allowed to execute in the region of mutual exclusion of ReadPriority.

The region of mutual of exclusion has holes illustrating that

an Actor is not a sequential process (thread) in which control moves sequentially through a program. 3. An implementation, e.g. ReadPriority, differs from a class [START_REF] Dahl | Class and subclass declarations IFIP TC2 Conference on Simulation Programming Languages[END_REF] as follows: 4. An implementation can use multiple other implementations using qualified names to prevent ambiguity [cf. [START_REF] Iso | Programming languages[END_REF].

5. An implementation cannot be subclassed [START_REF] Dahl | Class and subclass declarations IFIP TC2 Conference on Simulation Programming Languages[END_REF] in order to prevent impersonation by other types. 6. An invariant for an Actor must hold when it is created and when entering/leaving a continuous section of a region of mutual exclusion. 7. Strong types are the foundation of Actor communication.

For example, if x is of type ReadPriority, then x∎getSchedular means ReadPriority∎send[x, getSchedular] Types manage crypto without requiring programming by application programmers.

A ReadPriority implementation has the following invariant:

Nonempty[writing] ⇨ IsEmpty[reading] which holds because of Actor Induction as follows [Turing 1949, Hewitt 2017-2019]:

 The invariant holds when a ReadPriority implementation is created.  If the invariant holds in a ReadPriority implementation when a communication is received, then it holds when leaving. Starvation of activities suspended in readersQ and writersQ as is prevented in a ReadPriority implementation as follows:

 An activity in readersQ progresses when 1. A read to the database is started by another activity 2. If writersQ and writing are both empty after the read to the database is completed by another activity 3. Else after the next write to the database is finished.  An activity in writersQ progresses when 1. If readersQ is empty when a write to the database is completed by another activity 2. Else when reading becomes smaller when reading the database is completed by another activity. Reading throughput is maintained by permitting readersQ when another activity starts a read to the database.

Axiomatization of Actors up to a unique isomorphism

Let x[e] be the behavior of Actor x at local event e, Com be the type for a communication, and Behavior be the type for a procedure that maps a communication received to an outcome that has a finite set of created Actors, a finite set of sent communications, and a behavior for the next communication received.

ActorTheory categorically axiomatises Actors using the following axioms where ↷ (read as "precedes") is transitive and irreflexive and Info

o ∀[c:Com] ∀[x1, x2:Actor] Receivedx1[c]⋀Receivedx2[c] ⇨ x1=x2 // a communication is received at most once o ∀[x:Actor, c:Com] Initialx↷Receivedx[c]↷Afterx[c] o ∀[x:Actor, c1,c2:Com] c1≠c2 ⇒ (Receivedx[c1]↷Receivedx[c2] ⋁ Receivedx[c2]↷Receivedx[c1]) o ∀[x:Actor, c:Com] ∄[c1:Com] Receivedx[c]↷Receivedx[c1]↷Afterx[c]  An Actor's behavior change o ∀[x:Actor, c:Com] (∄[c1:Com] Receivedx[c1]↷Receivedx[c]) ⇒ x received[c] = xinitial o ∀[x:Actor, c1,c2:Com] (∄[c3:Com] Afterx[c1]↷Receivedx[c3]↷Receivedx[c2]) ⇒ x received[c2] = x∎after[c1] o ∀[x:Actor, c:Com] Finite[Com ∋[s]↦s∈x.sent[c]] o ∀[x:Actor, c:Com] Info[x∎created[c]] ⊑ Info[c]⊔Info[Receivedx[c2]]⊔Info[Newx[c]] o ∀[x, x1:Actor, c:Com] x1∈Newx[c] ⇨ ⊥ = Info[x1]⊓(Info[c]⊔Info[Receivedx[c2] ⊔Info[Newx[c]-x1]) // info
(P⟦xinitial⟧  ∀[c:Com] P⟦xreceived[c]⟧⇨P⟦x∎after[c]⟧) ⇨ ∀[c:Com] P⟦xreceived[c]]⟧  P⟦x∎after[c]]⟧
Note that the above axioms do not require that every communication sent must be received. However, ActorScript [Hewitt and Woods assisted by Spurr 2015] provides that every request will either throw a TooLong exception or respond with the response sent to its customer.

Theorem. Discreteness of Actors event ordering, i.e.,

∀[e1, e2:Event] Finite[Event ∋[e]↦e1↷e↷e2]
// There are only finitely many events // in ↷ between two events.

Theorem. Unique Categoricity of ActorTheory, i.e., if M is a type satisfying the axioms for ActorTheory, then there is a unique isomorphism between M and Actor.

Thesis: Any digital system can be directly modeled and implemented using Actors.

In many practical applications, the parallel λ-calculus and pure Logic Programs can be thousands of times slower than Actor implementations.

VI. MATHEMATICAL THEORIES OF COMPUTER SCIENCE

Standard Mathematical Theories of Computer Science

Although theorems of mathematical theories in higher order logic are not computationally enumerable, proof checking is computationally decidable. Strong types can be used categorically axiomatize [Hewitt 2017[START_REF] Hewitt | Citadels provide performance and security for citizens and companies alike: Verifiably ending use of sensitive citizen information for mass surveillance can foster (international) commerce and law enforcement Social Science Research Network[END_REF] up to a unique isomorphism a mathematical theory T for the model M for each of the following: Natural Numbers, Real Numbers, Ordinals, Computable Procedures, and Actors. Each theory T has the following properties:  T is categorical for M, i.e., if X satisfies the axioms of T, then is X isomorphic to M by a unique isomorphism.

 T is not compact  ⊦ p 𝐓
 is computationally decidable for :PropositonT and p:ProofCheckerT

Information Invariance

Information Invariance is a fundamental technical goal of logic consisting of the following:

1. Soundness of inference: information is not increased by inference 2. Completeness of inference: all valid inferences are included.

Criteria for Mathematical Foundations

Computer Science brought different concerns and a new perspective to mathematical foundations including the following requirements (building on [START_REF] Maddy | What do we want a foundation to do? Comparing set-theoretic, category-theoretic, and univalent approaches Reflections on Foundations: Univalent Foundations[END_REF]):

 Practicality is providing powerful machinery so that arguments (proofs) can be short and understandable and  Generality is formalizing inference so that all of mathematics can take place side-by-side. Strong types provide generality by formalizing theories of the natural numbers, reals, ordinals, set of elements of a type, groups, lambda calculus, and Actors side-by-side.

 Shared Standard of what counts as legitimate mathematics so people can join forces and develop common techniques and technology. According to [START_REF] Burgess | Rigor and Structure[END_REF]]:

"To guarantee that rigor is not compromised in the process of transferring material from one branch of mathematics to another, it is essential that the starting points of the branches being connected ... be compatible. ... The only obvious way ensure compatibility of the starting points ... is ultimate to derive all branches from a common unified starting point." This article describes such a common unified starting point including natural numbers, reals, ordinals, set of elements of a type, groups, geometry, algebra, lambda calculus, and Actors that are axiomatized up to a unique isomorphism.

 Abstraction so that fundamental mathematical structures can be characterized up to a unique isomorphism including natural numbers, reals, ordinals, set of elements of a type, groups, lambda calculus, and Actors.

 Guidance is for practioners in their day-to-day work by providing relevant structures and methods free of extraneous factors. This article provides guidance by providing strong parameterized types and intuitive categorical inductive axiomatizations of natural numbers, ordinals, set of elements of a type, lambda calculus, and Actors.

 Meta-Mathematics is the formalization of logic and rules of inference. The mathematical theories described in this article facilitate meta-mathematics because inference is directly on propositions without having to be coded as integers as in [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF]].

 Automation is facilitated in this article by making type checking very easy and intuitive along as well as incorporating Jaśkowski natural deduction for building an inferential system that can be used in everyday work.  Risk Assessment is the danger of contradictions emerging in classical mathematical theories. This article formalizes long-established and well-tested mathematical practice while blocking all known paradoxes. (See appendix on paradoxes.) Confidence in the consistency of Nat and ActorTheory is based on the way that they are inductively constructed bottom-up.

 Monsters [START_REF] Lakatos | Proofs and Refutations[END_REF]] are unwanted elements in models of classical mathematical theories. ActorTheory

precisely characterizes what is digitally computable leaving no room for "monsters" in models. Having a model up to a unique isomorphism in classical mathematical theories is crucial for cybersecurity. Intuitive categorical inductive axiomatizations of natural numbers, propositions, types, ordinals, set of elements of a type, lambda calculus, and Actors promote confidence in operational consistency.

Consistent mathematical theories can be freely used in (inconsistent) empirical theories without introducing additional inconsistency.

VII. CYBERSECURITY CRISIS

The current disastrous state of cybersecurity [Sobers 2019, Perlroth, Sanger and[START_REF] Perlroth | How Chinese Spies Got the N.S.A.'s Hacking Tools, and Used Them for Attacks[END_REF] cries out for a paradigm shift.

Nature of Paradigm Shifts

According to [START_REF] Kuhn | The Structure of Scientific Revolutions[END_REF]],

"The decision to reject one paradigm is always simultaneously the decision to accept another. First, the new candidate must seem to resolve some outstanding and generally recognized problem that can be met in no other way. Second, the new paradigm must promise to preserve a relatively large part of the concrete problem solving activity that has accrued to science through its predecessor ... At the start, a new candidate for paradigm shift may have few supporters, and on occasions supporters' motives may be suspect. Nevertheless, if they are competent, they will improve it, explore its possibilities, and show what it would be like to belong to the community guided by it. And as that goes on, if the paradigm is one destined to win its fight, the number and strength of the persuasive arguments in its favor will increase. More scientists will then be converted, the exploration of the new paradigm will go on. Gradually, the number of experiments, instruments, and books upon the paradigm will multiply... Though a generation is sometimes required to effect the shift, scientific communities have again and again been converted to new paradigms. Furthermore, these conversions occur not despite the fact that scientists are human but because they are. ... Conversions will occur a few at a time until, after the last holdouts have died, the whole profession will again be practicing under a single, but now different paradigm."

Shifting Away from 1 st -order Logic Computer Science must shift from 1 st -order logic as the foundation for mathematical theories of Computer Science because of the following deficiencies:  unwanted monsters in models of theories  inconsistencies in theories caused by compactness  being able to infer each and every proposition (including nonsense) from an inconsistency in an empirical theory even though it may not be apparant that the theory is inconsistent. Thus Computer Science must move beyond the consensus claimed by [G. [START_REF] Moore | The Emergence of First-Order Logic History and Philosophy of Modern Mathematics[END_REF] as follows: "To most mathematical logicians working in the 1980s, first-order logic is the proper and natural framework for mathematics."

The necessity to give up a long-held intuitive assumption has often held back the development of a paradigm shift.

For example, the Newtonian assumption of absolute space-time had to be given up in the theory of relativity. Also, physical determinacy had to be abandoned in quantum theory. According to [START_REF] Church | The Richard Paradox[END_REF]]: "Indeed, if there is no formalization of logic as a whole [i.e. theorems are not computationally enumerable], then there is no exact description of what logic is, for it in the very nature of an exact description that it implies a formalization. And if there no exact description of logic, then there is no sound basis for supposing that there is such a thing as logic." Contrary to [START_REF] Church | The Richard Paradox[END_REF]], the conclusion in this article is to abandon the assumption that theorems of a theory must be computationally enumerable while retaining the requirement that proof checking must be computationally decidable.

Shifting Away from Models of Computation That Are Not Strongly-typed Influenced by Turing Machines [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]], current computer systems are not strongly-typed leaving them open to cyberattacks [START_REF] Hewitt | Citadels provide performance and security for citizens and companies alike: Verifiably ending use of sensitive citizen information for mass surveillance can foster (international) commerce and law enforcement Social Science Research Network[END_REF]]. Strongly-typed Actors can directly model and implement all digital computation. Consequently, strongly-typed architecture can be extended to microprocessors providing strongly-typed computation all the way to hardware.

The Establishment has made numerous mistakes during paradigm shifts. Arthur Erich Has derived the radius of the ground state of the hydrogen atom [START_REF] Haas | Uber die elektrodynamische Bedeutung des Planckschen Strahlungsgesetzes und uber eine neue Bestimmung des elektrischen Elementarquantums und der dimension des wasserstoffatoms[END_REF]], anticipating Niels Bohr work by 3 years. Yet in 1910 Haas's article was rejected and his ideas were termed a "carnival joke" by Viennese physicists. [START_REF] Hermann | Arthur Erich Haas The Columbia Encyclopedia[END_REF]] On the other hand, Enrico Fermi received the 1938 Nobel prize for the discovery of the nonexistent elements "Ausonium" and "Hesperium", which were actually mixtures of barium, krypton and other elements. [START_REF] Fermi | Artificial radioactivity produced by neutron bombardment Nobel Lecture[END_REF] How the Computer Science cybersecurity crisis will proceed is indeterminate

Possibilities going forward include the following:  continue to muddle along without fundamental change  shift to something along the lines proposed in this article  shift to some other proposal that has not yet been devised Cybersecurity issues can provide focus and direction for fundamental research in Computer Science.

VII. RELATED WORK

Recent work has centered on constructive type theory which has type t 1 →1t 2 , which is the type of deterministic computable procedures t 1 into t 2 , but does not have t 2 t1 , which is the type of all functions from t 1 into t 2 . Also, constructive type theory relies on the premise that  is a proposition of T if an only if  is a theorem of T with the unfortunate consequence that type checking is computationally undecidable and it is difficult to reason about unprovable propositions.

Extensions of Isabelle/HOL [START_REF] Gordon | Isabelle and HOL Cambridge Automated Reasoning[END_REF]] seem more suitable for formalizing classical mathematics than constructive type theory.

VIII. CONCLUSION

This article strengthens the position of Computer Science cybersecurity as follows:

 Providing usable theories of standard mathematical theories of computer science (e.g. Natural Numbers and Actors) such that there is only one model up to a unique isomorphism. The approach in this article is to embrace all of the most powerful tools of classical mathematics in order to provide mathematical foundations for Computer Science. Fortunately, these foundations are technically simple so they can be readily automated, which will enable improved collaboration between humans and computer systems.  Allowing theories to freely reason about theories  Providing a theory that precisely characterizes all digital computation as well as a strongly-typed programming language that can directly, efficiently, and securely implement every Actor computation.  Providing in foundation for well-defined classical theories of natural numbers and Actors for use in reasoning by theories of practice in Scalable Intelligent Systems that are (of necessity) pervasively inconsistent. Blocking known paradoxes makes classical mathematical theories safer for use in Scalable Intelligent Systems by preventing security holes. Consistent strong mathematical theories can be freely used without introducing additional inconsistent information into inconsistency robust empirical theories that will be the core of future Intelligent Applications.

Inconsistency Robustness [Hewitt and Woods assisted by Spurr 2015] is performance of information systems (including scientific communities) with massive pervasively-inconsistent information. Inconsistency Robustness of the community of professional mathematicians is their performance repeatedly repairing contradictions over the centuries. In the Inconsistency Robustness paradigm, deriving contradictions has been a progressive development and not "game stoppers." Contradictions can be helpful instead of being something to be "swept under the rug" by denying their existence, which has been repeatedly attempted by dogmatic theoreticians (beginning with some Pythagoreans). Such denial has delayed mathematical development.

For reasons of computer security, Computer Science must abandon the thesis that theorems of fundamental mathematical theories must be computationally enumerable. This can be accomplished while preserving almost all previous mathematical work except the 1 st -Order Thesis [START_REF] Barwise | Model-Theoretic Logics: Background and Aims Model Theoretic Logics[END_REF]]. Automation of the proofs in this article is within reach of the state of the art which will enable better collaboration between humans and computer systems.

Having a powerful system is important because computers must be able to formalize all logical inferences (including inferences about their own inference processes) so that computer systems can better collaborate with humans.

ACKNOWLEDGMENT

Extensive conversations with Dan Flickinger, Fanya Montalvo, and Gordon Plotkin and were extremely helpful in developing ideas in this article. Richard Waldinger made very helpful comments. Natarajan Shankar and David Israel pointed out that the article needed to be more explicit on the relationship of Wittgenstein's proof to [START_REF] Gödel | On formally undecidable propositions of Principia Mathematica Monatshefte für Mathematik und Physik[END_REF] Russell [Russell 1902] o Russell's paradox for sets is resolved as follows: the type of all sets restricted to ones that are not elements of themselves is just the type of all sets because no set is an element of itself. o Russell's paradox for predicates is resolved as follows:

The mapping P↦P⟦P⟧ has no fixed point because P⟦P⟧ has order one greater than the order of P because P is a predicate variable.

Berry [START_REF] Russell | Les paradoxes de la logique Revue de métaphysique et de morale[END_REF] Berry's Paradox can be formalized using the proposition Characterizei⟦s, k⟧ meaning that the string s characterizes the integer k as follows where i:N + :

 Berryi ≡ (TermPropositionofOrderi N)↾String  Characterizei⟦s:Berryi, k:N⟧ ≡ ∀[x:N] s  ⟦x⟧⇔ x=k

The Berry Paradox is to construct a string for the proposition that holds for integer n if and only if every string with length less than 100 does not characterize n using the following definition:

BerryString:Berryi+1 Curry [START_REF] Curry | Some Aspects of the Problem of Mathematical Rigor[END_REF] Curry's Paradox is blocked because the mapping p↦p⇒Ψ does not have a fixed point because the order of p⇒Ψ is greater than the order of p since p is a propositional variable.

Löb [START_REF] Löb | Solution of a problem of Leon Henkin[END_REF] Löb's Paradox is blocked because the mapping p↦((├p)⇒Ψ) does not have a fixed point because the order of (├p)⇒Ψ is greater than the order of p since p is a propositional variable.

Yablo [START_REF] Yablo | Truth and reflection[END_REF] Yablo's Paradox is blocked because the mapping P↦[i:N]↦∀[j:N] j>i⇨P⟦j⟧ does not have a fixed point because the order of ∀[j:N]j>i⇨P⟦j⟧ is greater than the order of P since P is a predicate variable [cf. [START_REF] Priest | Yablo's Paradox Analysis[END_REF]].

 ⇨ and consequently ⇨ by Inferential Soundness. Further suppose . Then  by ChainingForImplication and consequently ⊢ Nat  by InferenceIntroduction.On the other hand suppose ⊢ Nat . Further suppose . Then  by ChainingForInference and consequently ⊢ Nat ⇨ by ImplicationIntroduction.

 [x] is the information in the Actor addresses of x:  Primitive Actors o ∀[i:N] i:Actor // natural numbers are Actors o ∀[x1,x2:Actor] [x1, x2]:Actor // a 2-tuple of Actors is an Actor  Event ordering o ∀[c:Com] ∃1[x1:Actor, c1:Com] c∈x1.sent[c1]] // every communication was sent by an Actor

monsters are highly undesirable in models of standard mathematical structures in Computer Science because they are inimical to model checking.

 T in which Consistent[T] is false. [cf. Artemov 2019] Such

	 Inconsistency This article shows that a theory with
	recursively enumerable theorems that can formalize its own
	provability is inconsistent.
	 Intelligent Systems. If a 1 st -order theory is not consistent,
	then it is useless because each and every proposition (no
	matter how nonsensical) can be proved in the theory.
	However, Scalable Intelligent Systems must reason about
	massive amounts of pervasively-inconsistent information.
	[Hewitt and Woods assisted by Spurr 2019] Consequently,
	such systems cannot always use 1 st -order theories.
	Conversational Logic [Hewitt 2016-2019] needs to be used
	to reason about inconsistent information in Scalable
	Intelligent Systems. [cf. Woods 2013]
	Consequently,

Computer Science must move beyond 1 st - order logic for its foundations.

	III. STRONG TYPES
	Types

must be strong to prevent inconsistency but flexible to allow all valid inference. (See appendix on how known paradoxes are blocked.)

 Although mathematics in this article necessarily goes beyond 1 st -order logic, standard mathematical practice is used. Wherever possible, previously used notation is employed. t 1 →t 2 is type of nondeterministic computable procedures from t 1 into t 1 where t 1 and t 2 are types whereas t 1 →1t 2 is

	producing an infinite hierarchy of types of types somewhat
	like the hierarchy of universes in [Martin-Löf 1998]. There
	is no type Type thereby blocking Girard's paradox [Girard
	1972, Martin-Löf 1998].
	 PropositionOfOrderi is type of a proposition of
	order i where i:N + and N + is the type of positive natural
	numbers. For example, PropositionOfOrder1 is the
	type of propositions of order 1.
	o Proposition  means ∃[i:N +]
	:PropositionOfOrderi
	o P predicateOn t means ∃[i:N +]
	P:PropositionOfOrderi t
	 t ∋P is the type of t restricted to P where t is a type and P is
	a predicate. For example, replacement for types is
	expressed using restriction, i.e., the range of a function
	f:t 2 t1 is t 2 ∋λ[y:t 2] ∃[x:t 1] y=f[x].
	Types are constructed bottom-up from types that are
	categorically axiomatized up to a unique isomorphism. Type
	checking is linear in the size of the propositon, mathematical
	term or procedural expression to be type checked. See
	appendix for syntax of propositions, mathematical terms, and
	procedural expressions.
	 t 2
	the deterministic procedures. For example, []→Boolean
	is the type all partial nondeterministic procedures of no
	argument into the type of Boolean. If p:[]→Boolean,
	then p∎[] starts a computation by providing input [] to
	procedure p which might return True or return False. It
	might happen that p∎[] does not return a value.

The following notation is used for types:

 The notation x:t means that x is of type t . For example, 0:N expresses that 0 is of type N, which is the type of a natural number. Types differ from sets in that types are intensional, i.e., if x:t 1 and x:t 2 for every x does not mean that t 1 =t 2 where t 1 and t 2 . are types. t1 is type of all functions from t 1 into t 2 where t 1 and t 2 . are types. A function is total and may be uncomputable. For example, N N is the type all total functions from natural numbers into the natural numbers, which are uncountable. If f:N N , then f[3] is the value of function f on argument 3.   [t 1 ,t 2] is type of pairs of t 1 and t 2 where t 1 and t 2 are types. For example, [N, Boolean] is the type of pairs whose first is a natural number and whose second is a Boolean.  TypeOf  t  is the type of t where t is a type. For example, N:TypeOfN  meaning that N is of type TypeOfN 

For example, there is a Chaining for Inference checker such that if 1 is ⋀ (⊢ pc

		universal Turing machine [Church 1936] as follows:
		o Evalt ∎[x:Expression t ] ≡
				Evalt ∎[x in EmptyEnvironment]
		o Evalt ∎[x:Identifiert  in e:Environment] ≡
		Lookup[x in e]
		o Evalt2 ∎[operator∎operand in e:Environmment] ≡
		(Evalt1→t2 ∎[operator in e])∎(Evalt1∎[operand in e])
		// apply the value of operator to
			// the value of operand
		o Evalt1→t2 ∎[(x1↦body) in e:Environmment] ≡
		[x2:t1]↦Eval∎[body in Bind∎[x1 to x2 in e]]
		// eval body in a new environment with x1 bound
				// to x2 as an extension of e
		In order to implement recursion, the lambda calculus has the
		primitive Fix such that ∀[F:Functionalt 1 ,t 2 ]
				Fixt 1 ,t 2 ∎[F]= F∎[Fixt 1 ,t 2 ∎[F]]
		where Functional t 1 ,t 2  ≡ [[t 1]→t 2]→([t 1]→t 2)
		Proof Checkers in Nat
		A proof checker pc:ProofCheckerNat is a provably total
		boolean-valued procedure of two arguments that checks if the
		second argument is validly inferred from the first argument.
		The following notation (which is part of the theory Nat) means
		that pc is proof checker such that proposition 1 infers proposition 2 in Nat: 1⊢ pc Nat 2 such that:
		∀[Proposition 1,2] (1⊢ Nat 2) ⇔ ∃[pc:ProofCheckerNat] 1⊢	pc Nat	2
		Proof checking in Nat is computationally decidable because:
		∀[Proposition 1,2], pc:ProofCheckerNat]
		(1⊢ Nat pc	2) ⇔ pc∎[1,2]=True
		where pc∎[1,2] means the invocation of procedure pc with
		arguments 1 and 2. Nat	), then
		ChainingForInferenceChecker∎[1,2]=True if 2= and
		pc∎[,]=True, otherwise pc∎[1,2]=False as follows:
		ChainingForInferenceChecker∎[1,2] ≡
		1 if ⊢	pc Nat	 then 2= and pc∎[,]=True,
		else False
	MetaNat MetaNat is a meta theory of Nat for proving theorems about Nat, which directly expresses provability of a proposition  in Nat using ⊢ Nat . (Gödel numbers cannot	The proof checker for the induction axiom is as follows: InductionChecker∎[,2] ≡ 1 if (P⟦0⟧  ∀[i:N] P⟦i⟧⇨P⟦+1[i]⟧) then 2 = ∀[i:N] P⟦i⟧, else False
	be used to represent propositions because there are not	Note that InductionChecker correctly checks uncountably many
	enough Gödel numbers to represent all uncountably many propositions that are instances of the induction and instance	instances of each of
	provability axioms.)		
	Procedures of Nat		
	Evalt :[Expression t  in Environment]→t is a		
	procedure [McCarthy et. al. 1962] that corresponds to a		

the Nat induction axioms. There are uncountable proof checkers in Nat which is made possible because proof checkers can operate on higher order types, e.g., they are not restricted to strings.

	For example, there are uncountable proof checkers of the form
	ForAllEliminationCheckert [c] where t is a type and c:t such
	that
	ForAllEliminationCheckert [c]∎[1,2] ≡
	1 if (∀[x:t] P[x]) then 2=P[c], else False
	Consequently,

]):

	read[aQuery]	readersQ
		theResource∎write[aQuery] thru reading
	theResource∎read[aQuery]	
		writersQ
	write[anUpdate]	
	theResource∎write[anUpdate]	theResource∎write[anUpdate] thru writing
	ReadPriority ⟦aDatabase:ReadersWriter ⟧ ↦
	Local(FIFO(writersQ, readersQ),

// queues of suspended activities Crowd(reading), // crowd of active reading AtMostOne(writing)), // at most one writing Handler(getScheduler ↦ As myScheduler, upgrade[newVersion] ↦ CancelAll(readersQ, writersQ, reading, writing) for Become newVersion) myScheduler implements ReadersWriter Handler(read[aQuery] ↦ Enqueue readersQ when SomeNonempty(writing, writersQ, readersQ) for // Require: IsEmpty(writing) Permit readersQ for aDatabase∎read[aQuery] thru reading afterward // Require: IsEmpty(writing) permit writersQ when IsEmpty reading else readersQ when AllEmpty(writing, writersQ) write[anUpdate] ↦ writersQ when SomeNonempty(reading, readersQ, writing, writersQ) for // Require: IsEmpty(writing , reading) aDatabase∎write[anUpdate] thru writing afterward // Require: AllEmpty(writing , reading) Permit readersQ else writersQ)

Inconsistencies in fundamental mathematical theories of Computer Science are dangerous because they can be used to create security vulnerabilities.

]. Kevin Hammond suggested including the section on related work. Dan Flickinger suggested improvements in the section on paradigm shifts. John Perry provided extensive comments throughout the article. John Woods suggested an improved title. Term t  and t is a type o (x:t):PropositionOfOrder1 where t is a type o P⟦x⟧:PropositionOfOrderi+1 where x:Term t , t is a type and P:Term Proposition i t  and i:N + Mathematical Term is a discrimination of the following patterns: o Boolean :ConstantTypeOf Boolean , N:ConstantTypeOf N , and Actor :ConstantTypeOf Actor  o x:Term t  where x:Constantt  and t is a type o x:Term t  where x:Variable t  and t is a type o [x1, x2]:Term [t 1 , t 2] where x1:Term t 1 , x2:Term t 2 , and t 1 and t 2 are types o (x1 if True then x2 , False then x3):Term t  where x1:Term Boolean , x2,x3:Term t  and t is a type o (λ[x:t 1] y):Term t 2 t1  where x:Variablet 1 , y:Termt 2  and t 1 and t 2 are types o f[x]:Term t 2  where f:Term t 2 t1 , x:Term t 1 , and t 1 and t 2 are types o x :Term t  is abstraction of x where x:Term t ↾String and t is a type Procedural Expression is a discrimination of the following: o x:Expression t  where x:Constantt  and t is a type o x:Expression t  where x:Identifier t  and t is a type o [e1, e2]:Expression [t 1 , t 2] where e1:Expression t 1 , e2:Expression t 2 , and t 1 and t 2 are types o (e1 if True then e2 , False then e3):Expression t  where e1:Expression Boolean , e2,e3:Expression t  and t is a type o (λ[x:t 1] y):Expressiont 1 →t 2  where x:Identifiert 1 , y:Expressiont 2  and t 1 and t 2 are types o x∎m:Expression t 2  where m:Expression t 1 , x is an Actor with a message handler with signature of type Expression t 1 →t 2 , and t 1 and t 2 are types o I⟦x1, ..., xn⟧:Expression I  where I is an Actor implementation and x1, ..., xn are expressions. o x :Expression t  is abstraction of x where x:Expression t ↾String and t is a type Strong types are extremely important because they block all known paradoxes including the ones in this appendix.

		APPENDIX: MATHEMATICAL NOTATION
		Notation for mathematical propositions, mathematical terms,
		and procedural expressions is formalized in this appendix.
		Mathematical Proposition is a discrimination of the
		following patterns:
		o 1, 12:PropositionOfOrderi where
		1,2:PropositionOfOrderi and i:N +
		o (x1=x2):PropositionOfOrder1 where
		x1,x2:o (1⊦2):PropositionOfOrderi where i:N + and
		1,2:PropositionOfOrderi o (1├ p 2):PropositionOfOrderi where
		p:Term ProofChecker, and
		1,2:PropositionOfOrderi and i:N +
		o s:PropositionOfOrderi (abstraction of
		s) where s:PropositionOfOrderi↾String with no
		free variables, and i:N +
		Mathematical Proposition from String is a discrimination of
		the following patterns:
		o """ s1","s1 "" s2":PropositionofOrderi↾String
		where s1,s2:PropositionofOrderi↾String and i:N +
		o "x1"="x2": PropositionofOrder1↾String where
		where x1,x2:Term↾String
		o "x1 ":" x2": PropositionofOrder1↾String where
		x1,x2:Term↾String
		o ""∀[" x ":" t "]" s":PropositionofOrderi+1↾String
		where t is a type, x:Variablet ↾String and
		s:PropositionofOrderi↾String
		o "P "⟦" x "⟧"": PropositionofOrderi+1↾String
	APPENDIX: MATHEMATICAL PARADOXES	P:Term PropositionofOrder i t ↾String  where x:Term t ↾String, i:N + and
		o "s1"⊦"s2": PropositionofOrderI+1↾String where
		s1,s2:PropositionofOrderi↾String, and i:N + .

o "s1 "├" p s2":PropositionofOrderi+1↾String where p:TermProofChecker ↾String, s1,s2:PropositionofOrderi↾String,, and i:N + o """ s """:PropositionofOrderi↾String is abstraction of s where s:PropositionofOrderi↾String with no free variables, and i:N +

the Berry Paradox as follows does not hold:

 Length[s]<100 ⇨ Characterizei⟦s, j⟧" Note that o Length[BerryString]<100. o Berryi∋[s]↦ Length[s]<100 is finite.o Therefore, BerryNumber is finite whereBerryNumber ≡ N + ∋[j]↦∃[s:Berry i] Length[s]<100  Characterizei⟦s, j⟧ o ∃[i:N +] i:BerryNumber because is N + is infinite.

	o LeastBerry ≡ Least[BerryNumber]
	o BerryString ⟦LeastBerry⟧ =
	∀[s:Berryi]
	Length[s]<100 ⇨ Characterizei⟦s, LeastBerry⟧
	However BerryString:Berryi+1 cannot be substituted

≡ "[j:N]↦∀[s:PropositionOfOrderi↾String] for s:Berryi. Consequently, BerryString ⟦LeastBerry⟧ ⇔ Characterizei⟦BerryString, LeastBerry⟧